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ABSTRACT

Aims. We examine the role of energy feedback in shaping the distribution of metals within cosmological hydrodynamical simulations
of L* disc galaxies. While negative abundance gradients today provide a boundary condition for galaxy evolution models, in support
of inside-out disc growth, empirical evidence as to whether abundance gradients steepen or flatten with time remains highly contra-
dictory.

Methods. We made use of a suite of L* discs, realised with and without “enhanced” feedback. All the simulations were produced
using the smoothed particle hydrodynamics code Gasoline, and their in situ gas-phase metallicity gradients traced from redshift z ~ 2
to the present-day. Present-day age-metallicity relations and metallicity distribution functions were derived for each system.

Results. The “enhanced” feedback models, which have been shown to be in agreement with a broad range of empirical scaling re-
lations, distribute energy and re-cycled ISM material over large scales and predict the existence of relatively “flat” and temporally
invariant abundance gradients. Enhanced feedback schemes reduce significantly the scatter in the local stellar age-metallicity relation
and, especially, the [O/Fe]—[Fe/H] relation. The local [O/Fe] distribution functions for our L* discs show clear bimodality, with peaks
at [O/Fe] = —0.05 and +0.05 (for stars with [Fe/H] > —1), consistent with our earlier work on dwarf discs.

Conclusions. Our results with “enhanced” feedback are inconsistent with our earlier generation of simulations realised with “con-
servative” feedback. We conclude that spatially-resolved metallicity distributions, particularly at high-redshift, offer a unique and

under-utilised constraint on the uncertain nature of stellar feedback processes.
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1. Introduction

Radial abundance gradients and stellar age-metallicity relations
provide two powerful constraints on the complex (and poorly
understood) interplay between gas infall (e.g., cold flows from
the intergalactic medium, coronal re-cycling of the underlying
ISM), outflows (e.g., galactic fountains, superwinds, mass load-
ing), stellar migration and radial gas flows, secular kinematic
heating, interaction- and merger-driven energetics, and star for-
mation efficiency, in driving the “inside-out” growth of disc
galaxies. Local discs, including the Milky Way, provide one crit-
ical “boundary condition” for all models, in the sense that their
present-day (i.e., gas-phase) radial metallicity gradients must be
“negative” (i.e., decreasing in metallicity with increasing galac-
tocentric radius) and of the order —0.04 dex/kpc.

Prior to 2011, no in situ measurements of abundance gra-
dients at z > 0 existed (particularly for “typical” star-forming
and/or Grand Design spirals); three datasets have started to
change this picture. MASSIV (Queyrel et al. 2012) found es-
sentially flat gradients in a large number of discs (both iso-
lated and interacting) at z ~ 1, although the challenging
nature of this non-adaptive optics work makes the results par-
ticularly sensitive to spatial resolution limitations (Yuan et al.
2013). Conversely, Yuan et al. (2011) and Jones et al. (2013),
using reconstructed source plane images of gravitationally-
lensed discs at 1.5 < z < 2.5, found that in three out of their
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four systems, the inferred oxygen gradients were very steep
(=0.15 — —0.3 dex/kpc).

Complicating the picture further, one could try and make
use of planetary nebulae sub-types within the Milky Way; as
planetaries arise from stars ranging from ~1 My to ~8 M,
they provide something of a temporal probe of abundance gra-
dients, albeit not measured in situ, but instead measured today
at z = 0, after experiencing several Gyrs or more of potential
kinematic heating (both random “blurring” and systematic radial
“migration”). Extant attempts to infer the temporal evolution of
the Milky Way’s gradient using such planetaries (Maciel et al.
2003; Stanghellini & Haywood 2010) reflects that there remains
a significant discrepancy between the claimed behaviour!. The
Maciel et al. (2003) analysis results in an inferred gradient for
the Milky Way which was steep at early times and flattened to
today’s value (—0.04 dex/kpc: Rupke et al. 2010). Conversely,
the Stanghellini & Haywood (2010) work leads to an inferred
gradient at early times which is somewhat flatter than today’s
value (hence, a steepening with time).

Motivated by these empirical constraints, we examine here
the role of energy feedback in shaping the temporal evolution
of abundance gradients and age-metallicity relations within a

' Very uncertain distance determinations and nebular emission ap-

proaches, presumably cloud the issue, but this is beyond the scope of
our abilities to disentangle.
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sub-set of cosmological hydrodynamical disc simulations drawn
from the MUGS (McMaster Unbiased Galaxy Simulations;
Stinson et al. 2010) and MaGICC (Making Galaxies in a
Cosmological Context; Brook et al. 2012b) suites. We will
demonstrate how such observations can genuinely constrain the
highly uncertain nature and magnitude of energy feedback un-
derpinning galaxy formation.

In Pilkington et al. (2012a), we showed that “conventional”
feedback schemes (i.e., those making use of ~10-40% of the
energy associated with each supernova (SN), to heat the sur-
rounding ISM), when coupled with a classical SPH approach
to hydrodynamics (independent of the SPH code employed),
tended to result in galaxies with steep abundance gradients at
redshifts z > 1 (-0.15 — —0.30 dex/kpc vs. —0.04 dex/kpc, to-
day). Such “conventional” feedback schemes, when coupled to a
grid-based approach to hydrodynamics at roughly the same res-
olution, also led to gradients steeper at high-redshift relative to
the predicted present-day values (—0.05 — —0.10 dex/kpc vs.
—0.04 dex/kpc, today), although systematically shallower than
their SPH counterparts. This systematic difference was driven
by the particular grid-based approach being adopted imposing a
two-grid-cell minimum to the blastwave radius. We speculated
then that any feedback scheme which distributed energy more
efficiently on larger scales should result in flatter gradients?.

At the time of this earlier work (Pilkington et al. 2012a;
Pilkington & Gibson 2012), we did not have a clear manner
in which to quantify the above inference. We are now in a
position to show, in a direct manner, the impact on the tem-
poral evolution of abundance gradients for L* disc galaxies,
when replacing the conventional feedback scheme employed
for MUGS-g1536 and MUGS-g15785 with their now well-
tested MaGICC analogs. These enhanced feedback simulations
(MaGICC-g1536 and MaGICC-g15784) were not available at
the time of this previous work; combined with the aforemen-
tioned new empirical determinations of high-redshift in situ
abundance gradients (most of which were also not available at
the time of our initial study), this brief Research Note solidifies
the more speculative conclusions we drew in (Pilkington et al.
2012a).

2. Simulations

We make use of two galaxies (g1536; g15784) drawn from the
MUGS (Stinson et al. 2010) suite of L* cosmological discs;
these two systems are both isolated and experienced relatively
quiescent assembly histories, since redshift z ~ 2. By avoiding
strongly interacting major mergers and/or close pairs, the com-
parison between simulation and observation remains “like-with-
like”; if we had not restricted ourselves to such isolated systems,
we would necessarily have had to consider the impact that envi-
ronment plays in flattening gradients during periods of strong in-
teraction (e.g. Rupke et al. 2010; Few et al. 2012). Realised with
the SPH code Gasoline (Wadsley et al. 2004), two variants of
each galaxy were analysed — one using “conventional” feedback
(MUGS) and one using “enhanced” feedback (MaGICC)?. Full

2 Turbulence driven by thermal instability can also be an efficient
mechanism for mixing metals, as elucidated upon in the excellent work
of Yang & Krumholz (2012).

3 It should be emphasised that the assembly/merger histories for each
MUGS-MaGICC “pair” (e.g., MUGS-g1536 and MaGICC-g1536) are
identical; i.e., the differences discussed in Sects. 3 and 4 are due to
internal (e.g., feedback, star formation, etc.), rather than external (e.g.,
merger history), processes.
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details, including the methodology associated with star forma-
tion and feedback, for MUGS, can be found in Stinson et al.
(2010) and Pilkington et al. (2012a). The MaGICC feedback
prescription is outlined in a series of papers (Brook et al. 2011,
2012a,b,c; Pilkington et al. 2012b; Stinson et al. 2012, 2013).

Briefly, MUGS-g1536 and MUGS-g15784 employ a thermal
feedback scheme in which 4 x 10°° erg per SN is made avail-
able to heat the surrounding interstellar medium (ISM), while
their MaGICC analogs use 103! erg/SN. The MUGS (MaGICC)
simulations were realised with a Kroupa et al. (1993) (Chabrier:
Chabrier 2001) initial mass function (IMF)*. In the MaGICC
runs, radiation energy feedback from massive stars is also in-
cluded (in the ~4 Myr prior to the appearance of the first Type 11
SN from each star particle), albeit at an effective coupling effi-
ciency <1% (Brook et al. 2012b; Stinson et al. 2013). For both
MUGS and MaGICC, cooling is disabled for gas particles sit-
uated within a blast region of size ~100 pc, for a time period
of ~10 Myr. Star formation is restricted to regions which are
both sufficiently cool (<10 kK) and dense (MUGS: >1 cm™3;
MaGICC: >9 cm™). Metal diffusion (Shen et al. 2010) is in-
cluded in all runs.

To link the simulation nomenclature with their earlier ap-
pearances in the literature, MUGS-g1536 and MUGS-g15784
correspond to g1536 and g15784, respectively, in Stinson et al.
(2010) and Pilkington et al. (2012a), while MaGICC-g1536 cor-
responds to the “Fiducial” run in Stinson et al. (2013)°.

3. Abundance gradients

In Fig. 16, we show the evolution of the gas-phase oxygen abun-
dance gradients for both sets of realisations (g15784: + symbols;
g1536: = symbols). Also included are the data sets of MASSIV
(Queyrel et al. 2012), Yuan et al. (2011), and Jones et al. (2013).
These are, to date, the only high redshift results against which
our simulations can be compared. We also include results from
studies of local planetary nebulae by Maciel et al. (2003, dia-
monds) and Stanghellini & Haywood (2010, circles)’.

The lower (“conventional” feedback) pair of simulated
galaxies show significant flattening from z ~ 2 to z ~ 0, as pre-
viously described by Pilkington et al. (2012a)3. Conversely, the
upper pair show a dramatically different evolutionary sequence;

* The MUGS runs assumed that the global metallicity Z = O + Fe,
while those of MaGICC assume Z = O + Fe + C + N + Ne + Mg + Si;
as such, the MUGS simulations underestimate the global metallicity by
roughly a factor of two, and hence the impact of metallicity-dependent
cooling (Pilkington et al. 2012a).

> MaGICC-g1536 is also essentially the same as SGSLR, as reported
in our earlier work (Brook et al. 2012b).

6 Our Fig. 1 here is a preferred update to Fig. 5 of Pilkington et al.
(2012a).

7 It is important to note that the “high-redshift” abundance gradients
inferred from sub-types of planetary nebulae foday are strictly upper
limits (as plotted), as any secular heating processes can really only flat-
ten their in situ gradients to the values that we observe for them today;
hence, the planetary nebulae data in Fig. 1 are drawn with downward-
facing arrows superimposed.

8 The ~0.1 — 0.3 dex “deviations” in the flattening near redshift z ~ 2
are transient in nature, and due to periods of enhanced merger activity,
as discussed by Pilkington et al. (2012a) and Few et al. (2012); this brief
steepening of the gradient, followed by a subsequent “return” to the
global flattening trend, is akin to the behaviour discussed eloquently by
Rupke et al. (2010). Future work with a finer temporal output cadence
will be required to better quantify the timescale upon which the gradient
“returns” to its global flattening trend.
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Fig. 1. Temporal evolution of the predicted oxygen abundance gradi-
ents associated with four simulated L* disc galaxies — from the MUGS
(Stinson et al. 2010) and MaGICC (Brook et al. 2012b) suites — in
addition to an analytical model (SB09: Schonrich & Binney 2009).
Symbols correspond to empirical determinations of the abundance
gradients in a sample of high-redshift lensed systems (Yuan et al.
2011; Jones et al. 2013), intermediate-redshift galaxies from MASSIV
(Queyrel et al. 2012), local discs (Rupke et al. 2010), and the Milky
Way (Maciel et al. 2003; Stanghellini & Haywood 2010).

the stronger feedback implemented within the MaGICC scheme,
results in essentially flat gradients at high-redshift, with minimal
steepening (rather than flattening) with time. As the MaGICC
feedback scheme re-distributes energy and re-cycled ISM mate-
rial over much greater galactic scales (via winds driving low-
angular momentum inner disc and bulge gas to the corona,
where it then cools, falls back preferentailly to the outer disc,
and re-enters the star-forming region preferentially as an in-
plane radial “flow”; the re-cycling pattern is described in more
detail by Brook et al. 2011, 2012a) such flat (and essentially
temporally-invariant) gradients are consistent with our interpre-
tation of the difference between the grid and particle-based simu-
lations, as noted above, and in our earlier work (Pilkington et al.
2012a). Specifically, the flatter gradients seen in the MaGICC
scheme at z > 0 are due to the combined effect of (a) “metal
re-cycling” via outflows (which re-distributes metals), and (b)
“ISM re-structuring” via outflows (which re-distributes the ISM
and hence radial star formation profile).

It is worth reminding the reader as to the predicted tempo-
ral evolution of the gradients from classical “analytical” chemi-
cal evolution models for the Milky Way (Chiappini et al. 2001;
Mollad & Diaz 2005; Schonrich & Binney 2009). As reported in
Pilkington et al. (2012a), the models of Chiappini et al. (2001)
and Molla & Diaz (2005) show behaviour which is indistinguish-
able from that seen in the stronger feedback MaGICC-g1536 and
MaGICC-g15784 models. The model of Schonrich & Binney
(2009) is similar, in the sense of showing very little temporal
evolution, albeit it remains somewhat steep at all times.

It is worth asking how the transition from “conventional”
MUGS feedback to stronger MaGICC feedback impacts on
the inferred gradient in [O/Fe]. Having addressed the former
(Pilkington & Gibson 2012), albeit briefly, we show in Fig. 2 the
mass-weighted stellar [O/Fe] gradients at redshift z = 0 from

+ MaGICC 1536 =
& MUGS g1536 :
115809

0.3F

[0/Fe]

Radius [kpc]

Fig. 2. Predicted present-day, stellar mass-weighted, radial [O/Fe] gra-
dients for the MaGICC (Brook et al. 2012b) and MUGS (Stinson et al.
2010) realisations of simulation g1536, compared with that predicted
by an analytical model of the Milky Way (SB09: Schonrich & Binney
2009).

MUGS-g1536, MaGICC-g1536, and the analytical model of
Schonrich & Binney (2009). Both the MUGS and MaGICC real-
isations possess very flat gradients (<0.005 dex/kpc), similar to
those observed by Sanchez-Blazquez et al. (2009), although the
uncertainties associated with inferring mass- or light-weighted
[a/Fe] gradients from integrated spectroscopy of face-on discs
can be significant (see also Fenner et al. 2006). In contrast with
the MaGICC predictions, the analytical models of Schonrich &
Binney (2009) predict positive integrated light/mass gradients
in [O/Fe], within the star forming part of the disc, on the order
of ~+0.02 dex/kpc.

A characteristic of the model of Schonrich & Binney (2009),
relative to several classical models of galactic chemical evolu-
tion (Chiappini et al. 2001; Molld & Diaz 2005), is the inclusion
of radial gas flows’. Such flows are also a natural outcome of our
enhanced MaGICC feedback scheme (Brook et al. 2011). While
it can be challenging to infer the signal of ~1-2 kms™' flows,
when superimposed upon a (say) o, ~ 30 kms~! velocity dis-
persion profile (both within the simulations and (especially) in
nature (Dame 1993)), we have attempted to do so. Formally, for
MUGS-g1536 (at redshift z = 0), we find inward radial (cold)
gas flows of ~3 kms™! (~1 kms~") within a +2 kpc thick annu-
lus at 13 < r < 17 kpc (7 < r < 8 kpc); for MaGICC-g1536,
the radial flows (again, at z = 0) are much larger: ~12 kms™!
(~8 kms™") at the same galactocentric radii. A more detailed
analysis of the temporal evolution of the gas flows will be re-
quired to disentangle the relative roles, within MaGICC, of re-
cycling of the ISM over increasingly large galactic scales and
the increasingly more substantial radial gas flows.

4. Age metallicity relations

In Fig. 3, for MaGICC-g1536 (left column) and MUGS-g1536
(right column), we show their inferred local “solar neighbour-
hoods” stellar metallicity distribution function (MDF: top row),
age-metallicity relation (AMR: second row), [O/Fe]-[Fe/H] dis-
tribution (third row), and [O/Fe] distribution function (bottom
row). The solar neighbourhood is taken as the region 3 <
rq < 3.5, where ry is the radius in units of disc scalelength. While

°  See also the radial flow model of Spitoni et al. (2013), for insightful
commentary on the issue of radial flows in disc galaxies.
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Fig.3. Predicted metallicity distribution functions
1 (top row); age-metallicity relations (second row);
[O/Fe]-[Fe/H] relations (third); and [O/Fe] distribu-
tions (bottom row), for “solar neighbourhood” regions
of the MaGICC (left column: Stinson et al. 2013) and

MUGS (right column: Stinson et al. 2010) realisations
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the impact of the enhanced feedback associated with MaGICC
is readily apparent in the AMR and [O/Fe]-[Fe/H] planes, the ef-
fect is more subtle in the MDF and [O/Fe] distribution function.
The remarkably tight (effectively temporally invariant scatter)
and correlated AMRs in the (analogous) simulated solar neigh-
bourhood, for this L* realisation, is similar to that encountered
in our earlier work on dwarf discs (Pilkington et al. 2012b). At
a given [Fe/H], within the solar neighbourhood, two (roughly)
parallel loci in [O/Fe] co-exist (for [Fe/H] > —1) with a separa-
tion of ~0.1 dex (bottom left panel of Fig. 3); this separation is,
admittedly, smaller than that seen in the solar neighbourhood of
the Milky Way (~0.3 dex: e.g., Fig. 3 of Fuhrmann & Bernkopf
2008), although in a qualitative sense the behaviour is not dis-
similar. An earlier detailed examination of the origin of these
offset sequences (in a dwarf disc realisation) demonstrated sig-
nificant parallels with said empirical sequences (drawing links
with “thin” and “thick” discs, and highlighting the role of ra-
dial migration — Brook et al. 2012c¢); such behaviour, including
offset loci in [O/Fe] for [Fe/H] > —1 is reflected in the L* reali-
sations described here (see the bottom row of Fig. 3, where the
bimodal [O/Fe] distributions associated with [Fe/H] > —1 stars
in the simulated solar neighbourhoods is apparent.

5. Conclusions

Negative abundance gradients at redshift zero provide a local
boundary condition for galaxy evolution models, in support of
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of simulation g1536.

inside-out disc growth. Importantly, we are seeing the begin-
nings of associated boundary conditions on the temporal evolu-
tion of said metallicity gradients, with recent in situ determina-
tions of radial abundance gradients in typical star-forming and/or
Grand Design spirals at redshifts 2.4 < z < 1.0 (e.g. Yuan et al.
2011; Queyrel et al. 2012; Jones et al. 2013). These develop-
ments are very much on the leading-edge of what can be done
today; hence, the still contradictory nature of the results — i.e.,
whether or not abundance gradients steepen or flatten with time
— should not be surprising. Time (and additional high-redshift
data) will certainly settle this observational issue; despite this,
the power to use these in situ observations is enticing, and has led
us to drive this effort to use their results to constrain the very un-
certain nature of sub-grid physical energy feedback within mod-
els of galaxy evolution.

To this end, we have analysed a suite of simulated L* discs,
realised with different feedback implementations. The enhanced
feedback models of the MaGICC programme (Brook et al.
2012b; Stinson et al. 2012), which have been shown to be in
agreement with a broad range of present-day empirical scaling
relations, predict that gradients should only mildly steepen with
time. These relatively “flat” and temporally invariant abundance
gradients result from feedback which distributes energy and re-
cycled ISM material over large scales, coupled with stronger ra-
dial gas flows. These results are consistent with extant analytical
models of galactic chemical evolution, the inferred Milky Way
gradient at high-redshift by Stanghellini & Haywood (2010), and
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in situ abundance gradients at high-redshift, as determined by
Queyrel et al. (2012). By contrast, the simulations which incor-
porated relatively weak feedback, without including early stellar
feedback from massive stars prior to exploding as SNs, results
in metallicity gradients that are steep at high redshift (consistent
with in situ abundance gradients at high-redshift determined
by Yuan et al. 2011 and Jones et al. 2013, and the inferred
Milky Way gradient at high-redshift by Maciel et al. 2003). We
do not wish to leave the reader with any notions regarding the va-
lidity of MaGICC or MUGS feedback schemes based upon the
in situ determination of abundance gradients at high-redshift; we
are not in a position to do so yet. What is true though is that such
empirical determinations possess a unique ability to constrain
the uncertain nature of sub-grid feedback within galaxy-scale
hydrodynamical simulations.

Enhanced feedback also results in significantly reduced scat-
ter in the local stellar age-metallicity relation and, especially,
the [O/Fe]—[Fe/H] relation. The local [O/Fe] distribution func-
tions for our L* discs show clear bimodality, with peaks at
[O/Fe] = —0.05 and +0.05 (for stars with [Fe/H] > —1); as noted
in Sect. 4, such a separation is qualitatively (if not quantita-
tively) similar to that seen in the solar neighbourhood of the
Milky Way. A detailed analysis of both the age-metallicity rela-
tions and metallicity distribution functions associated with these
simulations will form the basis of a future study.

In light of the success of the MaGICC formulation for
feedback at redshift zero (Brook et al. 2012a,b,c; Pilkington &
Gibson 2012; Pilkington et al. 2012b; Stinson et al. 2012, 2013),
it may be tempting emphasise the consistency between classical
models of chemical evolution, MaGICC-g1536, and MaGICC-
g15784, with the empirical data of Queyrel et al. (2012) and
the planetary nebula work of Stanghellini & Haywood (2010).
Having said that, there are no a priori reasons to doubt the gradi-
ents inferred from lensed discs at high-redshift (Yuan et al. 2011,
2013; Jones et al. 2013), nor to dismiss the planetary nebulae
work of Maciel et al. (2003). Future observational campaigns,
and detailed intercomparisons of the disparate planetary nebulae
samples, will surely provide definitive and pivotal conclusions as
to whether the somewhat flat and temporally invariant gradients
predicted with the MaGICC feedback formulation stand the test
of time, or whether the situation is more complicated (or at least
varied) than we envision. Such observations are a unique and,

until now, missing constraint/boundary condition on models of
galaxy evolution.
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