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Model boosting for spatial weighting matrix selection in spatial lag models 

Philip Kostov 
Lancashire Business School 
University of Central Lancashire 
 

Abstract 

The spatial lag specification is often used in spatial econometrics. The choice of an 

appropriate spatial weighting matrix is an important outstanding methodological problem in 

the quantitative spatial dependence literature. This paper proposes applying a component-

wise model boosting algorithm to deal with the issue of the choice of a spatial weighting 

matrix amongst a predetermined set of alternatives. The resulting procedure is 

computationally simple and easy to implement. We present an empirical application of the 

proposed methodology. Some possible extensions to a more general setting are discussed. 

Keywords: spatial lag, spatial weighting matrix, model boosting 

Introduction 

The issues of social interaction are gaining prominence in economic literature. Examples of 

theoretical models explicitly considering such issues include the models of increasing 

returns, path dependence and imperfect competition that underline much of the new 

economic geography literature (see Fujita et al. 1999), neighbourhood spillover effects 

(Durlauf, 1994; Borjas, 1995; Glaeser et al., 1996) and the macroeconomic interaction 

models developed by Aoki,1996 and Durlauf, 1997. It is difficult to provide a consistent 

overview of this area, but any formal or informal analysis employing concepts such as 

social norms, social capital, neighbourhood effects, peer group effects, strategic interaction, 

reference behaviour or yardstick competition falls into this category. A common 

implication of this type of models is that they imply certain type of interaction that links 

together economic agents. This interaction can be represented as a variation over  space, 

where ‘space’ may not necessary be defined in geographical sense, but may be based on 

other metrics, such as ‘economic’ or ‘social’ distances. 

Brueckner, 2003 presents two theoretical frameworks for such interaction. In the first one 

known as the spillover model, the decisions taken by other economic agents enter directly 

into the objective function of the economic agent. The other framework is known as the 

resource flow model. In this case the objective function of an agent is only indirectly 
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affected by the decisions taken by other agents. Typically this is due to the fact that this 

objective function includes the value of some ‘resource’ the availability of which depends 

on the decisions taken by the other agents. Both the spillover and the resource flow models 

lead to the spatial lag specification. Statistically the spatial lag specification can be 

expressed as follows: 

y Wy X uλ β= + +  (1) 

where the classical linear regression model is augmented by the inclusion of the spatially 

lagged dependent variable Wy. The spatial lag is represented by the spatial weighting 

matrix W which needs to be specified. 

The need to pre-specify the spatial weighting matrix presents a serious challenge to 

empirical modelling, particularly since often there is very little guidance about how exactly 

to do it. This paper suggests using component-wise boosting to choose the appropriate 

spatial weighting matrix amongst a set of pre-determined alternatives. It shows how the 

spatial weighting matrix selection problem can be reformulated as a variable selection 

problem and thus standard variable selection techniques would be available.  The paper is 

organised as follows. First we discuss the issues surrounding spatial dependence and the 

formulation of the spatial weighting matrix. Then some existing approaches dealing with 

the arbitrariness of the choice of spatial weighting are discussed. The general idea of our 

proposal is outlined and the proposed methodology is briefly compared to some of the more 

popular alternatives within the variable selection literature.  After a detailed description of 

the underlying algorithms, we present an empirical example using agricultural land sales 

data from Northern Ireland. Finally, some possible extensions of the proposed framework 

are discussed. 

 

Spatial dependence and spatial weighting matrix 

Although we will only be considering the spatial lag specification, it would be important to 

note that this is not the only form of spatial dependence. An alternative is the so called 

spatial error representation. It would be useful to distinguish these two forms of spatial 

dependence. In principle the exact causes of spatial dependence determine whether it is 

spatial lag or spatial error. Spatial dependence may for example arise simply because 

economic agent independently adopt similar behaviour, because e.g. of the underlying 

institutional arrangements. If so, the spatial dependence observed in our data does not 
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reflect a truly spatial process, but merely spatial clustering of the sources of the behavior in 

question, e.g. of the underlying institutional arrangements. This type of spatial clustering, 

known as spatial error model, produces (spatial) heterogeneity in the error terms. Hence 

ignoring this form of spatial dependence has the same implications as the violation of the 

homoscedasticity assumption in regression models. The parameter estimates remain 

consistent, but owing to the spatial heteroscedasticity, the estimated standard errors are 

biased downwards and this increases the occurrence of Type 1 errors when these standard 

errors are used for statistical inference.  

Alternatively spatial dependence may be produced by diffusion process, when spatial 

spillovers cause spatial correlation. As we have already discussed any such spatial 

spillovers lead to the spatial lag model. Having spatial lag model implies genuine spatial 

spillovers and has much more serious implications for estimation. These are essentially the 

same as omitting a significant explanatory variable. The resulting estimates are generally 

biased and inconsistent. Thus the consequences of ignoring spatial lag are much more 

serious than these resulting from ignoring spatial error.  Furthermore, the sources of spatial 

lag dependence are much more ‘interesting’ in the sense that they can be nested in one of 

the underlying theoretical frameworks.  

To complicate things further, the spatial lag and spatial error specifications can be difficult 

to distinguish, since the spatial error representation can be viewed as a restriction on the 

more general spatial lag one, something that is popularly referred to as the spatial Durbin 

model. This however provides us with the possibility to explicitly test within a given spatial 

lag representation whether then spatial error restriction holds or not and further enhance our 

understanding of the substantive sources of spatial dependence present in the data. 

Therefore methods dealing with the spatial lag specification could be useful even if the 

suspected forms of spatial dependence was this of spatial error since they can be employed 

as first step in a more general modeling strategy. 

The specification of spatial dependence via a spatial weighting matrix is a convenient way 

to describe theoretical or a priori knowledge and understanding of the underlying structure 

generating the ‘spatial’ dependence between different economic agents and units of 

analysis. In simple words defining a spatial weighting matrix involves two choices, namely 

a neighbourhood scheme and spatial weights. The neighbourhood scheme involves 

determination of which units of analysis are linked and which are not. When units are 

economic agents this means the decisions of which agents are to be included in the 
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objective functions of other agents. A social network structure could for example be used to 

infer the neighbourhood scheme. The weighting scheme on the other hand defines the 

strength of these links. The weighting scheme is based on some distance metrics, which 

could be spatial, economic distance, or in the case of the social network example a social 

distance (e.g. family, close friends, acquaintances etc.). The weighting scheme takes the 

distance metrics and combines it in order to derive the strength of the impact each unit has 

on another unit. 

For identification purposes the spatial weighting matrix needs to be exogenous (Manski, 

1993). One reason for the popularity of spatial weighting matrices based on geographical 

distances is the fact that their exogeneity is automatically ensured.  

In practice the spatial weighting matrix carries out a spatial smoothing over the dependent 

variable, thus incorporating part (given by the spatial weights) of the values at the 

neighbouring observations. For logical and identification purposes some structure is 

imposed on the spatial weighting matrix. The first assumption is to set its diagonal elements 

to zero. This reflects that one is not a ‘neighbour’ to itself in that spillovers from itself are 

not allowed. This assumption is facilitating interpretation of the results. Furthermore the 

spatial lag coefficient λ  is usually assumed to be in the (-1,1) interval. This is needed to 

provide a comparative perspective and to interpret this coefficient as the strength of the 

spatial diffusion process. Such an interpretation would not however be possible if the 

spatial weighting matrix is not normalised. The weights need to be normalised because 

different spatial weighting matrices can define the same diffusion process up to a factor of 

proportionality, meaning that just by scaling up or down a spatial weighting matrix one can 

represent the same structure. A convenient normalisation is to produce a row standardised 

spatial weighting matrix. This amounts to setting the sum of each row to add up to 1. This 

yields a unique spatial weighting matrix for a given weighting scheme. Furthermore this 

standardisation ensures that the spatial lag coefficient λ  can be viewed as strength of the 

diffusion process and should logically be restricted to the interval (-1, 1) to avoid an 

explosive type of spatial diffusion process. Finally the spatial filtering matrix (i.e. I Wλ− , 

where I is a unity matrix with an appropriate dimension) is assumed non-singular for 

estimation purposes. 

Very often spatial distances may reasonably well approximate the underlying ‘true’ metrics, 

which may be unobservable or unavailable. For example often spatial distance can 

approximate the strength of social relationships. Therefore in the absence of direct 
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measurement of the underlying relationship, the spatial distances could be used. Note 

however that in such an approximation process even if one knows the exact form of the 

linkages, as expressed in the underlying unavailable metrics, translation into spatial 

distances (or any other alternative metrics system) changes matters. The translation may 

effectively break down the theoretical spillover definition. Hence the uncertainty about 

what the spatial distances measure introduces additional uncertainty in the process of 

specifying an appropriate spatial weighting matrix.  

 

Choosing the spatial weighting matrix 

In some applications some of the choices underlying the spatial weighting matrix (i.e. 

neighbourhood definition and weighting scheme) may be logically predetermined, e.g. the 

nature of the problem may suggest the neighbourhood scheme and/or equal weights could 

be a logical choice. In most cases however this choice is far from trivial. The choice of 

spatial weighting matrix in empirical applications has been usually subject to some 

arbitrariness. This arbitrariness presents a serious problem to the inference in such models 

since estimation results have been shown to critically depend on the choice of spatial 

weighting matrix (Anselin, 2002; Fingleton, 2003). 

Popular weighting schemes are inverse distances (raised to some power),  lengths of shared 

borders (divided by the perimeter), nth nearest neighbour distance, ranked distances, 

constrained weights for an observation equal to some (predetermined) constant, all 

observations within a given distance. And the search for appropriate specification does not 

seem to stop. Some proposals include the bandwidth distance decay (Fotheringham et al., 

1996), Gaussian distance decline (LeSage, 2003); the tri-cube distance decline function 

(McMillen and McDonald, 2003); the ‘local statistics model’ (Getis and Aldstadt, 2001, 

2002), the ‘optimize bandwidth’ approach (Fotheringham et al., 2002) and the AMOEBA 

(Aldstadt and Getis, 2003). Other approaches try to relax the neighbourhood definition. 

These include the moving windows regression, geographically weighted regression 

(Brunsdon et al, 1996) and locally weighted regression (McMillen, 1996). The general idea 

of these approaches is to substitute a ‘sliding neighbourhood’ for the predefined 

neighbourhood boundaries. 

The issue of spatial weighting matrix have been outstanding for considerable amount of 

time. Kooijman, 1976 proposed to choose the spatial weighting matrix by maximizing 
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Moran’s coefficient. In a more general vein this has led to the practice of choosing spatial 

weighting matrix maximising alternative spatial dependence statistics. Research into 

reducing the degree of arbitrariness in spatial weighting matrix choice has been particularly 

active in recent years. One could classify this strand of research into two main types. First, 

new and more flexible ways to specify the neighbourhood and/or the weighting schemes 

have been proposed. The above mentioned approaches fall into this category. The second 

type of proposals deals with essentially selecting the spatial weighting matrix either 

implicitly or explicitly from a pre-defined set of candidates. Bhattacharjee and Jensen-

Butler, 2005 proposed estimating spatial weighting matrix consistent with the data 

distribution, but their approach only applies to the spatial error model. Lima and Macedo, 

1999 proposed an interesting procedure dealing with estimating the weights decay and thus 

the spatial weights matrix with a predefined ‘soft’ neighbourhood (soft in the sense that the 

weight decay can exclude some observations from the neighbourhood definition).  When 

we have an explicit set of competing spatial weighting matrices, LeSage and Parent, 2007 

proposed a Bayesian model averaging procedure for spatial model which incorporates the 

uncertainty about the correct spatial weighting matrix. Holloway and Lapar, 2007 used a 

Bayesian marginal likelihood approach to select a neighbourhood definition (cut-off points 

for the neighbourhood), but one can consider their approach as a general model selection 

approach, which could be applied to any other set of competing models. Finally Kelejian, 

2008 proposed a formal statistical test to distinguish between non-nested spatial 

specifications. 

Our proposal lies within the model selection approaches, i.e. selecting amongst a predefined 

set of models. In this case we are primarily interested in models with alternative spatial 

weighting matrices. A common drawback of the model selection approaches is that the 

competing models need to be estimated, either explicitly (e.g. in Holloway and Lapar, 

2007), or implicitly as a part of the testing procedure (e.g. in Kelejian, 2008). Despite the 

huge advances in computing technology, computationally simpler approaches are still 

beneficial. In this paper we suggest using component-wise model boosting as a 

computationally simple model selection procedure to alleviate the arbitrariness of spatial 

weighting matrix choice. Although the approach suggested here can be used for general 

specification search (see e.g. Florax et al., 2003, 2006 and Hendry, 2006) for simplicity 

here we will implicitly assume correct specification and will focus specifically on choosing 

the appropriate spatial weighting matrix. 
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Conceptual framework 

The spatial lag specification includes the spatially lagged dependent variable Wy  on the 

right hand side. This results in endogeneity with the dependent variable. In such a setting 

conventional estimators are inconsistent. There are two main types of estimators for the 

spatial lag model that deal with the endogeneity issue and have been extensively studied 

and used in the literature. These are the maximum likelihood or quasi maximum likelihood 

estimator (see e.g. Anselin, 1988) and the generalized method of moment estimator (see 

Kelejian and Prucha 1998, 1999). We propose using the spatial two-stage least squares 

approach of Kelejian and Prucha, 1998 (which can be viewed as a type of generalised 

method of moments estimator) to transform the spatial weighting matrix choice into a 

variable selection one. The spatial two-stage least squares amounts to using the spatially 

lagged independent variables as instruments for the spatially lagged dependent variable. 

Thus we can simply project the spatially lagged dependent variable in the vector space of 

the instruments and use the transformed in this way variable instead of the original one. 

This can be done by direct matrix manipulation or by running an auxiliary regression (of 

the spatially weighted dependent variable on the spatially weighted independent ones) and 

using the residuals from this regression in the second estimation step. In simple words this 

means that we can run separate auxiliary regressions for each potential spatial weighting 

matrix. These will provide us with the corresponding transformed variable to include in the 

‘second stage’. Thus the question of whether a given spatial weighting matrix needs to be 

included gets translated into the one which of the created transformed variables need to be 

included in the main regression model. This is a typical variable selection problem and 

there are many different methods to perform variable selection. Here we suggests using a 

component-wise boosting algorithm. 

There are many different methods for variable selection in linear models. The best known 

approaches are forward selection and backward elimination. The combination of these two 

approaches is usually referred to as a stepwise regression (see e.g. Miller 2002). Alternative 

approaches for subset selection in linear models which are closely related to each other are 

LASSO (Least Absolute Sum of Squares Operator, see Tibshirani, 1996), forward 

stagewise regression and LARS (Least Angle Regression, see Efron et al., 2004)), boosting 

approaches (Bühlmann, 2006), the elastic net (Zou and Hastie, 2005) and the Dantzig 

selector (Candes and Tao, 2007). We will not discuss the Bayesian variable selection 
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methods here. Most non-Bayesian model selection methods are essentially based on 

penalised estimation criteria. Other penalised methods are the nonnegative garrote 

(Breiman, 1994), the bridge estimator (Frank and Friedman, 1993; Fu, 1998), SCAD 

(smoothly clipped absolute deviation, Fan and Li, 2001). A comprehensive overview of 

penalised methods is available in Fan and Li (2006).  

With such a wide range of available methods, how does one choose the one appropriate to 

the problem in hand. In the case of choosing an appropriate spatial weighting matrix, there 

is large number of alternatives. Therefore we need a method that can handle well high-

dimensional problems and is relatively fast in terms of computational time. We do not 

however strictly require the ‘oracle’ property in the sense of Fan and Li, 2001. The oracle 

property requires that the asymptotic distribution of the non-zero coefficients in the 

estimated model is the same as when the zero coefficients are known in advance. It is useful 

when the method is used for both model selection and estimation. Note however that since 

the underlying two –step estimation requires adjustments to the standard error estimates, it 

is impractical to use the variable selection method also for estimation. Therefore only 

consistency with regard to the variable selection is necessary. 

In terms of computational burden, some of the variable selection methods are relatively 

more expensive than others. Step-wise regression is amongst the more demanding methods, 

particularly when the number of covariates is large. The computational burden for most 

penalized estimators arises from the nature of the used penalty term. For example the 

SCAD penalty (Fan and Li, 2001) involves non-convex optimization and thus can be 

computationally expensive. The LASSO estimator uses L1 (absolute deviations) penalty 

and can also be relatively demanding. A fast estimator is the LARS (Efron et al., 2004). 

The computational requirements of the LARS algorithm are similar to this of a least squares 

fitting. Furthermore, in addition to its speed, it provides an illuminating overview of the 

linkages amongst different variable selection algorithms. In particular LARS can be 

modified to yield either the LASSO solutions or that of a forward stagewise fitting (Efron et 

al.2004). Forward stage fitting on the other hand can be viewed as a simplified version of 

boosting with a small fixed step size (Hastie et al., 2001). Thus LARS, LASSO and 

boosting (L2 boosting) are somewhat ‘related’.  This does not mean that they are 

equivalent. Their equivalence can only be established for orthogonal predictors and the 

difficult to verify case of monotone paths, but even in general they often produce similar 

solutions.  Thus when one of these algorithms is impractical to implement the others could 
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be used instead. It could sometimes be prohibitively expensive to solve LASSO for a large 

number of candidate spatial weighting matrices with general loss functions for many 

regularisation parameters via quadratic programming. The LARS algorithm is very efficient 

computationally for least squares problems when the number of predictors is small. It does 

not however deal with other loss functions and is not adequate with a large number of 

predictors. Boosting on the other hand can use different loss functions and works well with 

large number of predictors.  Furthermore even for smaller number of predictors component-

wise boosting is about 3 times faster than LASSO. A major advantage of the component-

wise boosting algorithms is that it can fit models with negative degrees of freedom, i.e. 

when the number of predictors exceeds the number of observations. Since choosing a 

spatial weighting matrix can involve too many alternatives, such a property is highly 

desirable. Bühlmann and Yu, 2003 provide an empirical illustration of the advantages of 

boosting for models with high-dimensional predictors. In more classical settings with 

smaller number of predictors alternative method performs similarly. 

The R statistical system (R Development Core Team, 2008) contains extensive selection of 

ready to use regularisation methods code, contained in different packages. The lasso2 and 

lars packages implement LASSO and LARS estimators, package grplasso provides 

groupwise LASSO (simultaneous updates for predefined groups of parameters. Other useful 

methods exist in the packages glmpath, elasticnet, glmnet, penalized and relaxo. There are 

various implementations of boosting algorithms in R, contained in packages such as gbm, 

boost and GAMBoost. The methods discussed in this paper were implemented using the 

mboost package (Hothorn and Bühlmann, 2008) which provides extendable framework for 

a wide range of models. All code underlying the R system and all official (i.e. available 

from the Comprehensive R Archive Network (CRAN) sites) packages is publicly available 

and could be modified with no restrictions. This allows one to combine ease of 

implementation and flexibility. 

Methodology 

Boosting itself is a vast area.  There is a growing number of different boosting algorithms 

and approaches and it would be far beyond the scope of this paper to review them. To 

further complicate matters originally boosting was conceived from a machine learning 

perspective as a combination of ‘weak’ learners. Here we will present the alternative 

statistical perspective on boosting. We will present a generic overview to the boosting 
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algorithm, demonstrating its generality. Where applicable the specifics of our 

implementation would be described.  

We will consider regression model where the response y is an additive function of the 

predictors. Thus we can denote 

( ) ( )0
1

k

i
i

y x f xη ξ β ξ
=

= + = + +∑  (2) 

 

Recently Bühlmann, 2006 suggested component-wise boosting to specifically deal with the 

issues of variable and model selection. We will briefly introduce the idea of the boosting 

algorithm. Then the component-wise version of boosting will be discussed in relation to the 

components used in this application.  

From statistical perspective boosting can be viewed as a functional gradient descent method 

that minimises the constrained empirical risk function 

( )( )
1

,
n

i i i
i

w y xρ η
=
∑  

where wi are some weights, and ( ).ρ  is some suitable (in practice this means convex and 

differentiable) loss function. To simplify the discussion, from now on we will implicitly 

assume equal weights. Typical examples for loss function would be the log-likelihood 

function or the L2 norm (sum of squared residuals). Note that classical estimators 

essentially solve the same optimisation problem. The main difference is that they apply a 

specific algorithm, that is typically applicable only to a given class of models specified by 

the underlying functions ( )f x . Therefore we may think of the boosting approach as 

providing a general approach to model estimation. The general idea of the boosting 

algorithm is to minimise the empirical risk with regard to η .  

To explain the boosting algorithm, let us assume a given type of underlying function (base 

learner) f. In this particular case we will only consider linear base learners, i.e. 

( ) ( )linearf x f x xβ= = , but the approach is generalisable to a wider range of  alternative 

functions (see Kneib et al., 2009 for more details). 

Lets us further simplify matter and assume the L2 norm for the empirical risk function 

( ) ( )2,y yρ η η= − . 
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The boosting algorithm is initialised by an initial value for η , e.g. 0η .  This implies an 

initial evaluation for the underlying function  0f . Typically we start with an offset set to the 

unconditional mean of the response variable. 

Then it iteratively goes through the following steps: 

1. Compute the negative gradient of the empirical risk function evaluated at the current 

function estimate ( mη  for every step from m=1, …)  

( )
 ( )1

,

im

i
i

x

y
u

η η

ρ η
η

−=

∂
= −

∂
for i= 1,2,…,n. 

2. Use the above calculated negative gradients (sometimes called ‘residuals’, because with 

L2 norm empirical risk and linear model they do coincide with the current regression 

residuals) to fit the underlying function  ( ).mg  Here  ( ).mg  is the fitted to the current 

residuals value of the used function at iteration m. 

3. Update    ( )1 .m m mf f gν−= +  for a given step size ν . 

The algorithm iterates between steps 1-3 until a maximum number of iterations is reached. 

As the generic description of the algorithm demonstrates the boosting algorithm constructs 

iteratively η  (i.e. all functions ( )if x ) by pursuing iterative approximate steepest descent in 

function space, calculated using the adopted empirical risk function. 

It is a simple algorithm. With an L2 empirical risk function it essentially does an iterative 

least squares fitting of the residuals for a linear models. The approach is also flexible, 

because it can be applied to a wide range of alternative loss functions. This could be of 

concern when ‘robust’ versions are required (see Lutz et al., 2008). 

Here we will consider the component-wise version of the algorithm which can be used for 

variable and model selection purposes. In contrast to the general boosting algorithm, it fits a 

single component at each iteration. This is achieved by the following slight modification of 

the general boosting algorithm. In step 2 we simply chose the best fitting component-wise 

learner  
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( )( )
1 1

* arg min
n

i ij
j k i

j u g x
≤ ≤ =

= −∑  which leads to this particular base learner being the only one 

updated in step 3, i.e.    ( )* *, 1 *, .j m j m j mf f gν−= + , while  

, 1jm j mf f −=  for *j j∀ ≠ , where the 

first subscript denotes the base learner and the second one is the iteration counter. 

In simple terms we fit base learners (typically consisting of one covariate). In the 

component-wise boosting only one of the different learners is selected for updating at each 

step. If functional forms are given as in this case, selecting a base learner corresponds to 

selecting a covariate. In this case the selected covariate is the one which gives the smallest 

residual sum of squares, i.e. the variable that gives the largest contribution to the fit. After 

the algorithm has run for the maximum number of iterations, some of the base learners may 

have never been selected for updating, which means their final evaluations are zero. In this 

way the algorithm may be used for variable selection. Bühlmann, 2006 provides detailed 

discussion of L2 boosting and component-wise linear fitting.  

For practical implementation, we need to select an updating factor ν (also referred to as 

step-length factor or shrinkage factor). A value of 1 seems like a natural choice but 

following Friedman, 2001 most applications use smaller values. Friedman, 2001 showed 

empirically that that small values of ν  perform better and that the boosting procedure is not 

very sensitive to a whole range of small values of ν . Here we will use ν =0.2, which is 

within the ‘standard’ range of values between 0.1 and 0.5 typically used in boosting 

applications.  

Finally we have to choose an optimal number of iterations for stopping the algorithm. This 

can be estimated via cross-validation (see e.g. Bühlmann and Hothorn, 2007a). 

Note however that cross-validation can be time consuming, particularly when we are doing 

variable search in high dimensions. In such cases a more standard models selection 

criterion such as the Akaike Information Criterion (AIC) could be used instead. For linear 

models the alternative ‘corrected’ AIC (Hurvich et al., 1998) could be implemented. 

Bühlmann and Yu (2006) have shown that a data driven compromise between AIC and 

BIC, namely the g-prior minimum description length (gMDL) introduced in Hansen and Yu 

(2001) can be successful in boosting for variable selection problems. 

Since boosting essentially provides a unified approach to estimating a wide range of 

statistical models and given the initial transformation of the spatially weighted dependent 

variables, this approach provides us with a boosting equivalent to the spatial two-stage least 
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squares estimator. Thus we can use the component-wise boosting algorithm to ‘estimate’ a 

model with several competing weighting matrices. The main advantage of the proposed 

procedure is that it is computationally simple. Since at every iteration the boosting 

algorithm essentially does univariate least squares fitting, the computational cost is very 

low. The algorithm is not guaranteed to choose a single spatial weighting matrix amongst 

the available alternatives. It can nevertheless considerably reduce the universe of potential 

candidates, so that some of the other model selection methods, as described above, could be 

used in a subsequent analysis, if a single alternative is desired. Alternatively if several 

spatial weighting matrices are used, the selected combination of such matrices may be used 

to characterise a more complex spatial diffusion process. 

 

Data 

To illustrate the proposed methodology we will use the well known Boston housing dataset. 

It is one of the first medium size housing datasets. The corrected version we will use can be 

obtained at: http://lib.stat.cmu.edu/datasets/boston_corrected.txt. It consists of 506 

observations. The original Boston housing data is due to the Harrison and Rubinfeld 1978. 

Gilley and Pace 1996 discuss the corrections for some minor errors and augmented the data 

with the latitude and longitude of the observations. The spatial information has been shown 

to improve estimates (Pace and Gilley 1997). It is a very popular dataset routinely 

employed in data mining and machine learning. One could say that this is one of the most 

popular datasets that have stimulated a whole ‘industry’ emerging over the years that have 

used this and some other datasets to examine and compare alternative statistical methods. 

Briefly this dataset contains one observation for each census tract in the Boston Standard 

Metropolitan Statistical Area. The variables comprise of proxies for pollution, crime, 

distance to employment centres, geographical features, accessibility, housing size, age, 

race, status, tax burden, educational quality, zoning, and industrial externalities. A detailed 

description of the variables, to be used in this study is presented in table 1. 
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Table 1 Variable description 

Variable Description 

MEDV  Median values of owner-occupied housing in thousands 

of USD  

LON  Tract point longitude in decimal degrees  

LAT  Tract point latitude in decimal degrees  

CRIM  Per capita crime  

ZN  Proportion of residential land zoned for lots over 25,000 

sq. ft per town  

INDUS  Proportion of non-retail business acres per town  

CHAS  An indicator: 1 if tract borders Charles River; 0 

otherwise  

NOX  Nitric oxides concentration (parts per 10 million) per 

town  

RM  Average number of rooms per dwelling  

AGE  Proportions of owner-occupied units built prior to 1940  

DIS  Weighted distance to five Boston employment centres  

RAD  Index of accessibility to radial highways per town  

TAX  Property-tax rate per USD 10,000 per town  

PTRATIO  Pupil-teacher ratio per town  

B  Calculated as 1000*(Bk - 0.63)^2 where Bk is the 

proportion of blacks  

LSTAT  Percentage of lower status population  

 

The basic model we will implement is as follows: 

log(MEDV)= f {CRIM, ZN, INDUS, CHAS, NOX^2, RM^2, AGE, log(DIS), log(RAD), 

TAX, PTRATIO, B, log(LSTAT)} 

We will consider linear functional form and will augment it with alternative candidate 

spatial weighting matrices, constructed using the longitude and latitude information.  The 

main reason for applying logarithms and squares is to capture some of the underlying 

nonlinearities. 
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Some descriptive statistics for the transformed) variables used in the model are presented in 

table 2 

 

Table 2. Descriptive statistics 

 Mean Standard deviation Minimum Maximum 

Log(MEDV) 3.035 0.409 1.609 3.912 

CRIM 3.614 8.602 0.006 88.976 

ZN 11.364 23.322 0.000 100.000 

INDUS 11.137 6.860 0.460 27.740 

CHAS 1.069 0.254 1.000 2.000 

NOX^2 0.321 0.139 0.148 0.759 

RM^2 39.989 9.080 12.681 77.088 

AGE 68.575 28.149 2.900 100.000 

log(DIS) 1.188 0.540 0.122 2.495 

log(RAD) 1.868 0.875 0.000 3.178 

TAX 408.237 168.537 187.000 711.000 

PTRATIO 18.456 2.165 12.600 22.000 

B 356.674 91.295 0.320 396.900 

log(LSTAT) 2.371 0.601 0.548 3.637 

 

Study design and results 

For the problem in hand, spatial spillovers could ensue from neighbouring sales.  There are 

several natural candidates for this how to construct potential spatial weighting matrices for 

this problem. First, the nth nearest observations and all observations within a predefined 

distance are logical candidates for realistic representation of potential spillovers. 

Additionally if one obtains the actual boundaries of the tracts to which the observations 

pertain, spatial weighting matrices based on contiginuity and the length of the common 

border look like a reasonable choice, but we do not have this information here. For 

illustrative purposes here we only apply the nth nearest neighbours criteria. Employing only 

one of the above two criteria leads to nested in each other neighbourhood specifications. 

Additionally we need to specify the weighting scheme. A popular choice for weighting 

scheme is the one based on inverse distance raised to some power. Hereafter we will call 
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the latter a (spatial) weighting parameter. For example inverse squared distances 

correspond to weighting parameter of 2, while inverse distanced to a parameter of 1. 

Note however that the universe of potential alternative spatial weighting matrices is very 

large. Assuming the above definitions for neighbourhood and weighting scheme, we still 

have a very large number of alternatives. The proposed model boosting approach can be 

very useful in dealing with such large number of alternatives. In particular in this particular 

case the possible values of the number of neighbours range from 1 to 505.  Here however it 

does not look reasonable to expect a very large number of ‘neighbours’ and we restrict the 

considered neighbourhood definition to maximum of 50 neighbours. The value of the 

weighting scheme parameter w (which is the inverse power of the weight decay) can be 

evaluated on a regular grid over a suitably defined interval. With a more detailed grid this 

will result in a large number of values.  

Using each of these alternative spatial weighting matrices we create the corresponding 

variables for inclusion in the model selection procedure. From now on we will use a name 

combining the codes for the neighbourhood definition and the weighting scheme to refer to 

the corresponding spatial weighting matrix and the resulting additional variable to be 

included in the boosting model. All these variables are named using the following 

convention: nxwy, where x is the number of neighbours and y is the weighting parameter. 

For example the spatial weighting matrix with the nearest 50 observations as neighbours 

and inverse squared distance weights as well as the resulting transformed variable will be 

denoted as n50w2. 

We employ all values for number of neighbours from 1 to 50 and evaluate w in the interval 

[0.4, 4] using increments of 0.1. In simple words this means we are combining 50 possible 

neighbourhood definitions with 37 alternatives for the weighting parameter resulting in 

1,850 alternative spatial weighting matrices to be considered simultaneously. Most 

alternative methods will struggle with this task, since in this design we already have  

negative degrees of freedom (with 506 observations)  so the most penalty based methods 

will not be applicable. Component-wise boosting however fits a single component at a time 

and thus could estimate the model even if it had negative degrees of freedom. In this case 

nevertheless we expect that most of the alternative spatial weighting matrices will never be 

selected. 
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In simple words we create the spatially weighed dependent and independent variables for 

each of the alternative spatial weighting matrices and by projecting the spatially weighted 

dependent variable into the column vector space of the spatially weighted independent 

variables, which could be done either by direct matrix manipulation or by taking the fitted 

values from a least-squares regression. This results in the transformed variables. Our model 

is then augmented by these transformed variables and we use component-wise boosting to 

estimate it. The boosting procedure will only select these transformed variables which 

contribute to the model fit. If some of the additional variables is not selected, this means 

that the corresponding spatial weighting matrix is inappropriate for the model and thus has 

to be rejected. We run the boosting algorithm for 5,000 iterations and employ seven 

different stopping rule criteria, namely the Akaike Information Criterion (AIC), the 

corrected Akaike Information Criterion(cAIC), the g-prior Minimum Description Length 

(gMDL) criterion, 10-fold cross validation (10fCV), 8-fold cross-validation (8fCV), cross-

validation with a 25 bootstrap replications used to select the folds (25bCV) and the latter 

with 100 bootsrap replications (100bCV).  

We ran the boosting algorithm with six different values of the updating step size ν  (as 

defined in step 3 of the algorithm). Table 3 presents details on the number of iterations 

required to stop the algorithm, according to the different stopping criteria. We ran the 

boosting algorithm for 5,000 iterations and calculated the stopping criteria, except for a step 

size of 0.1 where 10,000 iterations were used. Where the stopping criteria chose the last 

iteration, the required number of iterations is probably larger than 5,000. In such cases table 

4 shows the number of spatial weighting matrices present in the model at the end of the last 

iteration. In these cases larger number of iterations would be needed to properly assess the 

required stopping criteria and the associated with it selected variables. Since with exception 

to the cAIC, this only occurred once, the 5,000 iterations run was considered to be 

sufficient for larger values of the updating parameter ν . 

Details on the typical computational time involved in each calculation will be presented 

later. One can clearly see that there is a trade-off between the step size and the number of 

stopping iterations. Larger step size requires less iterations, which in some cases could 

speed up the process. Overall however the number of selected variables is relatively 

insensitive to the choice of the step size. In principle larger step sizes introduce some 

sparseness and thus should in general lead to less variables being selected. In practice 
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however, due to the similarity of the alternative spatial weighting matrices and the linear 

specification, this effect is insignificant. 

Table 3. Details on selection of spatial weighting matrices 

Criteria 

Step size,  

ν  

Stopping 

iterations 

Number of selected 

spatial weighting 

matrices 

Step size, 

ν  

Stopping 

iterations 

Number of selected 

spatial weighting 

matrices 

cAIC 0.1 >10000 11 0.4 4997 19 

gMDL  6212 9  1641 11 

10fCV  7089 10  1469 11 

8fCV  5177 9  1119 9 

25bCV  9999 11  3989 17 

100bCV  9999 11  3556 16 

cAIC 0.2 4999 11 0.5 >5000 19 

gMDL  3029 9  996 9 

10fCV  3358 10  1042 10 

8fCV  2303 9  766 9 

25bCV  >5000 11  2756 16 

100bCV  >5000 11  2803 16 

cAIC 0.3 >5000 16 0.6 >5000 22 

gMDL  1923 9  825 10 

10fCV  2172 10  800 10 

8fCV  1486 9  678 9 

25bCV  4952 16  2421 18 

100bCV  4955 16  1992 15 

 

The cAIC seems to overfit the model, selecting larger number of stopping iterations and 

thus over-specified models. The classical version of the AIC produces similar results. The 

10-fold 8-fold cross-validation (10fCV and 8fCV) perform satisfactory, with the 8-fold 

cross-validation selecting slightly more parsimonious models. Interestingly cross-

validation, based on 25 bootstrap samples (25bCV) does seem to select too many variables 

for lower values of the step size. Increasing the number of bootstrap replications does 

reduce the number of selected variables (see the 100 bootstrap samples (100bCV) results 

above), but this reduction is rather slow and comes at significant additional computational 

cost. The gMDL criterion performs extremely well.  Its results are very similar to those 

obtained via 10 and 8-fold cross-validation, but at a fraction of the computational cost. 
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Given its low computational cost (comparable with e.g. calculating the AIC) it would be 

preferable to employ it in selecting the number of stopping iterations. Table 4 presents the 

computational time for the boosting estimation and the computation of some early stopping 

criteria, undertaken on Intel Core 2 PC with 2.13GHz clock speed. The early stopping 

criteria are calculated over the 5000 iterations of the boosting algorithm run on the dataset 

that includes the 1850 alternative spatial weighting matrices. 

Table 4. Computational costs  

Computation Time (seconds) 

5000 iterations of the boosting algorithm 24.89 

Calculation of AIC 6.86 

Calculation of corrected AIC 6.53 

Calculation of gMDL 6.55 

Calculation of 10 fold cross validation 246.75 

Calculation of 8 fold cross validation 197.13 

Calculation of cross-validation based on 25 bootstrap samples 617.20 

Calculation of cross-validation based on 100 bootstrap samples 2463.41 

 

As it is to be expected the cross-validation procedures have relatively high computational 

costs, particularly for the bootstrap-based versions. The information criteria calculation is 

very fast. The boosting algorithm itself is very fast, mainly due to its compiled code 

implementation. Hence using the gMDL criterion for early stopping of the algorithm is 

however advantageous in combining good results (comparable with multifold cross-

validation) with very low computational cost. Therefore it is advisable to use the gMDL 

where applicable. If the selected model was characterised by negative degrees of freedom, 

then information criteria could not have been calculated and multi-fold cross-validation 

would have been the only reasonable alternative. Hence the proposed methodology would 

be applicable even in such (however rare) cases, although at higher computational costs 

compared to using the GMDL criterion. 

The selected spatial weighting matrices do not depend on the step size and are consistent 

amongst the comparable criteria, i.e. the same 9 or 10 spatial weighting matrices are 

selected across step sizes and different main criteria (i.e gMDL, 10fCV and 8fCV). Hence 

we will only examine the gMDL results. The spatial weighting matrices selected by the 
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application of the gMDL criterion are as follows: n3w1.1, n3w1.2, n6w0.4, n6w0.5, 

n6w0.6, n6w0.7, n6w0.8, n6w0.9, and n6w1.  Except n6w0.4, none of these variables lies 

on the boundary of the used parameter space (thus no other spatial weighting matrices with 

1 or 50 neighbours or alternatively with weight parameter equal to 0.4 or 4 are selected). 

This reduces the probability of misspecification due to inappropriate choice of grid over 

which the considered in this application spatial weighting matrices are constructed. The 

variable n6w0.4 features, but it is in a block of variables representing spatial weighting 

matrices with 6 neighbours and  spatial weight parameter ranging from 0.4 to 1.  Careful 

examination of the order of updating and magnitude of the corresponding coefficients 

suggests that if we needed a single spatial weighting matrix to approximate the underlying 

process n6w0.7 would be a reasonable choice. What the result state, is that the spatial 

spilovers are only defined over a small neighbourhood. There is however some uncertainty 

about the weighting scheme, which suggests that an alternative, probably more complicated 

weighting scheme could be appropriate. Given the nature of the problem it looks like the 

results are supportive to a spatial weighting scheme based on the length of the common 

boundary for the tracts.  Therefore even when the ‘true’ spatial weighting matrix is not 

present amongst the alternatives supplied to the boosting algorithm, the obtained results 

could be indicative of what other alternatives could be worth exploring. 

The boosting algorithm does not provide confidence intervals for the estimates. In some 

cases such as likelihood based boosting these could be straightforward to estimate, but fo 

most forms of boosting, it is relatively difficult task. Consequently we estimate the chosen 

model by the spatial two-stage least squares method of Kelejian and Prucha, 1998. The 

results from this estimation are presented in table 5.  The boosting results suggest that if we 

needed a single spatial weighting matrix, one based on n6w0.7 would provide reasonable 

approximation. In table 5 below we present the results from estimating this model. 
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Table 5. Final model estimation results 

 Estimate P level 

Intercept 2.390 0.000 

Spatial lag 0.461 0.000 

CRIM -0.008 0.000 

ZN 0.000 0.307 

INDUS 0.001 0.728 

CHAS 0.019 0.483 

NOX^2 -0.299 0.002 

RM^2 0.007 0.000 

AGE 0.000 0.544 

log(DIS) -0.166 0.000 

log(RAD) 0.075 0.000 

TAX 0.000 0.000 

PTRATIO -0.011 0.010 

B 0.000 0.001 

log(LSTAT) -0.253 0.000 

 

There is strong and significant spatial dependence. Interestingly if we use some of the other 

spatial weighting matrices (e.g. n5w0.4) the results for the spatial lag and the other 

coefficients do not change significantly. 

There are also some scaling issues. The significant coefficients for TAX and B are 

correspondingly -0.00034763 and 0.00028863, but appear as zeros in table 5 above due to 

rounding. Otherwise the results are as expected. In particular crime, pollution (NOX^2), 

distance to employment centres, less teachers availability (i.e. higher PTRATIO), higher tax 

and greater low status population all decrease the housing value. 

 

Conclusions and possible extensions 

This paper proposes using component-wise model boosting for selection of spatial 

weighting matrix in the context of the spatial lag econometric model. It is a computationally 

simple procedure that avoids estimating the models implied by the alternative weighting 
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schemes. Therefore we can significantly reduce the arbitrariness of the spatial weighting 

matrix choice that is often cited as one of the main disadvantages of the lattice approach in 

spatial statistics. We present an illustrative application of the proposed methodology to a 

well known dataset of house prices.  In this we demonstrate  

The proposed approach is a general variable and model selection approach that can have 

much wider application that the one we presented here. The main attractiveness of the 

usage of model boosting for spatial weights matrix in the linear spatial lag econometric 

model is its low computational cost. Numerous extensions of the proposed approach are 

possible, but these generally involve some additional computational costs.  

In this application we find that the possible spatial spillovers are restricted to a relatively 

small neighbourhood, i.e. only sales in the closest tracts influence the price of housing.  

An interesting extension would be to employ alternative empirical risk functions, e.g. least 

absolute deviations or the Huber function. This could help produce “robust” model 

selection approach, although as discussed above it will involve some additional 

computational cost. Another possibility would be to combine in the same model the 

spatially lagged dependent variable (i.e. the spatial lag model) with spatial effects modelled 

as in the geo-additive modelling approach and thus implicitly test one against the other. 

Furthermore the proposed methodology is readily applicable to more general models with 

non-parametric effects, in which case we can relax the linearity assumption. The latter case 

would of course be much more computationally demanding that its present application, but 

it is a viable alternative to other non-parametric model selection strategies. 
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