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Model boosting for spatial weighting matrix selection in spatial lag models

Philip Kostov
Lancashire Business School
University of Central Lancashire

Abstract

The spatial lag specification is often used in spatial econometrics. The choice of an
appropriate spatial weighting matrix is an important outstanding methodological problem in
the gquantitative spatial dependence literature. This paper proposes applying a component-
wise model boosting algorithm to deal with the issue of the choice of a spatial weighting
matrix amongst a predetermined set of alternatives. The resulting procedure is
computationally simple and easy to implement. We present an empirical application of the

proposed methodology. Some possible extensions to a more general setting are discussed.
Keywords: spatial lag, spatial weighting matrix, model boosting
Introduction

The issues of social interaction are gaining prominence in economic literature. Examples of
theoretical models explicitly considering such issues include the models of increasing
returns, path dependence and imperfect competition that underline much of the new
economic geography literature (see Fujita et al. 1999), neighbourhood spillover effects
(Durlauf, 1994; Borjas, 1995; Glaeser et al., 1996) and the macroeconomic interaction
models developed by Aoki,1996 and Durlauf, 1997. It is difficult to provide a consistent
overview of this area, but any formal or informal analysis employing concepts such as
social norms, social capital, neighbourhood effects, peer group effects, strategic interaction,
reference behaviour or yardstick competition falls into this category. A common
implication of this type of models is that they imply certain type of interaction that links
together economic agents. This interaction can be represented as a variation over space,
where ‘space’ may not necessary be defined in geographical sense, but may be based on

other metrics, such as ‘economic’ or ‘social’ distances.

Brueckner, 2003 presents two theoretical frameworks for such interaction. In the first one
known as the spillover model, the decisions taken by other economic agents enter directly
into the objective function of the economic agent. The other framework is known as the

resource flow model. In this case the objective function of an agent is only indirectly
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affected by the decisions taken by other agents. Typically this is due to the fact that this
objective function includes the value of some ‘resource’ the availability of which depends
on the decisions taken by the other agents. Both the spillover and the resource flow models
lead to the spatial lag specification. Statistically the spatial lag specification can be

expressed as follows:
y=AWy+Xg+u 1)

where the classical linear regression model is augmented by the inclusion of the spatially
lagged dependent variable Wy. The spatial lag is represented by the spatial weighting

matrix W which needs to be specified.

The need to pre-specify the spatial weighting matrix presents a serious challenge to
empirical modelling, particularly since often there is very little guidance about how exactly
to do it. This paper suggests using component-wise boosting to choose the appropriate
spatial weighting matrix amongst a set of pre-determined alternatives. It shows how the
spatial weighting matrix selection problem can be reformulated as a variable selection
problem and thus standard variable selection techniques would be available. The paper is
organised as follows. First we discuss the issues surrounding spatial dependence and the
formulation of the spatial weighting matrix. Then some existing approaches dealing with
the arbitrariness of the choice of spatial weighting are discussed. The general idea of our
proposal is outlined and the proposed methodology is briefly compared to some of the more
popular alternatives within the variable selection literature. After a detailed description of
the underlying algorithms, we present an empirical example using agricultural land sales
data from Northern Ireland. Finally, some possible extensions of the proposed framework

are discussed.

Spatial dependence and spatial weighting matrix

Although we will only be considering the spatial lag specification, it would be important to
note that this is not the only form of spatial dependence. An alternative is the so called
spatial error representation. It would be useful to distinguish these two forms of spatial
dependence. In principle the exact causes of spatial dependence determine whether it is
spatial lag or spatial error. Spatial dependence may for example arise simply because
economic agent independently adopt similar behaviour, because e.g. of the underlying

institutional arrangements. If so, the spatial dependence observed in our data does not


http://dx.doi.org/10.1068/b35137

[Kostov, 2010]. This is a postprint of a research article. The definitive, peer-reviewed and edited version of this article is
published in Environment and Planning B: Planning and Design, volume 37, issue 3, pages 533-549, 2010,
http://dx.doi.org/10.1068/b35137

reflect a truly spatial process, but merely spatial clustering of the sources of the behavior in
question, e.g. of the underlying institutional arrangements. This type of spatial clustering,
known as spatial error model, produces (spatial) heterogeneity in the error terms. Hence
ignoring this form of spatial dependence has the same implications as the violation of the
homoscedasticity assumption in regression models. The parameter estimates remain
consistent, but owing to the spatial heteroscedasticity, the estimated standard errors are
biased downwards and this increases the occurrence of Type 1 errors when these standard

errors are used for statistical inference.

Alternatively spatial dependence may be produced by diffusion process, when spatial
spillovers cause spatial correlation. As we have already discussed any such spatial
spillovers lead to the spatial lag model. Having spatial lag model implies genuine spatial
spillovers and has much more serious implications for estimation. These are essentially the
same as omitting a significant explanatory variable. The resulting estimates are generally
biased and inconsistent. Thus the consequences of ignoring spatial lag are much more
serious than these resulting from ignoring spatial error. Furthermore, the sources of spatial
lag dependence are much more ‘interesting’ in the sense that they can be nested in one of

the underlying theoretical frameworks.

To complicate things further, the spatial lag and spatial error specifications can be difficult
to distinguish, since the spatial error representation can be viewed as a restriction on the
more general spatial lag one, something that is popularly referred to as the spatial Durbin
model. This however provides us with the possibility to explicitly test within a given spatial
lag representation whether then spatial error restriction holds or not and further enhance our
understanding of the substantive sources of spatial dependence present in the data.
Therefore methods dealing with the spatial lag specification could be useful even if the
suspected forms of spatial dependence was this of spatial error since they can be employed

as first step in a more general modeling strategy.

The specification of spatial dependence via a spatial weighting matrix is a convenient way
to describe theoretical or a priori knowledge and understanding of the underlying structure
generating the ‘spatial’ dependence between different economic agents and units of
analysis. In simple words defining a spatial weighting matrix involves two choices, namely
a neighbourhood scheme and spatial weights. The neighbourhood scheme involves
determination of which units of analysis are linked and which are not. When units are

economic agents this means the decisions of which agents are to be included in the
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objective functions of other agents. A social network structure could for example be used to
infer the neighbourhood scheme. The weighting scheme on the other hand defines the
strength of these links. The weighting scheme is based on some distance metrics, which
could be spatial, economic distance, or in the case of the social network example a social
distance (e.g. family, close friends, acquaintances etc.). The weighting scheme takes the
distance metrics and combines it in order to derive the strength of the impact each unit has

on another unit.

For identification purposes the spatial weighting matrix needs to be exogenous (Manski,
1993). One reason for the popularity of spatial weighting matrices based on geographical

distances is the fact that their exogeneity is automatically ensured.

In practice the spatial weighting matrix carries out a spatial smoothing over the dependent
variable, thus incorporating part (given by the spatial weights) of the values at the
neighbouring observations. For logical and identification purposes some structure is
imposed on the spatial weighting matrix. The first assumption is to set its diagonal elements
to zero. This reflects that one is not a ‘neighbour’ to itself in that spillovers from itself are
not allowed. This assumption is facilitating interpretation of the results. Furthermore the
spatial lag coefficient A4 is usually assumed to be in the (-1,1) interval. This is needed to
provide a comparative perspective and to interpret this coefficient as the strength of the
spatial diffusion process. Such an interpretation would not however be possible if the
spatial weighting matrix is not normalised. The weights need to be normalised because
different spatial weighting matrices can define the same diffusion process up to a factor of
proportionality, meaning that just by scaling up or down a spatial weighting matrix one can
represent the same structure. A convenient normalisation is to produce a row standardised
spatial weighting matrix. This amounts to setting the sum of each row to add up to 1. This
yields a unique spatial weighting matrix for a given weighting scheme. Furthermore this
standardisation ensures that the spatial lag coefficient A can be viewed as strength of the
diffusion process and should logically be restricted to the interval (-1, 1) to avoid an
explosive type of spatial diffusion process. Finally the spatial filtering matrix (i.e. 1 — AW ,
where | is a unity matrix with an appropriate dimension) is assumed non-singular for

estimation purposes.

Very often spatial distances may reasonably well approximate the underlying ‘true’ metrics,
which may be unobservable or unavailable. For example often spatial distance can

approximate the strength of social relationships. Therefore in the absence of direct
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measurement of the underlying relationship, the spatial distances could be used. Note
however that in such an approximation process even if one knows the exact form of the
linkages, as expressed in the underlying unavailable metrics, translation into spatial
distances (or any other alternative metrics system) changes matters. The translation may
effectively break down the theoretical spillover definition. Hence the uncertainty about
what the spatial distances measure introduces additional uncertainty in the process of

specifying an appropriate spatial weighting matrix.

Choosing the spatial weighting matrix

In some applications some of the choices underlying the spatial weighting matrix (i.e.
neighbourhood definition and weighting scheme) may be logically predetermined, e.g. the
nature of the problem may suggest the neighbourhood scheme and/or equal weights could
be a logical choice. In most cases however this choice is far from trivial. The choice of
spatial weighting matrix in empirical applications has been usually subject to some
arbitrariness. This arbitrariness presents a serious problem to the inference in such models
since estimation results have been shown to critically depend on the choice of spatial
weighting matrix (Anselin, 2002; Fingleton, 2003).

Popular weighting schemes are inverse distances (raised to some power), lengths of shared
borders (divided by the perimeter), n™ nearest neighbour distance, ranked distances,
constrained weights for an observation equal to some (predetermined) constant, all
observations within a given distance. And the search for appropriate specification does not
seem to stop. Some proposals include the bandwidth distance decay (Fotheringham et al.,
1996), Gaussian distance decline (LeSage, 2003); the tri-cube distance decline function
(McMillen and McDonald, 2003); the ‘local statistics model” (Getis and Aldstadt, 2001,
2002), the “optimize bandwidth’ approach (Fotheringham et al., 2002) and the AMOEBA
(Aldstadt and Getis, 2003). Other approaches try to relax the neighbourhood definition.
These include the moving windows regression, geographically weighted regression
(Brunsdon et al, 1996) and locally weighted regression (McMillen, 1996). The general idea
of these approaches is to substitute a ‘sliding neighbourhood’ for the predefined

neighbourhood boundaries.

The issue of spatial weighting matrix have been outstanding for considerable amount of
time. Kooijman, 1976 proposed to choose the spatial weighting matrix by maximizing
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Moran’s coefficient. In a more general vein this has led to the practice of choosing spatial
weighting matrix maximising alternative spatial dependence statistics. Research into
reducing the degree of arbitrariness in spatial weighting matrix choice has been particularly
active in recent years. One could classify this strand of research into two main types. First,
new and more flexible ways to specify the neighbourhood and/or the weighting schemes
have been proposed. The above mentioned approaches fall into this category. The second
type of proposals deals with essentially selecting the spatial weighting matrix either
implicitly or explicitly from a pre-defined set of candidates. Bhattacharjee and Jensen-
Butler, 2005 proposed estimating spatial weighting matrix consistent with the data
distribution, but their approach only applies to the spatial error model. Lima and Macedo,
1999 proposed an interesting procedure dealing with estimating the weights decay and thus
the spatial weights matrix with a predefined ‘soft’ neighbourhood (soft in the sense that the
weight decay can exclude some observations from the neighbourhood definition). When
we have an explicit set of competing spatial weighting matrices, LeSage and Parent, 2007
proposed a Bayesian model averaging procedure for spatial model which incorporates the
uncertainty about the correct spatial weighting matrix. Holloway and Lapar, 2007 used a
Bayesian marginal likelihood approach to select a neighbourhood definition (cut-off points
for the neighbourhood), but one can consider their approach as a general model selection
approach, which could be applied to any other set of competing models. Finally Kelejian,
2008 proposed a formal statistical test to distinguish between non-nested spatial

specifications.

Our proposal lies within the model selection approaches, i.e. selecting amongst a predefined
set of models. In this case we are primarily interested in models with alternative spatial
weighting matrices. A common drawback of the model selection approaches is that the
competing models need to be estimated, either explicitly (e.g. in Holloway and Lapar,
2007), or implicitly as a part of the testing procedure (e.g. in Kelejian, 2008). Despite the
huge advances in computing technology, computationally simpler approaches are still
beneficial. In this paper we suggest using component-wise model boosting as a
computationally simple model selection procedure to alleviate the arbitrariness of spatial
weighting matrix choice. Although the approach suggested here can be used for general
specification search (see e.g. Florax et al., 2003, 2006 and Hendry, 2006) for simplicity
here we will implicitly assume correct specification and will focus specifically on choosing

the appropriate spatial weighting matrix.
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Conceptual framework

The spatial lag specification includes the spatially lagged dependent variable Wy on the

right hand side. This results in endogeneity with the dependent variable. In such a setting
conventional estimators are inconsistent. There are two main types of estimators for the
spatial lag model that deal with the endogeneity issue and have been extensively studied
and used in the literature. These are the maximum likelihood or quasi maximum likelihood
estimator (see e.g. Anselin, 1988) and the generalized method of moment estimator (see
Kelejian and Prucha 1998, 1999). We propose using the spatial two-stage least squares
approach of Kelejian and Prucha, 1998 (which can be viewed as a type of generalised
method of moments estimator) to transform the spatial weighting matrix choice into a
variable selection one. The spatial two-stage least squares amounts to using the spatially
lagged independent variables as instruments for the spatially lagged dependent variable.
Thus we can simply project the spatially lagged dependent variable in the vector space of
the instruments and use the transformed in this way variable instead of the original one.
This can be done by direct matrix manipulation or by running an auxiliary regression (of
the spatially weighted dependent variable on the spatially weighted independent ones) and
using the residuals from this regression in the second estimation step. In simple words this
means that we can run separate auxiliary regressions for each potential spatial weighting
matrix. These will provide us with the corresponding transformed variable to include in the
‘second stage’. Thus the question of whether a given spatial weighting matrix needs to be
included gets translated into the one which of the created transformed variables need to be
included in the main regression model. This is a typical variable selection problem and
there are many different methods to perform variable selection. Here we suggests using a

component-wise boosting algorithm.

There are many different methods for variable selection in linear models. The best known
approaches are forward selection and backward elimination. The combination of these two
approaches is usually referred to as a stepwise regression (see e.g. Miller 2002). Alternative
approaches for subset selection in linear models which are closely related to each other are
LASSO (Least Absolute Sum of Squares Operator, see Tibshirani, 1996), forward
stagewise regression and LARS (Least Angle Regression, see Efron et al., 2004)), boosting
approaches (Buhlmann, 2006), the elastic net (Zou and Hastie, 2005) and the Dantzig

selector (Candes and Tao, 2007). We will not discuss the Bayesian variable selection


http://dx.doi.org/10.1068/b35137

[Kostov, 2010]. This is a postprint of a research article. The definitive, peer-reviewed and edited version of this article is
published in Environment and Planning B: Planning and Design, volume 37, issue 3, pages 533-549, 2010,
http://dx.doi.org/10.1068/b35137

methods here. Most non-Bayesian model selection methods are essentially based on
penalised estimation criteria. Other penalised methods are the nonnegative garrote
(Breiman, 1994), the bridge estimator (Frank and Friedman, 1993; Fu, 1998), SCAD
(smoothly clipped absolute deviation, Fan and Li, 2001). A comprehensive overview of

penalised methods is available in Fan and Li (2006).

With such a wide range of available methods, how does one choose the one appropriate to
the problem in hand. In the case of choosing an appropriate spatial weighting matrix, there
is large number of alternatives. Therefore we need a method that can handle well high-
dimensional problems and is relatively fast in terms of computational time. We do not
however strictly require the ‘oracle’ property in the sense of Fan and Li, 2001. The oracle
property requires that the asymptotic distribution of the non-zero coefficients in the
estimated model is the same as when the zero coefficients are known in advance. It is useful
when the method is used for both model selection and estimation. Note however that since
the underlying two —step estimation requires adjustments to the standard error estimates, it
is impractical to use the variable selection method also for estimation. Therefore only
consistency with regard to the variable selection is necessary.

In terms of computational burden, some of the variable selection methods are relatively
more expensive than others. Step-wise regression is amongst the more demanding methods,
particularly when the number of covariates is large. The computational burden for most
penalized estimators arises from the nature of the used penalty term. For example the
SCAD penalty (Fan and Li, 2001) involves non-convex optimization and thus can be
computationally expensive. The LASSO estimator uses L1 (absolute deviations) penalty
and can also be relatively demanding. A fast estimator is the LARS (Efron et al., 2004).
The computational requirements of the LARS algorithm are similar to this of a least squares
fitting. Furthermore, in addition to its speed, it provides an illuminating overview of the
linkages amongst different variable selection algorithms. In particular LARS can be
modified to yield either the LASSO solutions or that of a forward stagewise fitting (Efron et
al.2004). Forward stage fitting on the other hand can be viewed as a simplified version of
boosting with a small fixed step size (Hastie et al., 2001). Thus LARS, LASSO and
boosting (L2 boosting) are somewhat ‘related’. This does not mean that they are
equivalent. Their equivalence can only be established for orthogonal predictors and the
difficult to verify case of monotone paths, but even in general they often produce similar

solutions. Thus when one of these algorithms is impractical to implement the others could
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be used instead. It could sometimes be prohibitively expensive to solve LASSO for a large
number of candidate spatial weighting matrices with general loss functions for many
regularisation parameters via quadratic programming. The LARS algorithm is very efficient
computationally for least squares problems when the number of predictors is small. It does
not however deal with other loss functions and is not adequate with a large number of
predictors. Boosting on the other hand can use different loss functions and works well with
large number of predictors. Furthermore even for smaller number of predictors component-
wise boosting is about 3 times faster than LASSO. A major advantage of the component-
wise boosting algorithms is that it can fit models with negative degrees of freedom, i.e.
when the number of predictors exceeds the number of observations. Since choosing a
spatial weighting matrix can involve too many alternatives, such a property is highly
desirable. Buhlmann and Yu, 2003 provide an empirical illustration of the advantages of
boosting for models with high-dimensional predictors. In more classical settings with

smaller number of predictors alternative method performs similarly.

The R statistical system (R Development Core Team, 2008) contains extensive selection of
ready to use regularisation methods code, contained in different packages. The lasso2 and
lars packages implement LASSO and LARS estimators, package grplasso provides
groupwise LASSO (simultaneous updates for predefined groups of parameters. Other useful
methods exist in the packages glmpath, elasticnet, gimnet, penalized and relaxo. There are
various implementations of boosting algorithms in R, contained in packages such as gbm,
boost and GAMBoost. The methods discussed in this paper were implemented using the
mboost package (Hothorn and Buhlmann, 2008) which provides extendable framework for
a wide range of models. All code underlying the R system and all official (i.e. available
from the Comprehensive R Archive Network (CRAN) sites) packages is publicly available
and could be modified with no restrictions. This allows one to combine ease of

implementation and flexibility.
Methodology

Boosting itself is a vast area. There is a growing number of different boosting algorithms
and approaches and it would be far beyond the scope of this paper to review them. To
further complicate matters originally boosting was conceived from a machine learning
perspective as a combination of ‘weak’ learners. Here we will present the alternative

statistical perspective on boosting. We will present a generic overview to the boosting
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algorithm, demonstrating its generality. Where applicable the specifics of our

implementation would be described.

We will consider regression model where the response y is an additive function of the

predictors. Thus we can denote

Y=77(X)+§=ﬂo+z, fi (x)+¢ )

Recently Buhlmann, 2006 suggested component-wise boosting to specifically deal with the
issues of variable and model selection. We will briefly introduce the idea of the boosting
algorithm. Then the component-wise version of boosting will be discussed in relation to the

components used in this application.

From statistical perspective boosting can be viewed as a functional gradient descent method

that minimises the constrained empirical risk function
ZWiP(Yi’U(Xi ))
i=1

where w; are some weights, and p() is some suitable (in practice this means convex and

differentiable) loss function. To simplify the discussion, from now on we will implicitly
assume equal weights. Typical examples for loss function would be the log-likelihood
function or the L2 norm (sum of squared residuals). Note that classical estimators
essentially solve the same optimisation problem. The main difference is that they apply a
specific algorithm, that is typically applicable only to a given class of models specified by

the underlying functions f(x). Therefore we may think of the boosting approach as
providing a general approach to model estimation. The general idea of the boosting

algorithm is to minimise the empirical risk with regard to 7.

To explain the boosting algorithm, let us assume a given type of underlying function (base

learner) f. In this particular case we will only consider linear base learners, i.e.

f (X)= fiear (X)=XB, but the approach is generalisable to a wider range of alternative

functions (see Kneib et al., 2009 for more details).
Lets us further simplify matter and assume the L2 norm for the empirical risk function

p(y.n)=(y-n).

10
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The boosting algorithm is initialised by an initial value for 7, e.g. 7,. This implies an

initial evaluation for the underlying function ?0. Typically we start with an offset set to the

unconditional mean of the response variable.
Then it iteratively goes through the following steps:

1. Compute the negative gradient of the empirical risk function evaluated at the current

function estimate (7, for every step from m=1, ...)

u :—M fori=1,2,...,n.

i P n

77:7A7m71(xi)

2. Use the above calculated negative gradients (sometimes called ‘residuals’, because with
L2 norm empirical risk and linear model they do coincide with the current regression
residuals) to fit the underlying function am() Here am() is the fitted to the current

residuals value of the used function at iteration m.
3.Update f_=f__ +vg, (.) for agiven step size v.

The algorithm iterates between steps 1-3 until a maximum number of iterations is reached.

As the generic description of the algorithm demonstrates the boosting algorithm constructs

iteratively » (i.e. all functions f, (x)) by pursuing iterative approximate steepest descent in

function space, calculated using the adopted empirical risk function.

It is a simple algorithm. With an L2 empirical risk function it essentially does an iterative
least squares fitting of the residuals for a linear models. The approach is also flexible,
because it can be applied to a wide range of alternative loss functions. This could be of

concern when ‘robust’ versions are required (see Lutz et al., 2008).

Here we will consider the component-wise version of the algorithm which can be used for
variable and model selection purposes. In contrast to the general boosting algorithm, it fits a
single component at each iteration. This is achieved by the following slight modification of
the general boosting algorithm. In step 2 we simply chose the best fitting component-wise

learner

11
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j*=argmin Z(Ui -9, (X, )) which leads to this particular base learner being the only one
1<j<k i=1

+vg (), while T, =F, |

updated in step 3, i.e. ?j*m -

j*m-1

for ¥V j# j*, where the

first subscript denotes the base learner and the second one is the iteration counter.

In simple terms we fit base learners (typically consisting of one covariate). In the
component-wise boosting only one of the different learners is selected for updating at each
step. If functional forms are given as in this case, selecting a base learner corresponds to
selecting a covariate. In this case the selected covariate is the one which gives the smallest
residual sum of squares, i.e. the variable that gives the largest contribution to the fit. After
the algorithm has run for the maximum number of iterations, some of the base learners may
have never been selected for updating, which means their final evaluations are zero. In this
way the algorithm may be used for variable selection. Buhlmann, 2006 provides detailed

discussion of L2 boosting and component-wise linear fitting.

For practical implementation, we need to select an updating factor v (also referred to as
step-length factor or shrinkage factor). A value of 1 seems like a natural choice but
following Friedman, 2001 most applications use smaller values. Friedman, 2001 showed
empirically that that small values of v perform better and that the boosting procedure is not
very sensitive to a whole range of small values of v. Here we will use v =0.2, which is
within the ‘standard’ range of values between 0.1 and 0.5 typically used in boosting

applications.

Finally we have to choose an optimal number of iterations for stopping the algorithm. This

can be estimated via cross-validation (see e.g. Biihlmann and Hothorn, 2007a).

Note however that cross-validation can be time consuming, particularly when we are doing
variable search in high dimensions. In such cases a more standard models selection
criterion such as the Akaike Information Criterion (AIC) could be used instead. For linear
models the alternative ‘corrected” AIC (Hurvich et al., 1998) could be implemented.
Buhlmann and Yu (2006) have shown that a data driven compromise between AIC and
BIC, namely the g-prior minimum description length (gMDL) introduced in Hansen and Yu

(2001) can be successful in boosting for variable selection problems.

Since boosting essentially provides a unified approach to estimating a wide range of
statistical models and given the initial transformation of the spatially weighted dependent
variables, this approach provides us with a boosting equivalent to the spatial two-stage least

12
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squares estimator. Thus we can use the component-wise boosting algorithm to ‘estimate’ a
model with several competing weighting matrices. The main advantage of the proposed
procedure is that it is computationally simple. Since at every iteration the boosting
algorithm essentially does univariate least squares fitting, the computational cost is very
low. The algorithm is not guaranteed to choose a single spatial weighting matrix amongst
the available alternatives. It can nevertheless considerably reduce the universe of potential
candidates, so that some of the other model selection methods, as described above, could be
used in a subsequent analysis, if a single alternative is desired. Alternatively if several
spatial weighting matrices are used, the selected combination of such matrices may be used

to characterise a more complex spatial diffusion process.

Data

To illustrate the proposed methodology we will use the well known Boston housing dataset.
It is one of the first medium size housing datasets. The corrected version we will use can be

obtained at: http://lib.stat.cmu.edu/datasets/boston corrected.txt. It consists of 506

observations. The original Boston housing data is due to the Harrison and Rubinfeld 1978.
Gilley and Pace 1996 discuss the corrections for some minor errors and augmented the data
with the latitude and longitude of the observations. The spatial information has been shown
to improve estimates (Pace and Gilley 1997). It is a very popular dataset routinely
employed in data mining and machine learning. One could say that this is one of the most
popular datasets that have stimulated a whole ‘industry’ emerging over the years that have

used this and some other datasets to examine and compare alternative statistical methods.

Briefly this dataset contains one observation for each census tract in the Boston Standard
Metropolitan Statistical Area. The variables comprise of proxies for pollution, crime,
distance to employment centres, geographical features, accessibility, housing size, age,
race, status, tax burden, educational quality, zoning, and industrial externalities. A detailed

description of the variables, to be used in this study is presented in table 1.

13


http://dx.doi.org/10.1068/b35137
http://lib.stat.cmu.edu/datasets/boston_corrected.txt

[Kostov, 2010]. This is a postprint of a research article. The definitive, peer-reviewed and edited version of this article is
published in Environment and Planning B: Planning and Design, volume 37, issue 3, pages 533-549, 2010,
http://dx.doi.org/10.1068/b35137

Table 1 Variable description

Variable Description

MEDV Median values of owner-occupied housing in thousands
of USD

LON Tract point longitude in decimal degrees

LAT Tract point latitude in decimal degrees

CRIM Per capita crime

ZN Proportion of residential land zoned for lots over 25,000

sg. ft per town

INDUS Proportion of non-retail business acres per town

CHAS An indicator: 1 if tract borders Charles River; 0
otherwise

NOX Nitric oxides concentration (parts per 10 million) per
town

RM Average number of rooms per dwelling

AGE Proportions of owner-occupied units built prior to 1940

DIS Weighted distance to five Boston employment centres

RAD Index of accessibility to radial highways per town

TAX Property-tax rate per USD 10,000 per town

PTRATIO Pupil-teacher ratio per town

B Calculated as 1000*(Bk - 0.63)"2 where BK is the

proportion of blacks
LSTAT Percentage of lower status population

The basic model we will implement is as follows:

log(MEDV)= f {CRIM, ZN, INDUS, CHAS, NOX"2, RM*2, AGE, log(DIS), log(RAD),
TAX, PTRATIO, B, log(LSTAT)}

We will consider linear functional form and will augment it with alternative candidate
spatial weighting matrices, constructed using the longitude and latitude information. The
main reason for applying logarithms and squares is to capture some of the underlying

nonlinearities.
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Some descriptive statistics for the transformed) variables used in the model are presented in
table 2

Table 2. Descriptive statistics

Mean Standard deviation Minimum  Maximum

Log(MEDV) 3.035 0.409 1.609 3.912
CRIM 3.614 8.602 0.006 88.976
ZN 11.364 23.322 0.000  100.000
INDUS 11.137 6.860 0.460 27.740
CHAS 1.069 0.254 1.000 2.000
NOXA2 0.321 0.139 0.148 0.759
RMA2 39.989 9.080 12.681 77.088
AGE 68.575 28.149 2.900  100.000
log(DIS) 1.188 0.540 0.122 2.495
log(RAD) 1.868 0.875 0.000 3.178
TAX 408.237 168.537 187.000  711.000
PTRATIO 18.456 2.165 12.600 22.000
B 356.674 91.295 0320  396.900
log(LSTAT) 2.371 0.601 0.548 3.637

Study design and results

For the problem in hand, spatial spillovers could ensue from neighbouring sales. There are
several natural candidates for this how to construct potential spatial weighting matrices for
this problem. First, the n™ nearest observations and all observations within a predefined
distance are logical candidates for realistic representation of potential spillovers.
Additionally if one obtains the actual boundaries of the tracts to which the observations
pertain, spatial weighting matrices based on contiginuity and the length of the common
border look like a reasonable choice, but we do not have this information here. For
illustrative purposes here we only apply the n' nearest neighbours criteria. Employing only
one of the above two criteria leads to nested in each other neighbourhood specifications.
Additionally we need to specify the weighting scheme. A popular choice for weighting

scheme is the one based on inverse distance raised to some power. Hereafter we will call
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the latter a (spatial) weighting parameter. For example inverse squared distances

correspond to weighting parameter of 2, while inverse distanced to a parameter of 1.

Note however that the universe of potential alternative spatial weighting matrices is very
large. Assuming the above definitions for neighbourhood and weighting scheme, we still
have a very large number of alternatives. The proposed model boosting approach can be
very useful in dealing with such large number of alternatives. In particular in this particular
case the possible values of the number of neighbours range from 1 to 505. Here however it
does not look reasonable to expect a very large number of ‘neighbours’ and we restrict the
considered neighbourhood definition to maximum of 50 neighbours. The value of the
weighting scheme parameter w (which is the inverse power of the weight decay) can be
evaluated on a regular grid over a suitably defined interval. With a more detailed grid this

will result in a large number of values.

Using each of these alternative spatial weighting matrices we create the corresponding
variables for inclusion in the model selection procedure. From now on we will use a name
combining the codes for the neighbourhood definition and the weighting scheme to refer to
the corresponding spatial weighting matrix and the resulting additional variable to be
included in the boosting model. All these variables are named using the following
convention: nxwy, where x is the number of neighbours and y is the weighting parameter.
For example the spatial weighting matrix with the nearest 50 observations as neighbours
and inverse squared distance weights as well as the resulting transformed variable will be

denoted as n50w?2.

We employ all values for number of neighbours from 1 to 50 and evaluate w in the interval
[0.4, 4] using increments of 0.1. In simple words this means we are combining 50 possible
neighbourhood definitions with 37 alternatives for the weighting parameter resulting in
1,850 alternative spatial weighting matrices to be considered simultaneously. Most
alternative methods will struggle with this task, since in this design we already have
negative degrees of freedom (with 506 observations) so the most penalty based methods
will not be applicable. Component-wise boosting however fits a single component at a time
and thus could estimate the model even if it had negative degrees of freedom. In this case
nevertheless we expect that most of the alternative spatial weighting matrices will never be

selected.
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In simple words we create the spatially weighed dependent and independent variables for
each of the alternative spatial weighting matrices and by projecting the spatially weighted
dependent variable into the column vector space of the spatially weighted independent
variables, which could be done either by direct matrix manipulation or by taking the fitted
values from a least-squares regression. This results in the transformed variables. Our model
is then augmented by these transformed variables and we use component-wise boosting to
estimate it. The boosting procedure will only select these transformed variables which
contribute to the model fit. If some of the additional variables is not selected, this means
that the corresponding spatial weighting matrix is inappropriate for the model and thus has
to be rejected. We run the boosting algorithm for 5,000 iterations and employ seven
different stopping rule criteria, namely the Akaike Information Criterion (AIC), the
corrected Akaike Information Criterion(cAIC), the g-prior Minimum Description Length
(gMDL) criterion, 10-fold cross validation (10fCV), 8-fold cross-validation (8fCV), cross-
validation with a 25 bootstrap replications used to select the folds (25bCV) and the latter
with 100 bootsrap replications (100bCV).

We ran the boosting algorithm with six different values of the updating step size v (as
defined in step 3 of the algorithm). Table 3 presents details on the number of iterations
required to stop the algorithm, according to the different stopping criteria. We ran the
boosting algorithm for 5,000 iterations and calculated the stopping criteria, except for a step
size of 0.1 where 10,000 iterations were used. Where the stopping criteria chose the last
iteration, the required number of iterations is probably larger than 5,000. In such cases table
4 shows the number of spatial weighting matrices present in the model at the end of the last
iteration. In these cases larger number of iterations would be needed to properly assess the
required stopping criteria and the associated with it selected variables. Since with exception
to the cAIC, this only occurred once, the 5,000 iterations run was considered to be

sufficient for larger values of the updating parameter v .

Details on the typical computational time involved in each calculation will be presented
later. One can clearly see that there is a trade-off between the step size and the number of
stopping iterations. Larger step size requires less iterations, which in some cases could
speed up the process. Overall however the number of selected variables is relatively
insensitive to the choice of the step size. In principle larger step sizes introduce some

sparseness and thus should in general lead to less variables being selected. In practice
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however, due to the similarity of the alternative spatial weighting matrices and the linear

specification, this effect is insignificant.

Table 3. Details on selection of spatial weighting matrices

Number of selected Number of selected

Step size, Stopping  spatial weighting Step size,  Stopping spatial weighting

Criteria 14 iterations matrices 14 iterations matrices

cAIC 0.1 >10000 11 0.4 4997 19
gMDL 6212 9 1641 11
10fCv 7089 10 1469 11
8fcv 5177 9 1119 9
25bCV 9999 11 3989 17
100bCV 9999 11 3556 16
cAIC 0.2 4999 11 0.5 >5000 19
gMDL 3029 9 996 9
10fCv 3358 10 1042 10
8fcv 2303 9 766 9
25bCV >5000 11 2756 16
100bCV >5000 11 2803 16
cAIC 0.3 >5000 16 0.6 >5000 22
gMDL 1923 9 825 10
10fCv 2172 10 800 10
8fcv 1486 9 678 9
25bCV 4952 16 2421 18
100bCV 4955 16 1992 15

The cAIC seems to overfit the model, selecting larger number of stopping iterations and
thus over-specified models. The classical version of the AIC produces similar results. The
10-fold 8-fold cross-validation (10fCV and 8fCV) perform satisfactory, with the 8-fold
cross-validation selecting slightly more parsimonious models. Interestingly cross-
validation, based on 25 bootstrap samples (25bCV) does seem to select too many variables
for lower values of the step size. Increasing the number of bootstrap replications does
reduce the number of selected variables (see the 100 bootstrap samples (100bCV) results
above), but this reduction is rather slow and comes at significant additional computational
cost. The gMDL criterion performs extremely well. Its results are very similar to those

obtained via 10 and 8-fold cross-validation, but at a fraction of the computational cost.
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Given its low computational cost (comparable with e.g. calculating the AIC) it would be
preferable to employ it in selecting the number of stopping iterations. Table 4 presents the
computational time for the boosting estimation and the computation of some early stopping
criteria, undertaken on Intel Core 2 PC with 2.13GHz clock speed. The early stopping
criteria are calculated over the 5000 iterations of the boosting algorithm run on the dataset

that includes the 1850 alternative spatial weighting matrices.

Table 4. Computational costs

Computation Time (seconds)

5000 iterations of the boosting algorithm 24.89
Calculation of AIC 6.86
Calculation of corrected AIC 6.53
Calculation of gMDL 6.55
Calculation of 10 fold cross validation 246.75
Calculation of 8 fold cross validation 197.13
Calculation of cross-validation based on 25 bootstrap samples 617.20
Calculation of cross-validation based on 100 bootstrap samples 2463.41

As it is to be expected the cross-validation procedures have relatively high computational
costs, particularly for the bootstrap-based versions. The information criteria calculation is
very fast. The boosting algorithm itself is very fast, mainly due to its compiled code
implementation. Hence using the gMDL criterion for early stopping of the algorithm is
however advantageous in combining good results (comparable with multifold cross-
validation) with very low computational cost. Therefore it is advisable to use the gMDL
where applicable. If the selected model was characterised by negative degrees of freedom,
then information criteria could not have been calculated and multi-fold cross-validation
would have been the only reasonable alternative. Hence the proposed methodology would
be applicable even in such (however rare) cases, although at higher computational costs

compared to using the GMDL criterion.

The selected spatial weighting matrices do not depend on the step size and are consistent
amongst the comparable criteria, i.e. the same 9 or 10 spatial weighting matrices are
selected across step sizes and different main criteria (i.e gMDL, 10fCV and 8fCV). Hence

we will only examine the gMDL results. The spatial weighting matrices selected by the
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application of the gMDL criterion are as follows: n3wl.1, n3wl.2, n6w0.4, n6wQ.5,
n6w0.6, néw0.7, n6w0.8, n6w0.9, and néwl. Except n6w0.4, none of these variables lies
on the boundary of the used parameter space (thus no other spatial weighting matrices with
1 or 50 neighbours or alternatively with weight parameter equal to 0.4 or 4 are selected).
This reduces the probability of misspecification due to inappropriate choice of grid over
which the considered in this application spatial weighting matrices are constructed. The
variable n6w0.4 features, but it is in a block of variables representing spatial weighting
matrices with 6 neighbours and spatial weight parameter ranging from 0.4 to 1. Careful
examination of the order of updating and magnitude of the corresponding coefficients
suggests that if we needed a single spatial weighting matrix to approximate the underlying
process n6w0.7 would be a reasonable choice. What the result state, is that the spatial
spilovers are only defined over a small neighbourhood. There is however some uncertainty
about the weighting scheme, which suggests that an alternative, probably more complicated
weighting scheme could be appropriate. Given the nature of the problem it looks like the
results are supportive to a spatial weighting scheme based on the length of the common
boundary for the tracts. Therefore even when the ‘true’ spatial weighting matrix is not
present amongst the alternatives supplied to the boosting algorithm, the obtained results

could be indicative of what other alternatives could be worth exploring.

The boosting algorithm does not provide confidence intervals for the estimates. In some
cases such as likelihood based boosting these could be straightforward to estimate, but fo
most forms of boosting, it is relatively difficult task. Consequently we estimate the chosen
model by the spatial two-stage least squares method of Kelejian and Prucha, 1998. The
results from this estimation are presented in table 5. The boosting results suggest that if we
needed a single spatial weighting matrix, one based on n6w0.7 would provide reasonable

approximation. In table 5 below we present the results from estimating this model.
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Table 5. Final model estimation results

Estimate P level

Intercept 2.390 0.000
Spatial lag 0.461 0.000
CRIM -0.008 0.000
ZN 0.000 0.307
INDUS 0.001 0.728
CHAS 0.019 0.483
NOX"2 -0.299 0.002
RMA"2 0.007 0.000
AGE 0.000 0.544
log(DIS) -0.166 0.000
log(RAD) 0.075 0.000
TAX 0.000 0.000
PTRATIO -0.011 0.010
B 0.000 0.001
log(LSTAT) -0.253 0.000

There is strong and significant spatial dependence. Interestingly if we use some of the other
spatial weighting matrices (e.g. n5w0.4) the results for the spatial lag and the other

coefficients do not change significantly.

There are also some scaling issues. The significant coefficients for TAX and B are
correspondingly -0.00034763 and 0.00028863, but appear as zeros in table 5 above due to
rounding. Otherwise the results are as expected. In particular crime, pollution (NOX"2),
distance to employment centres, less teachers availability (i.e. higher PTRATIO), higher tax

and greater low status population all decrease the housing value.

Conclusions and possible extensions

This paper proposes using component-wise model boosting for selection of spatial
weighting matrix in the context of the spatial lag econometric model. It is a computationally
simple procedure that avoids estimating the models implied by the alternative weighting
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schemes. Therefore we can significantly reduce the arbitrariness of the spatial weighting
matrix choice that is often cited as one of the main disadvantages of the lattice approach in
spatial statistics. We present an illustrative application of the proposed methodology to a
well known dataset of house prices. In this we demonstrate

The proposed approach is a general variable and model selection approach that can have
much wider application that the one we presented here. The main attractiveness of the
usage of model boosting for spatial weights matrix in the linear spatial lag econometric
model is its low computational cost. Numerous extensions of the proposed approach are

possible, but these generally involve some additional computational costs.

In this application we find that the possible spatial spillovers are restricted to a relatively

small neighbourhood, i.e. only sales in the closest tracts influence the price of housing.

An interesting extension would be to employ alternative empirical risk functions, e.g. least
absolute deviations or the Huber function. This could help produce “robust” model
selection approach, although as discussed above it will involve some additional
computational cost. Another possibility would be to combine in the same model the
spatially lagged dependent variable (i.e. the spatial lag model) with spatial effects modelled
as in the geo-additive modelling approach and thus implicitly test one against the other.
Furthermore the proposed methodology is readily applicable to more general models with
non-parametric effects, in which case we can relax the linearity assumption. The latter case
would of course be much more computationally demanding that its present application, but

it is a viable alternative to other non-parametric model selection strategies.
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