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RE: Revision of manuscript number JAD 14-0315R1  
 
 
Professor George Perry (Editor-in-Chief)              May 15, 2014 
Journal of Alzheimer’s disease 
College of Sciences 
University of Texas at San Antonio 
One UTSA Circle 
San Antonio, Texas 78249 
USA 
 
 
Dear Professor Perry: 

RE: Revision of manuscript number JAD 14-0315R1  
 

The authors - Sophie Poole (PhD Student), Sim K. Singhrao (Snr Res fellow), Sasanka 

Chukkapalli (PDRA), Mercedes Rivera (Research staff), Irina Velsko (PhD Student), 

Lakshmyya Kesavalu (Associate Professor of Periodontology) and StJohn Crean (Professor 

of Medicine in Dentistry) - wish to resubmit their re-revised manuscript JAD 14-0315R1, 

Active invasion of Porphyromonas gingivalis and infection-induced complement 

activation in ApoE-/- mice brains. 

 

Editorial comments: 

We thank Professor Perry and the editorial staff for their patience and support for the 

opportunity to re-revise this manuscript. To the best of our knowledge, the manuscript is 

prepared according to instructions to authors and in American English. As this is a re-

revision, we have accepted the changes from the primary revision and tracked new changes to 

the current manuscript as per reviewers’ comments. 

 

Reviewer 1 
Rev 1: suggested “It appears that the authors rushed to respond to the 
reviewers' critics instead of improving the manuscript based on the 
reviewers' critics”. 
 

Our response: We agree with the reviewer comment and we now have addressed the helpful 
comments. 
 
Rev 1: suggested “In its form the manuscript is difficult to read and 
follow. The entire manuscript suffers from lack of clarity due to long, 
vague sentences. The manuscript should be re-written with great attention 
to language and message. 
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Our response: We apologize to the reviewer for the difficulty in reading and following the 
article’s previous version. We took more care this time and have done major revision, in 
accordance with all of the reviewers’ suggestions. Consequently, some references have been 
eliminated and the manuscript should reflect these changes to a publication standard in its 
present form. 
 
Rev 1: suggested that there was no link between F. nucleatum infection and 
its association with human brain abscess formation as reflected by 
reference number [39].  
 
Our response: We apologize to the reviewer for the confusion with regard to the reference. 
We agree with the reviewers’ view and felt that it was better to delete the human abscess 
connection with the infection used in the study as it contributed little to the overall message. 
Therefore reference # 39 as quoted in the reviewer comments above has been deleted in this 
revised version. 
 
Rev 1: said another bad example was: “This study explored the hypothesis 
that infectious agents and /or their components from oral diseases such as 
periodontitis can access the brain and modulate local CNS inflammation 
and thereby represent a component of AD pathology. …..What represents 
a component of AD? Long sentence and difficult to follow.  
 
Our response: We agree; this important information was poorly explained. We have now 
made every attempt to correct the English and clarify the inflammatory component of AD. 
 
Rev 1: Said “What early pathological lesions? Not well defined”?  
 
Our response: The major re-revision of the manuscript is more focused and this confusing 
information is deleted and explained in a more clear and concise manner. 
 
Rev 1: Said Methods: lacked "A brief paragraph describing the general 
aspect of the procedures, specific measurements(Dependent variables) and 
assays done to measure the dependent variables would bring greater 
clarifications" as per original reviewer’s comments. When the readers are 
reading this paragraph they should know exactly what experimental 
procedures were done, timing,what tissues were collected, what was measured 
and how. And why?  
 
Our response: We agree with this comment and have made extensive changes in the 
methods section. 
 
Rev 1: Said In methodology section no details about mono-infections.  For 
example:describe the experimental assignment for the infections, then 
describe mono, then poli-infection and then state the antibiotics.  
 
Our response: We have modified the methods section as suggested by the reviewer in this 
revised version.  
 
Rev 1: Said On page 17, the authors stated: In addition, a modified 
methenamine silver impregnation technique as previously described by Cole 
et al.,[46] was used to demonstrate both the A&#61538;&#61472;plaques 
and NFT's. All sections were also stained with 1% aqueous thioflavin T 
for fibrillar amyloid. I searched the document for these results and 
could not find them. 
 
Our response: We agree with the reviewer. It was the corresponding authors’ oversight as 
she was instrumental in developing this technique originally for the Cole et al. article. 
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However, the author also applied the technique to resin embedded AD brain tissue and that 
article by Singhrao et al. is in the public domain. The Cole et al. reference has been replaced 
by Singhrao et al. 
 
Rev 1: Said the authors deleted this section: A semi-quantitation approach 
was taken by manually counting the number of cells/area for all brains in 
each infected group and compared with the sham group to assess gliosis. I 
cannot imagine that any reviewer would object to a methodology describing 
quantification.  
 
Our response: We have re-instated the statement as suggested by the reviewer. 
 
Rev 1: Said “In the results section, the authors stated: PCR analysis 
revealed that none of the three pathogens were detected in any of the 
brains from sham, mono, and poly-infected groups at both time points (Fig. 
1,panels a, b and c). And then: Molecular identity of the organism 
following cloning of the purified PCR product and direct sequencing 
using bacterial gene specific primer sets confirmed that it was P. 
gingivalis FDC381”. Could you explain?  
 
Our response: This point has been explained in the appropriate sections of the manuscript. 
 
Rev 1: Said “The discussion is equally difficult to follow”. In conclusion, 
I recommend the re-writing of the manuscript based on the reviewers' 
critics. Please, analyze and understand the critics and then incorporate 
them in "your story". 
 

Our response: We have conducted a major revision of the manuscript, incorporating all of 
the reviewers’ comments as suggested to improve the final quality to a publication standard. 
 

We eagerly await your reply. 

Yours sincerely, 

Sim K. Singhrao 

Associate Editor JAD and Corresponding author 
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Abstract 

Periodontal disease is a polymicrobial inflammatory disease that leads to chronic systemic 

inflammation and direct infiltration of bacteria/bacterial components, which may contribute 

to the development of Alzheimer’s disease. ApoE-/- mice were orally infected (N = 12) with 

Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium 

nucleatum as mono- and polymicrobial infections. ApoE-/- mice were sacrificed following 12 

and 24 weeks of chronic infection. Bacterial genomic DNA was isolated from all brain 

tissues except for the F. nucleatum mono-infected group. Polymerase chain reaction was 

performed using universal 16s rDNA primers and species- specific primer sets for each 

organism to determine whether the infecting pathogens accessed the brain. Sequencing 

amplification products confirmed the invasion of bacteria into the brain during infection. The 

innate immune responses were detected using antibodies against complement activation 

products of C3 convertase stage and the membrane attack complex. Molecular methods 

demonstrated that 6 out of 12 ApoE-/- mice brains contained P. gingivalis genomic DNA at 

12 weeks (P = 0.006), and 9 out of 12 at 24 weeks of infection (P = 0.0001). Microglia in 

both infected and control groups demonstrated strong intracellular labeling with C3 and C9, 

due to on-going biosynthesis. Tthe pyramidal neurons of the hippocampus in 4 out of 12 

infected mice brains demonstrated characteristic opsonization with C3 activation fragments 

(P = 0.032). These results show that the oral pathogen P. gingivalis was able to access the 

ApoE-/- mice brain and thereby contributed to complement activation with bystander neuronal 

injury. 

 

Key words: Alzheimer’s disease, chronic periodontitis, periodontal bacteria, inflammation,  

5 
 



 
 

Introduction  

Alzheimer’s disease (AD) is a form of dementia associated with cognitive decline and 

irreversible memory loss. The pathological hallmarks of AD brains are an accumulation of 

intracellular hyper-phosphorylated tau-positive neurofibrillary tangles (NFT) together with 

insoluble, fibrillary amyloid (Aβ4) plaques, which are traditionally recognized as being 

triggers that stimulate glial cell activation and initiate local innate immune responses [1]. AD 

has a complex aetiology in which the genetic makeup of the individual and environmental 

factors play a role. The late-onset form of AD is particularly interesting as its aetiology 

remains unknown despite the known genetic risk factors, including apolipoprotein E (ApoE) 

gene and its E4 allele inheritance [2, 3]. This risk factor is associated with severe AD 

pathology and an enhanced inflammatory response by microglia [4]. 

Peripheral infections also serve as a significant risk factor affecting mental health as 

demonstrated in clinical studies in which cognitive decline and deteriorating memory are 

reported [5-7]. A range of infective agents is consistently being linked to AD [8], including 

viruses such as the Herpes simplex virus type 1 (HSV-1) [9]; bacteria such as  

Chlamydophila pneumoniae (C. pneumoniae) [10]; and various types of spirochetes, 

including Borrelia burgdorferi (B. burgdorferi) [11-13] and periodontal Treponema spp., 

[14] and more recently Porphyromonas gingivalis (P. gingivalis) [15]. P. gingivalis and some 

oral Treponema species are invasive and virulent within their original niche where they 

induce gingival inflammation that leads to connective tissue degradation and alveolar bone 

resorption around teeth [16, 17]. Once the junctional epithelium that links the gingiva to the 

tooth enamel transforms to pocket epithelium, pathogenic bacteria induce bacteremia and 

initiate systemic inflammation by infiltrating the local blood vessels [18-20]. These factors 

may lead to various chronic inflammatory disorders such as cardiovascular disease(s) [21, 
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22], diabetes [23], rheumatoid arthritis [24-26], premature births [27], and AD [14, 15, 28, 

29]. 

Clinical studies by Stein et al., [28] support a strong association between tooth loss 

due to periodontal disease and the development of AD. They noted a greater rate of cognitive 

decline occurring in carriers of the Apolipoprotein E4 (ε4 allele) variant with fewer teeth 

[30]. Although chronic infection by Treponema pallidum is widely accepted for the atrophic 

form of general paresis, it and B. burgdorferi infections (etiological bacteria for Lyme 

disease) are also reported to result in dementia [11-13]. These spirochete infections give rise 

to the similar pathological hallmark features such as Aβ4 plaques and NFTs seen in AD [11-

13]. This is regarded as a direct link between spirochete infections and the development of 

AD. C. pneumoniae and HSV-1 infections of the brain also appear to be associated with the 

Aβ4 deposition observed in AD [9, 10, 12]; however, their role as infection by individual 

pathogen or occurring as co-infections with the invading spirochetes remains under 

investigation [12]. T. denticola and P. gingivalis oral infections of the brain are also reported 

[14, 15], but their direct involvement with the deposition of Aβ4 and NFTs is not clear.  

Inflammation in the brain is characterized by the presence of reactive microgliosis and 

astrocytosis (inflammatory phenotype) and is an accepted component of AD pathology [1]. 

Traditionally, the inflammatory component of the pathology in AD is believed to be the result 

of cytokines, oxidative stress, and complement activation, including the membrane attack 

complex due to the hallmark proteins of AD [1]. However, the fact that pathogens are 

implicated in some forms of central nervous system (CNS) diseases that result in the eventual 

development of AD [11-13], suggests that the existing hypothesis cannot exclude a possible 

role of chronic infections generating an inflammatory pathology in AD. Concerning chronic 

infections in AD brains, in 2008 two independent research groups implicated the indirect role 

of periodontal pathogens and/or their virulence factors in the development of AD [31, 32] 
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involving acute- phase proteins, including cytokines, as a plausible link between periodontal 

bacteria and inflammatory AD pathology. Miklossy [2008], proposed a direct link between 

oral spirochetes and AD via bacterial infection of the brain in which either the spirochetes or 

their virulence factors activate the classical and the alternative pathways of complement, 

resulting in vital cell loss via the membrane attack complex [1333]. Thus, the presence of 

cytokines and/or an activated complement cascade can be used as a marker to measure CNS 

inflammation in this context. Local inflammation and complement activation induced by 

direct, persisting infection of the brain by various types of spirochetes is also implicated as 

reviewed elsewhere [33]. Researchers have also  

Further demonstration of a high titer of antibodies against periodontal pathogens in 

the serum of elderly who progressed to AD also suggests the possible association between 

periodontal disease and AD [34].  

Poor oral hygiene [35] is strongly linked to the development of dementia; however to 

date there are very few reports establishing an experimental link between periodontal disease 

and AD. Two studies using human brain tissue explored the impact of periodontal infections 

on AD [14, 15]. These studies examined AD brain tissue specimens using molecular profiling 

methodologies to identify seven Treponema species [14], and the immunogenic endotoxin, 

lipopolysaccharide (LPS), from P. gingivalis [15].  

Focal dissemination of periodontal pathogens from the oral cavity to distant organ 

sites has long been hypothesized, but few studies have explored this theory. Previous studies 

using wild-type mice (C57BL/6J) explored the dissemination of periodontal pathogens in an 

endodontic infection model [36]. However, the study detailed here was unable to trace the 

dissemination of periodontal pathogens to distant organ sites due to the disadvantages 

associated with using a wild-type mouse model [36]. The ApoE-/- mouse model, which is a 

proatherogenic model for co-morbidity studies, is unable to deposit Aβ4 in the brain as the 
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essential ApoE isoforms are lacking [37]. This mouse serves as a suitable model with which 

to study the association between periodontal disease and AD as it avoids confounding factors 

that may result from an overlap of signaling in response to AD hallmark proteins and 

pathogen-associated molecular patterns. Thus, keeping in view the lack of in vivo 

experimental evidence for a link between periodontal pathogens/disease and AD, the present 

study aimed to explore such an association using the ApoE-/- mouse as a model. This study 

also tested the hypothesis that infectious agents and/or their components from oral diseases 

such as periodontitis can access the brain and modulate local CNS inflammation. To this end, 

we investigated the role of the oral pathogens P. gingivalis, T. denticola, and T. forsythia in 

accessing the brain of ApoE-/- mice following chronic experimental periodontitis and in 

contributing to the development of local inflammation as an early pathological lesion in 

relation to AD.  

The present study explored the possibility of specific oral pathogens altering normal 

functioning of the brain in experimental animals with established periodontitis. In this 

infection model F. nucleatum was used as a bridging organism that co-aggregates with major 

periodontal bacteria in both supra- and subgingival biofilm development and for the 

subsequent progression of periodontitis [386-4038]. Furthermore, F. nucleatum has been 

associated with human brain abscess formation [39].    

One prior study examined the dissemination of the three main periodontal disease-causing 

organisms P. gingivalis, Treponema denticola ( T. denticola) and Tanerella forsythia (T. 

forsythia) as mono- and polymicrobial infections in wild type mice (C57BL/6J) in an 

endodontic infection  [40].  However, this study revealed that none of the pathogens accessed 

“distant organ sites” hence, the wild type mice did not make a good animal model to explore 

the focal infection theory [40]. Currently there is no, in vivo experimental evidence for a link 

between periodontal pathogens/disease and AD. This study explored the hypothesis that 
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infectious agents and /or their components from oral diseases such as periodontitis can access 

the brain and modulate local CNS inflammation and thereby represent a component of AD  

Materials and Methods  

 

Mice, oral infection, and brain 

The study involved oral infection of ApoE-/- mice with periodontal pathogens either as mono- 

or polybacterial for a chronic infection period of 24 weeks. Following the infection period the 

mice were euthanized and the brain tissue was collected and preserved. Later, using 

molecular, immunological, and pathological detection techniques we evaluated the invasion 

of periodontal bacteria into the mice brains. 

 

Microbial strains 

 P. gingivalis FDC 381, T. denticola ATCC 35404, T. forsythia ATCC 43037, and F. 

nucleatum ATCC 49256 were used in the study and were routinely cultured anaerobically at 

37°C as described previously [41].(strain B6.129P2-Apoetm1Unc/J, Jackson Laboratories, Bar 

Harbor, MA, USA) were purchased and at 8 weeks of age they were randomly assigned to 

sham-infected, mono-infected (P. gingivalis, T. denticola, T. forsythia,F. nucleatum) and 

polymicrobial-infected groups. Antibiotic treatment (500 µg/mL kanamycin) was 

administered once for three days followed by the same period in which antibiotic-free water 

was supplied prior to initiating the first oral lavage with the periodontal bacteria [42]. The 

aim was to aid adherence of periodontal bacteria by suppressing the murine indigenous oral 

microflora population. For polymicrobial  

ApoE-/- Mice oral infection  

Eight-week-old male ApoE-/- mice strain B6.129P2-Apoetm1Unc/J (Jackson Laboratories, Bar 

Harbor, ME, USA) were randomly assigned to sham-infected, mono-infected (P. gingivalis, 
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T. denticola, T. forsythia,F. nucleatum) and polymicrobial-infected groups, (N = 12 in each 

group). This mouse study was carried out in strict accordance with the recommendations in 

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, 

USA. All procedures were performed in accordance with the approved protocol guidelines 

(Protocol # 201004367) set forth by the Institutional Animal Care and Use Committee of the 

University of Florida. The University of Florida has an Assurance with the Office of 

Laboratory Animal Welfare and follows Public Health Service policy, the Animal Welfare 

Act and Animal Welfare Regulations, and the Guide for the Care and Use of Laboratory 

Animals, USA. ApoE-/- mice were administered with 500 µg/mL kanamycin in drinking water 

for 3 days followed by a mouth rinse with 0.12% chlorhexidine gluconate [42] before the first 

oral lavage with the periodontal bacteria [42] to suppress the murine indigenous oral 

microflora. While mono-infections involved a bacterial inoculum of 109 cells/mL of 

respective bacteria, the polymicrobial-infection constituted an inoculum of 5×109  combined 

bacteria/mL, P. gingivalis was mixed with an equal quantity of T. denticola for 5 min; 

subsequently, T. forsythia was added to the culture tubes containing P. gingivalis and T. 

denticola, and cells were mixed thoroughly and allowed to interact for an additional 5 min. P. 

gingivalis, T. denticola, and T. forsythia were mixed and added to F. nucleatum with an equal 

volume of 4% (w/v) sterile carboxymethylcellulose (CMC; Sigma-Aldrich, St. Louis, MO) in 

phosphate buffered saline (PBS). This mixture was used for oral infection (5×109 

bacteria/mL) in ApoE-/- mice as described previously [41, 42]. This investigation is part of an 

on-going collaboration with the University of Florida and the University of Central 

Lancashire (UCLan) (MTA Ref. No. A10415). Ethical approval was obtained from the 

Animal Projects Committee of UCLlan for research on animal tissues as secondary users 

(Ref. No. RE/11/01/SS). as well as in accordance with the approved protocol guidelines 
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(Protocol # 201004367) set forth by the Institutional Animal Care and Use Committee of the 

University of Florida.  

Collection and storage of brain tissue specimens 

The mouse brains were removed following 12 and 24 weeks of oral infection as well as 

sham-infection and separated into two halves. One cerebral hemisphere was immediately 

stored at -80°C in RNAlater® buffer for subsequent molecular biology analysis and the other 

half fixed in 10% neutral buffered formalin for histopathological analysis.  

Genomic DNA Isolation 

To confirm the spread of periodontal pathogens from the mouth to the brain of ApoE-/- male 

mice, genomic DNA was isolated from the brains of all the infected and sham-infected 

groups. Briefly, frozen brain tissue (25 mg) was removed, close to the circumventricular 

organs in a bench top microflow cabinet (Astec Microflow Ltd., UK), using the aseptic 

technique [15]. Following the manufacturer’s protocol (Qiagen DNA easy blood & tissue kit 

69504), brain tissue was lysed and genomic DNA was isolated manually using ethanol 

precipitation.  

DNA Amplification and sequencing 

Polymerase chain reaction (PCR) was performed using a thermocycler (Veriti, Applied 

Biosystems, UK), initially using the universal bacterial primers (Table 1a) from the 16s 

rDNA bacterial genes [43]. For the bacterial-specific gene amplification, the primer sets from 

Figuero et al., [44] and Rivera et al., [415], (Table 1b) were employed, adhering to the 

published PCR protocols [41, 44, 45]. The negative controls contained all PCR reagents 

except for the sample DNA. PCR products were analyzed using agarose gel electrophoresis 

(1.5 %) and visualized in the Gene Genius bio-imaging system, and images were captured 

using the Gene snap software (Syngene, UK). The PCR product was cleaned in 

MicroCLEAN DNA Cleanup® reagent (Web Scientific Ltd.,) and cloned using the TA 
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TOPO cloning kit (Invitrogen) according to the manufacturer’s instructions. Following 

successful colony screening, a mini culture (10 ml) of each of the selected colonies was set 

up overnight and plasmid DNA isolated using a Qiaquick kit (Qiagen). This was followed by 

sequencing (40 ng) with the M13 forward or reverse primers (TA TOPO cloning kit, 

Invitrogen) and using the BigDye™ Terminator v3.1 cycle sequencing kit (Applied 

Biosystems) according to the manufacturer’s instructions. The sequencing parameters were 

an initial denaturation step at 96°C for 1 min and 25 cycles involving (96°C for 10 sec), 

annealing (50°C for 5 sec), and elongation (60°C for 4 min) according to Paster et al., [43]. 

Following sequencing the results were submitted to BLAST nucleotide search engine for 16s 

DNA genes (http://blast.ncbi.nlm.nih.gov/) to identify the organism(s) with 99-100% match 

with at least 200 bases.  

Immunodetection of periodontal pathogens in mouse brain tissue  

Isolation of total protein from mouse brain tissue  

In each case a 3-mm-thick section of the cortical brain was minced in the lysis buffer 

containing protease inhibitors [15]. The total protein concentration of all cell lysates was 

determined as described previously [15]. A number of positive and negative controls were 

kindly provided as gift reagents and their sources are identified in Table 2. These were sterile 

bacterial growth medium (medium control) and P. gingivalis culture supernatant as described 

in Poole et al., [15], purified recombinant T. denticola protein (FhbB) [45], and ready-to-use 

T. forsythia whole- cell lysate [46]. 

Mouse brain tissue cell lysate 

A 3 mm thick section of the cortical brain was minced in the lysis buffer containing protease 

inhibitors [15]. Total protein concentration of all cell lysates was determined as described 

previously [15].  

Immunoblot analysis 
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Immunoblotting was performed under reducing conditions in which up to 60 µg per lane of 

total protein from all brain specimens was loaded [15] on SDS-PAGE gels of variable 

percentages (7.5% gels were used for high- molecular- weight proteins such as the S-layer of 

T. forsythia, 12.5% for gingipains and LPS from P. gingivalis and 15% w/v gels were used 

for the low- molecular- weight proteins detected by anti-T. denticola antibodies). Following 

electrophoresis, proteins were electro-transferred to a polyvinylidene difluoride membrane 

(PVDF, Immobilon-P; Millipore, UK). The membranes were blotted with mouse anti-P. 

gingivalis (clone 1B5), rabbit anti-T. forsythia against the S-layer, and anti-T. denticola 

ATCC 35405 antibody against FhbB protein generated in rats (sources of antibodies and their 

dilutions used are listed in Table 2). 

Histopathological staining of brain tissue 

The formalin-fixed brain tissue was thoroughly washed in PBS and the intact hemisphere was 

divided into the frontal cortex, temporal lobe inclusive of the hippocampus, and the brain 

stem and cerebellum. The specimens were then processed and embedded in paraffin wax. The 

tissue blocks with temporal lobe inclusive of the hippocampus were sectioned (5 µm in 

thickness) using the Leica RM2235 microtome. 

Cryo-sections (10 µm thickness) from frozen unfixed brain tissue (hippocampus) were cut 

using the Leica CM1850 cryostat (Leica UK). Both paraffin wax and cryo-sections were 

collected onto superfrost+® glass slides (Leica UK). The cryo-sections were either used 

immediately or stored at -80°C until required for further use. Rehydrated paraffin wax 

sections were examined for morphology following staining with Haematoxylin and Eosin 

(H/E). In addition, a modified methenamine silver (silver impregnation) technique adapted 

from resin-embedded-tissue specimens as previously described by SinghraoCole et al., [476] 

was used to demonstrate both the Aβ4 plaques and the NFTs. All sections were also stained 
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with 1% aqueous thioflavin T as a standard neuropathology technique for detecting fibrillar 

amyloid deposition. 

 Immunofluorescence labeling of periodontal pathogens in brain tissue 

Antigen retrieval was carried out on rehydrated paraffin wax sections for labeling with goat 

anti-Iba1 (Abcam) by microwave heating of tissue sections, at 750 W power for 35 min in 

10- mM citric acid buffer (pH 6.0). The infected as well as sham-infected control brain 

sections were incubated in primary antibodies and subsequently in secondary detection 

antibodies. Rehydrated paraffin wax sections were immunolabeled with rabbit anti-glial 

fibrillary acidic protein (GFAP) (Table 2) and the calcium binding protein marker Iba 1 

(AbCam). For formalin fixative sensitive antibodies, tissue sections from frozen brains were 

stabilized by fixation in cold acetone for 10 min followed by a 5- min wash in PBS. Tissue- 

associated endogenous fluorescence was quenched for 10 min in 50- mM glycine/PBS. All 

brain tissue specimens were immunolabeled using the mouse anti-P. gingivalis (1B5), anti-T. 

denticola (ATCC 35405 antibody against FhbB protein), and anti-T. forsythia (against S-

layer) and for complement C3 activation products rat anti-C3b/iC3b/C3d (Hycult Biotech), 

and a rabbit anti-C9 neoepitope to detect the membrane attack complex. The dilutions for 

incubation of sections in primary antibodies are given in Table 2. Where appropriate, the 

antibodies were diluted in block solution containing 0.01% normal serum (goat serum for 

GFAP, P. gingivalis (1B5), T. denticola (FhbB), T. forsythia (S-layer), C3b/iC3b/C3d and C9 

neoepitope;  rabbit serum for Iba 1) in PBS pH 7.3 and 0.25% tween 20. FITC-conjugated 

secondary detection antibodies were goat anti-rabbit (Sigma-Aldrich Ltd., UK) diluted 1/200 

and rabbit anti-goat Alexa Fluor 488® and goat anti-rat Alexa Fluor® 488 (Molecular Probes, 

UK) diluted 1/1000, in block solution. Sections were mounted under a glass coverslip using 

the Vectashield® PI (propidium iodide) mounting medium (Vector laboratories, 

Perterborough, UK). Labeling was observed and images were captured using a 510 series 
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Zeiss confocal microscope (Carl Zeiss Ltd). A semi-quantitative approach was taken by 

manually counting the number of cells/area for all brains in each infected group and 

compared with the sham group to assess glial cell activation. 

Statistical analysis 

Data are presented as mean ± standard deviation (n≥3 replicates per treatment) and tested for 

normality and equal variance prior to analysis. Where treatment groups did not meet the 

assumptions for parametric analysis, the non-parametric Mann Whitney-U test was 

performed comparing the number of positive cases in each group of infected mice with those 

in the sham-infected group. Differences were considered significant at P ≤0.05.  

 

Results 

Molecular identification of pathogens in brain specimens 

Molecular analysis using universal primers failed to detect T. denticola or T. forsythia in the 

brain tissues from sham-, mono-, and polymicrobial-infected groups at both time intervals 

(Fig. 1, Panels a-, b and c). The species-specific bacterial gene primers revealed 6 out of 12 

ApoE-/- mice brain specimens containing P. gingivalis genomic DNA at 12 weeks (Fig. 1 

Panel d), which further increased to 9 out of 12 at 24 weeks (Fig. 1 Panel e). These results are 

highly significant when analyzed by the non-parametric Mann Whitney-U test; P values = 

0.006 at 12 weeks and 0.0001 at 24 weeks. The molecular identity of the organism was 

further confirmed following purification of the amplification product and direct sequencing. 

A nucleotide basic local alignment search tool (BLAST) identified a 99-100% match with > 

200 bases of the submitted sequence for P. gingivalis. using bacterial gene specific primer 

sets confirmed that it was P. gingivalis FDC381. Molecular profiling of mono-bacterial 

infected mice brain specimens did not show the presence of genomic DNA for T. denticola 

and T. forsythia (data not shown). Following molecular identification using specific bacterial 
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gene primers, the group of brains from the polymicrobial infections failed to detect P. 

gingivalis genomic DNA at 12 weeks. However, by 24 weeks 2 out of 12 ApoE-/- mice brain 

specimens demonstrated the presence of P. gingivalis genomic DNA (Fig. 1 Panel f). The 

brain tissue sections from polymicrobial- infected mice did not show the presence of T. 

denticola and T. forsythia at either 12 weeks or 24 weeks (Table 3). 

Immunoblot analysis of infected mouse brain tissue 

Immunoblotting was performed according to Poole et al., [15] on all brain specimens with the 

anti-P. gingivalis (Clone 1B5 which detects both LPS and gingipains) antibody, the s-layer 

(T. forsythia) antibody and the anti-T. denticola ATCC 35405 antibody against FhbB protein. 

Positive controls demonstrated appropriate bands at the expected molecular weights. The 

anti-P. gingivalis (Clone 1B5) antibody demonstrated a ladder of bands in the range of 45-12 

kDa as reported by Poole et al., [15]. A single band at 11.4 kDa was detected for anti-T. 

denticola antibody against FhbB protein [47], and anti-T. forsythia antibody against the s-

layer demonstrated multiple bands with two prominent bands at 230 and 270 kDa [48]. 

However, nNone of the test tissue lysates demonstrated LPS, FhbB protein, and the S-layer 

protein from their respective bacterial species in the mono- and polymicrobial- infected 

groups (data not shown). 

Histology of the infected mouse brain  

Overall morphological observations of the temporal lobe, including the hippocampus, 

appeared well preserved in H/E preparations obtained from all brains (Fig. 2). The pyramidal 

neurons in all sub-regions of the hippocampus (CA1-CA4) and the dentate gyrus in sham-

infected and infected brains generally also appeared to be well preserved (Fig. 2 a-d). 

Occasionally, shrunken and darker neurons were noted to a varying extent in CA1-CA4 

regions and the dentate hilus with a random distribution (not shown). There were no 

abscesses in the brain and there were no signs of the classical blood- borne inflammatory 
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cells (neutrophils, lymphocytes) or sites of focal hemorrhage. Thioflavin T and methenamine 

silver, neutral staining methods failed to demonstrate any evidence for the presence of either 

Aβ4 plaques or NFTs in the hippocampus or in the fronto-temporal cortex regions in all of 

the brains examined.  

Immunofluorescence detection of periodontal pathogens in infected mouse brain tissue  

Cell markers associated with glial cell activation  

Astrocytes (GFAP) 

All the sections from the sham-infected brains and mono- and polymicrobial- infected groups 

in which the primary antibody was omitted remained negative (Fig. 3a and d).  

Immunolabeling of sections for GFAP in the sham-infected control brains demonstrated 

numerous astrocytes with activated phenotypes around the lateral ventricles (Fig. 3b) as well 

as scattered astrocytes within the hippocampus CA1-CA4 regions at both time points (Fig. 

3c). The brain tissue sections from P. gingivalis mono-bacterial- infected groups at 12 and 24 

weeks showed astrocytes at the periphery of the lateral ventricles (Fig. 3e) and within the 

hippocampus (Fig. 3f). There was no statistical difference when cells/area were counted and 

compared with the sham-infected mice. The brain tissue sections from T. denticola mono-

infected groups at 12 and 24 weeks demonstrated a similar density of astrocytes scattered at 

the periphery of the lateral ventricles and within the hippocampus (not shown) as observed in 

the P. gingivalis- infected and sham-infected mice. The brain tissue sections from T. forsythia 

mono-infected groups at 12 and 24 weeks demonstrated a lower density of astrocytes 

scattered at the periphery of the lateral ventricles and within the hippocampus compared with 

the P. gingivalis and T. denticola groups as well as the sham-infected mice (not shown). 

Equally, the polymicrobial- infections demonstrated no significant difference compared with 

the control group. GFAP labeling was observed in the circumventricular regions as well as in 

the hippocampus (not shown). 
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Microglia (Iba 1) 

All mouse brain sections in which the primary antibody was omitted remained negative for 

microglial cell distribution (Fig. 4a and d). Only a few microglial cells were observed 

following immunolabeling of sections with the Iba 1 antibody around the lateral ventricles at 

12 and 24 weeks in the sham-infected brain sections (Fig. 4b), with even fewer cells (mainly 

processes, Fig. 4c) in the hippocampus. Similar microglial cell distribution was observed in 

the P. gingivalis- infected brains around the lateral ventricles (Fig. 4e), and few microglial 

cell bodies with branched processes were observed in the hippocampus (Fig. 4f). The brain 

tissue sections from T. denticola mono-infected groups at 12 and 24 weeks demonstrated no 

differences in the density of microglia scattered around the periphery of the lateral ventricles 

or within the hippocampus (not shown). Similarly, there were no differences observed 

between sham-infected, T. forsythia- infected, and polymicrobial- infected brain sections. 

Detection of bacterial virulence factors in infected mouse brain tissue 

Immunolabeling of brain cryo-sections was unable to demonstrate the presence of any of the 

three bacteria used for infection when tested using anti-P. gingivalis antibody, rabbit antisera 

against T. forsythia, and anti-T. denticola.  

Detection of complement activation proteins in mouse brain tissue 

The sham-infected mouse brain sections, in which the primary antibody was omitted, 

remained negative for C3 complement activation products (Fig. 5a and 6a). Intracellular 

labeling detected complement activation products for the common C3 component activation 

fragments (iC3b, C3b and C3d) (Figs. 5b, 6b) and the membrane attack complex C9 

neoepitope (Fig. 6c), specifically on microglia rather than on astrocytes and/or neurons from 

all brain tissues in sham-infected mice. The complement activation products for the common 

C3 components (iC3b, C3b and C3d) and C9 (C9 neoepitope) were detected in P. gingivalis-

infected mouse brains (12 weeks), but the labeling was intracellular and exclusive to 
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microglia. By 24 weeks, the glial cell labeling was still high (Fig. 5c), but C3 (Fig. 6d and e) 

and C9 (Fig. 6f) activation fragments appeared to be opsonized onto pyramidal neurons, 

particularly in the CA2 area of the hippocampus in 4 out of 12 infected brains (P = 0.032). 

Labeling of the C9 neoepitope was observed in 2 out of 12 specimens (P > 0.05, Fig. 6f). In 

contrast, both T. denticola and T. forsythia infections (12 weeks) were similar to the control 

mice, demonstrating intracellular staining in microglial cells. However, at 24 weeks, 1 out of 

12 from each group demonstrated both C3 (iC3b, C3b and C3d) and C9 neoepitope localized 

to CA neurons (P > 0.05) (data not shown). Immunolabelling of polymicrobial-infected 

mouse brains (12 and 24 weeks) with the same antibodies also demonstrated the glial cells. 

 

Discussion 

Infectious agents have previously been linked to cognitive decline [9-13], and more recently 

periodontal pathogens and/or their virulence factors have been implicated in the development 

of AD [14, 15]. This study explored the hypothesis that infectious agents and/or their 

components from oral diseases such as periodontitis can access the brain and contribute to 

local CNS inflammation that eventually leads to the development of a chronic inflammatory 

component of AD. In this study we investigated the possibility that oral pathogens P. 

gingivalis, T. denticola, and T. forsythia can access the brains of ApoE-/- mice following 

experimental induction of periodontitis as mono- as well as polymicrobial- infections. F. 

nucleatum has the ability to co-aggregate with early colonizers in the oral cavity as well as 

the late colonizers such as P. gingivalis, T. denticola, and T. forsythia [36-38]. In addition, 

abscesses in the human brain have been reported to be caused by F. nucleatum [39]. 

However, in the present study no attempt was made to detect F. nucleatum in the brain 

specimens as F. nucleatum is part of another ongoing study. The significance of using a 

periodontal disease model to assess AD lies in understanding the role of bacteria accessing 
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the brain and thereby priming glial cells to mount a subsequent local immune response and 

contribute to neuronal lysis. One previous study, which was performed with an endodontic 

infection model using wild-type and the severe-combined-immunodeficiency (SCID) mice, 

demonstrated that only the SCID mice were conducive to T. denticola invasion following 

mono- and polymicrobial-infections [36]. That study showed that T. denticola can 

disseminate to distant body organs, including the brain, heart, and spleen while P. gingivalis 

and T. forsythia were undetected [3640]. In our current study using a periodontal infection 

model in ApoE-/- mice, we report a contrasting finding in which we observed the dominance 

of P. gingivalis in accessing the brain in comparison to T. denticola and T. forsythia. These 

differences in our study from those of Foschi et al., [3640] maybe due to the bacterial strains 

used, the dosage of infection administered, method of inoculating animals during infection, 

differences in disease models (endodontic vs periodontal disease), as well as the genetic 

makeup of the mice used. For example, the only common strain between this study and that 

of Foschi et al., [3640] is T. forsythia (ATCC 43037) and the dose of bacteria used in each 

study was different (higher by a factor of 10 in this study). Based on the available data it is 

likely that T. forsythia, being a non-motile bacterium which lacks fimbriae, is unable to 

transmigrate to the brain [48]. We found that P. gingivalis FDC381 DNA predominated in the 

brains of ApoE-/- mice, and this strain is highly fimbriated compared to the P. gingivalis 

ATCC 33277 [489], used by Foschi et al., [3640]. Although, both strains of T. denticola 

(ATCC 35404 and ATCC 35405) are motile, the T. denticola (ATCC 35405) used by Foschi 

et al., [3640] at a lower dose  disseminated to the brain. This difference may be attributed to 

the outer membrane, with abundant pore-forming adhesion protein that may be lacking in our 

T. denticola (ATCC 35404) strain [4950]. Thus, the virulence of the bacteria may have 

contributed to its accessibility to the brain, rather than being a dose- dependent effect. 

especially in the mono-bacterial infected group of mice. However, a dose dependent effect 
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may be exaggerated in the polymicrobial infection model as the absolute numbers of all 

bacteria in the inoculum were different to that used in mono-bacterial infections (109). 

Human periodontal pathogens are not habitants of the murine oral cavity therefore the 

antibiotic pretreatment was used once only and prior to the first infection to facilitate initial 

colonization of the human periodontal pathogens to the teeth and gingival surfaces of the 

experimental mice.  

Despite the differences in bacterial strains used and their dosage, as well as the 

genetics of the experimental animals, our results show that P. gingivalis strain FDC 381 used 

to infect the oral cavity of the ApoE-/- mice was able to access the brain tissue, providing 

definitive evidence for transmigration of this bacterial species from the oral cavity to the 

brain. The fact that more brains demonstrated a greater P. gingivalis infection at 24 weeks of 

infection suggests that the translocation of bacteria is likely to be time dependent. 

Inflammation occurring at 24 weeks of infection may be increasing the permeability of the 

blood-brain barrier and facilitating easier access of bacteria into the brain.  

The circumventricular organs are not part of the diagnostic criteria for AD [51]. 

However, we analyzed these tissues for bacterial identification to keep in with our human 

brain study, in which the only tissue available to us was from the lateral ventricle of the 

parietal lobe [15]. In addition, the hippocampus from the frozen tissue was reserved for 

fixation sensitive antibodies such as those used for detecting complement activation. Finding 

molecular evidence of Detecting P. gingivalis in the Apo E-/- mice brains in this in vivo study 

supports the data presented in our recently published study of human brain specimens in 

which we detected P. gingivalis- specific LPS in 4 out of 10 AD human brains [15]. Together 

these studies provide evidence to support an association between periodontal disease and AD. 

When examined for general morphological preservation of the fronto-temporal lobe, 

including the hippocampus, rehydrated paraffin wax sections showed no signs of abscess 
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formation,  The fact that there were no signs of any abscess formation  in the brain suggests 

that P. gingivalis, if metabolically active in the brain, may take several years to form an 

abscess as is the case with non-oral bacteria such as Propionibacterium acnes which can take 

10 years to form abscess following entry into the brain [52]. In addition, there were no 

myeloid lineage cells (neutrophils, lymphocytes) infiltrating into the brain, and no sites of 

focal brain hemorrhage.  

Bacterial virulence factors were not detected in any of the brains by immunoblotting and/or 

by immunolabeling with the aforementioned antibodies. Although this appeared surprising at 

first, however, the lack of detection may be attributed to the inability of these bacteria to 

access the brain 

Our immunoblotting and immunofluorescence techniques with specific antibodies did 

not show the presence of bacterial virulence factors in any of the brain tissues examined. If 

any of these are metabolically active in the brain, it may take several years to form an abscess 

as seen in the case with non-oral bacteria such as Propionibacterium acnes, which can take 

10 years to form an abscess following entry into the brain [50]. Although this appeared 

surprising at first, the lack of detection may be attributed to the inability of these bacteria to 

access the brain due to their rapid clearance from the systemic circulation and/or they were 

neutralized upon entry by the already enhanced microglial cell inflammatory phenotype in 

these mice [513, 524]. Another possible reason may be that the antibodies themselves failed 

to detect their epitope in tissue sections or the antigen itself was below the detection limit of 

both immunoblotting and immunolabelling. 

We focused on the hippocampus region of the brain to detect any early cellular 

changes in the Apo E-/- mice brains, as according to Braak and Braak [531], 

neurodegeneration begins in the entorhinal cortex and spreads to the hippocampus followed 

by other regions. Screening for the AD hallmark associated structures by thioflavin T and 
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methenamine silver methods failed to provide any evidence for the fibrillar Aβ4 and NFTs in 

the entorhinal cortex or the hippocampus regions. A plausible reason for the inability to 

detect the AD hallmark proteins could be the relatively short time span of chronic infection in 

our mouse model because, even in the accelerated transgenic AD animal model and in the 

AβPP and SS-1 transgenic mice, insoluble Aβ4 deposition and plaque formation usually takes 

between 6 to 12 months [545, 556]. Further, ApoE-/- mice used in the current study are 

unlikely to demonstrate Aβ4 deposition as they lack the essential protein required for amyloid 

to form insoluble fibrils [3740]. Hence it will be beneficial for a future study to be designed 

with a longer duration of mono- and polymicrobial- infection in a non-ApoE-/- rodent model 

so as to demonstrate the direct link between periodontal disease and AD hallmark proteins.  

Previous studies with ApoE-/- mice have identified glial cell activation in which 

microglia demonstrate evidence of an increased secretion of cytokines, especially of tumor 

necrosis factor –alpha (TNF-α) [513, 524], a cytokine of macrophage origin. This 

observation has been suggested as an impaired immuno-modulatory function of macrophages 

in controlling the innate immune responses in this animal model [567-589]. Microglial cells 

are the tissue- bound macrophages of the brain capable of expressing a range of 

proinflammatory cytokines and phagocytosing cellular debris to reduce the inflammatory 

response to pathogens. However, the finding that the ApoE-/- mice have higher levels of 

endogenous proinflammatory cytokines, especially TNF-α, suggests that it is likely that 

microglia were already in their primed phenotype. In this study we also found responsive 

fibrillary astrocytes, particularly at the peri-circumventricular organ sites following initial 

microglial cell activation. Complement is a pivotal pathway in the CNS innate immune 

response following infections. It is part of the body’s innate immune defense mechanism and 

has been reviewed elsewhere [60-62]. In the CNS, the dominant mode of complement 

activation is the classical pathway where neurons show vulnerability to complement mediated 
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damage [5963] and microglia synthesize complement proteins [604]. Hence, we set out to 

detect any evidence for the activation of the common C3 and the terminal pathway of 

complement leading to the formation of the membrane attack complex in our infected mice 

brain specimens. Our study demonstrated an intracellular localization of C3 and C9 

exclusively in microglia in all brains, suggesting that these cells were actively synthesizing 

complement components [604] rather than being opsonized with the complement activation 

fragments, again supporting the view that microglia were already in their primed/activated 

state [513, 524, 615]. 

However, our observation of the cell surface membrane staining of C3 activation 

fragments (iC3b, C3b and C3d) and the membrane attack complex (anti-C9 neoepitope) 

exclusively on CA pyramidal neurons of the mono- and polymicrobial- infected mice at 24 

weeks but not at 12 weeks suggests that the inflammatory burden was increasing from 

protection to causing bystander injury on complement activated neurons. The C3 activation 

fragments opsonized to neurons in the P. gingivalis mono-infected group were statistically 

significant whereas the observed membrane attack complex detected on neurons in the same 

group did not reach significance. In view of us detecting C3 activation fragments being 

opsonized on the pyramidal neurons, it appears likely that bacteria (P. gingivalis) and/or its 

DNA may have triggered the complement activation in these infected mice.  

Our study supports the observation from previous studies which hypothesized that 

bacterial infections would contribute to the development of AD pathology via mechanisms 

involving acute- phase proteins, including cytokines and the complement cascade in which 

neurons would be attacked [31-33]. The presence of cytokines and activated complement 

cascade can be used as a marker to represent local CNS inflammation [1, 33].Thus, the 

demonstration of activated complement cascade here in response to P. gingivalis directly 
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infecting the brain supports the conclusion that chronic local inflammation constitutes a 

component of developing AD pathology. 

An investigation from our collaborators conducted on the same set of animals used in 

this study demonstrated that T. denticola mono-bacterial infection-induced significant 

atherosclerosis risk factors (cholesterol, very low density lipoprotein or VLDL and, serum 

oxidized LDL), and acute phase protein serum amyloid A, as well as a significant decrease in 

endothelial dysfunction marker (nitric oxide) [42]. At the same time, this study using the 

brains from the same mice provides some evidence towards confirming this hypothesis, 

alongside novel data demonstrating the transmigration of P. gingivalis from the oral cavity to 

the brain of ApoE-/- mice where they can initiate local innate immune responses including 

complement activation and neuronal damage.  Finally, this study demonstrates that, in the 

absence of fibrillary Aβ4 deposition the neurons remain vulnerable to complement mediated 

damage from P. gingivalis accessing the brain.  
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TABLE 1a: PCR primers from Paster et al., [43] 

Primer  Function Orientation Sequence 

D88  

 

PCR Forward GAGAGTTTGATYMTGGCTCAG 

E94 

 

PCR Reverse GAAGGAGGTGWTCCARCCGCA 

 

TABLE 1b: Specific primer sets used for analysis of bacterial DNA from ApoE-/- mice 

brains by PCR 

Primer & 

Reference 

Amplicon 

size 

Primer  Sequence 

P. gingivalis 

[44] 

PCR Forward AGGCAGCTTGCCATACTGCG 

P. gingivalis 

[44] 

PCR Reverse ACTGTTAGCAACTACCGATGT 

T. denticola 

[415] 

PCR Forward TAATACCGAATGTGCTCATTTACAT 

T. denticola 

[415] 
PCR Reverse CTGCCATATCTCTATGTCATTGCTCTT 

T. forsythia 

[44] 
PCR Forward GCGTATGTAACCTGCCCGCA 

T. forsythia 

[44] 
PCR Reverse TGCTTCAGTGTCAGTTATACCT 

M13 

(Invitrogen) 

Sequencing Reverse CAGGAAACAGCTATGAC 
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TABLE 2: Source of antibodies and their working concentration and/or dilutions used 

Antibody Supplier Final conc/ 

dilution 

Rabbit anti-GFAP 

(gift) 

Dr Jia Newcombe (The Multiple 

Sclerosis Society Laboratory, UK) 

1/1000 

Goat anti-Iba 1 (ab5076) Abcam 1/250 

Mouse anti-P. gingivalis (Clones 1B5) 

tissue culture supernatant (gift) 

Prof. Michael A. Curtis (London, UK) 1B5 1/10, 

 

Rabbit anti-T. forsythia (S-layer protein) Dr Graham Stafford (University of 

Sheffield, UK). 

1/20,000 

Rat anti-T. denticola (FhbB protein) Prof. Thomas T. Marconi, (USA) 1/5000 

Blocking solution 0.01 M phosphate buffered saline (PBS) 

pH 7.3 containing 0.01% normal goat or 

rabbit serum and 0.25% tween 20 

- 

Normal serum: goat (X0907), rabbit 

(X0902). 

DakoCytomation, Germany, 0.01% 

Rat anti-mouse C3b/iC3b/C3d  Hycult Biotechnology, UK 1/50 

Rabbit anti-rat C9 neoepitope  Professor B. Paul Morgan, and Dr 

Timothy R. Hughes, Cardiff University. 

1/100 
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TABLE 3: DNA detected from periodontal pathogens in the ApoE-/- mice brains  

Mono 

infections 

DNA detected 

at 12 weeks 

DNA detected 

at 24 weeks 

Polymicrobial 

infections 12 

weeks 

Polymicrobial 

infections 24 

weeks 

Sham- infected 0 out of 12 0 out of 11 0 out of 11 0 out of 11 

P. gingivalis 6 out of 12,  

P = 0.006 

9 out of 11 

P = 0.0001 

0 out of 11 2 out of 11 

T. denticola 0 out of 12 0 out of 12 0 out of 11 0 out of 11 

T. forsythia 0 out of 12 0 out of 12 0 out of 11 0 out of 11 
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Legends 

 

Figure 1: Molecular identification of P.gingivalis in brain tissue sections using specific 

primers. Panels a and b) mono sham-infected group 12 and 24 weeks, c) polymicrobial sham-

infected group 24 weeks, d) Mono- infection with P. gingivalis at 12 weeks, e) Mono- 

infection with P. gingivalis at 24 weeks, f) Polymicrobial infection with P. gingivalis at 24 

weeks.  d) Lanes corresponding to Brain 1, 2, 5, 8, 9, 11 demonstrated a band at 400bp. P 

value = 0.006.  e) Lanes corresponding to Brain 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 demonstrated a 

band at 400bp. P value = 0.0001. f) Lanes corresponding to Brain 8 and 10 demonstrated a 

band at 400bp. 
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Figure 2: Haematoxylin and Eosin stained tissue section from the temporal lobe of Apo E-/- 

mice  demonstrating the overall preservation of a) CA1-CA4 regions of the hippocampus, b) 

Higher magnification of the dentate gyrus neurons, c) the cortical and hippocampal fissure by 

the lateral ventricle in relation to CA2 and 3 neurons, d) higher magnification of the CA2 

neurons. DG: Gr layer = dentate gyrus granule cell layer. The red arrows depict fused 

hippocampal fissure. LV = lateral ventricle containing the choroid plexus. 
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Figure 3: Immunolabelling of the temporal lobe of ApoE-/- mice with rabbit anti-human 

GFAP to assess astrogliosis. a and d) negative control images whereby primary antibody is 

omitted. Sham- infected (b, c) in which (b) demonstrated abundance of immunopositivity 

especially around the periphery of the lateral ventricles and the insert in (c) shows the 

morphology of cells labeled with anti-GFAP. These appeared as fibrillary astrocytes with 

reactive phenotype. The mono P. gingivalis infected (e, f) brains at 24 weeks demonstrated a 

more widespread distribution of fibrillary astrocytes around ventricles but their distribution 

within the hippocampus region was similar to that observed in the sham- infected brains.  
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Figure 4: Immunolabelling of the temporal lobe of ApoE-/- mice with goat anti-mouse Iba1 

antibody to assess microgliosis. a and d) negative control images whereby primary antibody 

is omitted. Sham- infected (b, c) in which (b) demonstrated immunopositivity around the 

periphery of the lateral ventricles. The mono- P. gingivalis 24 weeks infected (e, f) brains 

demonstrated similar labeling to that observed in the sham- infected brains, in both the lateral 

ventricles and hippocampal regions.  
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Figure 5: Cryo-section from the temporal lobe of ApoE-/- mice immunolabelled for 

complement activation fragments in the hippocampus using rat anti-mouse C3b/iC3b/C3d. (a) 

Control, where the primary antibody was omitted from the tissue section. In both sham- 

infected (b) and infected (c) brains, the labeling appears intracellular within branched 

microglia demonstrating an activated phenotype. The insert (b-c) shows the branched 

morphology of cells labeled with the same antibody.  
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Figure 6: Immunodetection of complement fragments in brain tissue sections using rat anti-

mouse C3b/iC3b/C3d. (a) Negative control (b-c) sham- infected brains with rat anti-mouse 

C3b/iC3b/C3d (b) and rabbit anti-rat C9 neoepitope (c).  (d-f) P. gingivalis infected brain 

with rat anti-mouse C3b/iC3b/C3d (d and e) and rabbit anti-rat C9 neoepitope (f); showing 

labeling on the cell surface membranes of the CA neurons in the infected brains (P = 0.032).  
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