N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title Electrospinning predictions using artificial neural networks
Type Article

URL https://clok.uclan.ac.uk/id/eprint/12183/

DOI https://doi.org/10.1016/j.polymer.2014.12.046

Date 2015

Citation | Brooks, Hadley Laurence and Tucker, Nick (2015) Electrospinning
predictions using artificial neural networks. Polymer, 58. pp. 22-29. ISSN
0032-3861

Creators | Brooks, Hadley Laurence and Tucker, Nick

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1016/j.polymer.2014.12.046

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/



http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Title: Electrospinning predictions using artificial neural networks

Authors: Hadley Brooks?, Nick Tucker

aSchool of Engineering, University of Central Lancashire, hlbrooks@uclan.ac.uk
Abstract:

Electrospinning is a relatively simple method of producing nanofibres. Currently there is no method
to predict the characteristics of electrospun fibres for a wide range of polymer/solvent combinations
and concentrations without first measuring a number of solution properties. This paper shows how
artificial neural networks can be trained to make electrospinning predictions using only commonly
available prior knowledge of the polymer and solvent. Firstly, a probabilistic neural network was
trained to predict the classification of three possibilities; no fibres (electrospraying), beaded fibres
and smooth fibres with over 80% correct predictions. Secondly, a generalised neural network was
trained to predict fibre diameter with an average absolute percentage error of 22.3% for the
validation data. These predictive tools can be used to reduce the parameter space prior to scoping
exercises.
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Predicted versus measured electrospun-fibre diameter from an artificial neural network trained using data from 13
different polymer/solvent combinations from over 20 independent studies.
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1. Introduction:

Electrospinning is an increasingly important area of research as developments in biotechnology,
electronics, catalysts, composites and sensors all call for increased flexibility and control over the
manufacture of nano-scale fibres [1, 2]. Specific applications include tissue scaffolds [3-11],
membranes for fuel cells [12], separation layers for batteries [13], air and water filtration [14, 15],
reinforcement for nano-composites [2, 16-18], piezoelectric fibres for energy harvesting and sensors
[19-21] and conductive layers in solar cells and electronics [17, 21, 22]. Electrospinning compares
favourably with other methods of nano-fibre manufacture such as drawing, template synthesis,
phase separation and self-assembly due to its relative simplicity and low cost [23-26].

Needle or capillary electrospinning of polymer solutions typically works by drawing a small
electrostatically charged jet from a droplet to a grounded collector (Figure 1). The jet is initiated
from the droplet when the repelling forces of the surface charges overcome the surface tension and
viscous forces of the droplet. The jet diameter reduces as it is stretched and the solvent evaporates.
At a certain point, known as the whipping instability, the electrostatic repulsion overcomes the
viscoelastic forces and the jet flight path changes to an expanding helix causing further stretching
and drying of the fibre. In most cases this leads to dry non-woven nano-fibres depositing on the
collector [27].
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Figure 1. Schematic of a typical electrospinning setup and an SEM of electrospun nanofibres.

Many groups have studied the effects of electrospinning parameters on fibre characteristics with the
aim of optimising fibres for specific applications. Koski et al. studied the effect of molecular weight
and polymer concentration for poly(vinyl alcohol) (PVOH) and water systems. Electrospinning was
found to occur if the product of the intrinsic viscosity and polymer concentration was over a certain
threshold [28]. This supports the theory that the level of polymer chain entanglement dictates
whether electrospinning or electrospraying dominates. Son et al. studied the effect of various
solvents and polyelectrolytes on poly(ethylene oxide) (PEO) fibre diameter and morphology. A
nonlinear inverse relationship was found between the dielectric constant of the solvent and the fibre
diameter [29]. Theron et al., Cui et al., Thomson et al. and Coles et al. all carried out parameter



studies for various polymer/solvent systems [30-33]. While it is difficult to directly compare findings,
certain trends seem to be universal i.e. the qualitative relationships between polymer concentration
and resulting fibre diameter.

Building on from similar parameter studies empirical models have been created with good predictive
capabilities, albeit for specific polymer/solvent and equipment combinations. Yordem et al. and Gu
et al. used response surface methodology (RSM) to predict poly(acrylonitrile) (PAN) fibre diameters
based on chosen parameters. They found polymer concentration to have a significantly larger effect
than voltage and distance [34, 35]. These studies aim to optimise polymer/solvent systems which
were initially found using trial and error. These trial and error scoping exercises are time intensive,
costly and ideally could be replaced with generalised predictive empirical or analytical models.
Currently there is no way to predict the characteristics of new electrospun materials based on prior
knowledge of the polymer and solvent alone.

Accurate analytical modelling of fibre formation is complicated due to the nonlinear relationships in
electrohydrodynamics with solvent loss. In addition to this many material properties such as the
intrinsic viscosity and bulk/surface charge density need to be determined experimentally before
being incorporated into the models [32, 36-41]. Notwithstanding these difficulties, important models
have been validated that describe different portions of the jet for selected materials. Taylor
introduced the “Leaky Dielectric Model” in the 1960’s which describes how the surface charges of
the droplet are balanced with the tangential viscous forces of the liquid resulting is what is known as
the Taylor cone [42]. In the 1970’s Saville studied the stability of fluid cylinders in a longitudinal
electric field [43]. Reneker et al. created a mathematical model to explain the whipping instability
based on the rheological properties of the polymer solution and lateral perturbations [32, 36, 41,
44]. Hohman et al. developed mathematical models for three different instabilities and used the
models to create operating diagrams for when electrospinning occurs [37-39]. Feng created a 1D
model based on slender body theory to examine the role of nonlinear rheology on the electrically
stretched jet [40].

Despite the aforementioned empirical and analytical models there has been little work into
predictive methods that are generalised and do not require a priori measurements of the solution
properties. Helgeson and Wagner developed a generalised predictive model for fibre diameters
using dimensional analysis and measured parameters such as solution conductivity and dry fibre
diameter. The predictions worked well for electrospinning parameters resulting in smooth fibres but
deviated slightly for parameters where beading is known to occur [45].

Sarkar et al. and Klanlou et al. trained artificial neural networks (ANNs) to predict fibre diameters for
PEO and poly(methyl methacrylate) (PMMA) respectively [46, 47]. Sarkar was able to predict fibre
diameters over several datasets taken from literature; however this data contained a priori solution
measurements. Nasouri et al. used a response surface methodology (RSM) and artificial neural
networks (ANNs) to predict the highest production rate for PAN nanofibres within 4% of the
measured value [48]. In all cases where RSM and ANNs were compared the authors noted ANNs
were better able to predict electrospinning characteristics [47, 48].

In this study ANNs are used to create generalised empirical models for the prediction of electrospun
fibre diameters and morphology based on literature data. Specifically this includes function
approximation for fibre diameter prediction and classification to predict which category (fibre,



beaded fibre or no fibre) will prevail given a specific polymer/solvent combination. The primary aim
is to determine whether an ANN trained only with data containing a priori information can compete
with ANNSs trained with data containing solution measurements for diameter and morphology
prediction.

2. Process parameters:

Studies of the electrospinning process have shown that to understand the phenomenon a large
number of material and experimental parameters are required. Table 1 shows a list of parameters
that affect the electrospinning process, including a qualitative measure of their influence on the
fibre diameter and whether that parameter is known a priori, is an independent variable, or needs to
be measured. Where conflict exists between findings in the literature preference was given to
experimental findings over theoretical models.

Table 1. Electrospinning parameters including their influence of fibre diameter and morphology.

Parameter Impact inferred from Easily known
Parameter .
group literature or controlled

Molecular weight Strong [28, 30, 31, 49] v
Polydispersity Moderate [50-52] x

Intrinsic viscosity Strong [45, 51] x

Polymer Density Weak [32] v
Glass transition temperature | Unknown v

Dielectric constant Unknown -

Solubility parameters Strong [53] x

Density Weak [32] 4

Zero shear viscosity Moderate [45] v

Vapour pressure Moderate [32, 54] v

Solvent Dielectric constant Strong [29, 53] 4
Conductivity Strong [30, 33, 46, 55] v

Dipole moment Strong [54] v

Surface tension Weak [30, 32, 44] v
Concentration Strong [28, 30, 33, 34, 49, 51] v

Relaxation time Strong [32] x

Viscosity Strong [30, 32, 40, 41] x

Solution Vapour pressure Moderate [32] x
Conductivity Strong [30, 33, 46, 55] x

Surface tension Weak [30, 32, 44] x

Charge density Strong [30, 32, 38] x

Feed rate Weak [39, 45, 49, 56] v

Nozzle geometry Weak [56-58] v

Distance Weak [30, 33, 49, 56] 4
Experimental | Voltage Moderate [34, 35, 56, 59] 4
Atmospheric humidity Weak [32, 50, 60] x
Atmospheric temperature Weak [60] x

Collector geometry Moderate [56, 59] v




From the number of parameters shown in table 1, which is not exhaustive, it is clear why analytical
modelling of the electrospinning process is difficult. In contrast with this is the relative ease in which
electrospun fibres can be produced in the laboratory for a wide range of polymer/solvent systems.
Insight into this contradiction can be gained by focussing only on the few parameters which have the
strongest influence and by knowledge of the interconnected nature of the parameters.

The following sections will provide rationale for which parameters will be included in the training
data. An attempt will be made to suggest which ‘hard to measure’ parameters may be replaced with
parameters that are known a priori or are independently variable.

The method proposed in this paper is to find empirical models using statistical techniques.
Quantitative relationships between the solution properties and the polymer or solvent properties
will not be known in advance as it is hypothesised that the strongest interdependencies will be
encapsulated in the trained ANNs.

2.1 Polymer properties

Arguably, the most important polymer parameter affecting electrospinning is the molecular weight.
The length and size of the molecules directly influence the intrinsic viscosity of the polymer in
solution as described by the Mark-Houwink equation [28, 51]. The higher the molar mass the lower
the critical concentration needs to be before electrospinning can occur. The molecular weight has
also been shown to have power law relationships with fibre diameter. Due to the fact the molecular
weight is largely known for a given polymer and intrinsic viscosity is not, it is suggested that
molecular weight may be used to supplant viscosity measurements in an empirical predictive model.

The influence of polydispersity (or molecular weight distribution) on viscosity (and hence fibre
diameter) is moderate [50-52]. As this information is often not known it will not be directly included
in this work and will provide a known source of error.

In an attempt to provide the ANN with information about the polymer chain structure the inclusion
of glass transition temperature data will be assessed. The glass transition temperature for a given
polymer with a constant molecular weight is known to vary with the degree of branching [61]. The
glass transition temperature combined with the molecular weight and the polymer concentration
may help to improve the predicted level of polymer chain entanglement and thus solution viscosity.

To the authors’ knowledge the influence of the polymers dielectric constant in relation to
electrospinning has not been studied. The dielectric constant is a measure of the polymers ability to
polarise in the presence of an electric field. It is therefore also an indirect measure of the polymer
chains polarity. The polarity of a polymer strongly influences whether it is soluble in a solvent,
following the well-known rule of thumb ‘like dissolves like’. The effect of solubility on the critical
entanglement and fibre diameter is related to the hydrodynamic volume of the solute, which is
larger in good solvents [51]. Therefore the solubility of any polymer/solvent system should be
incorporated (directly or indirectly) into any predictive model. Polymer and solvent solubility
parameters, such as Hildebrand or Hansen solubility parameters could also be useful, but will not be
used in this study.

2.2 Solvent properties



The zero shear viscosity is known for most common solvents and together with the intrinsic viscosity
of the polymer and the polymer concentration contributes to the solution viscosity.

Solvent evaporation has an important influence on fibre morphology and is related to parameters
such as vapour pressure and boiling point.

The conductivity of a solution depends on complicated interactions between the solute and the
solvent. The presence of small quantities of impurities or electrolytes can have a significant effect on
conductivity. However, as this parameter needs to be measured the solvents conductivity will be
used to provide a predictor of solution conductivity.

The surface tension of the solvent is considered a critical parameter in many theoretical models,
however experimentally it has been found to have a weak influence on fibre diameter [30, 32], while
it may impact highly on fibre morphology [44]. For this reason the ANN will be trained with solvent
surface tension values verify their impact.

2.3 Solution properties

The most important solution property is concentration, as together with molecular weight it
determines whether or not there is a critical level of molecular entanglement for electrospinning to
occur [28, 30, 33, 35, 51]. The concentration also follows power law relationships with fibre
diameter and can easily be varied prior to electrospinning.

It is hypothesised that many of the other solution properties such as surface tension, vapour
pressure, dielectric constant, charge density, conductivity and viscosity can be derived (at least in
principle) from the polymer and solvent parameters.

2.4 Experimental parameters

The electrospinning voltage has a moderate effect on fibre diameter as it is responsible for the
drawing of the jet from the Taylor cone. In literature this is often reported as nominal electric field
strength in kV/cm, the distance referring to the gap between the nozzle tip and collector [39, 40, 46].

There are conflicting reports on the significance of flow rate on the fibre diameter in the literature.
Some report the flow rate is a parameter that can be used to control the final fibre diameter whilst
others report it has no statistical significance [30, 39, 46, 49, 62]. In the case of stable
electrospinning where the meniscus at the spinning tip maintains constant shape, the flow rate into
the Taylor cone must balance the rate of drawing from the jet. Over-feeding causes the meniscus to
swell and fall off the nozzle tip while lower flow rates result in starvation and stuttering of the jet.
Unstable flow is likely to produce a wider variation in fibre diameters, however, there is little
evidence to suggest a significant effect on the average fibre diameter [49, 63]. In this study the effect
of flow rate will be assumed to be weak and thus not essential for the predictive model. Experiments
have shown the nozzle diameter to have a statistically weak effect on fibre diameter and so will not
be included in this study [56-58].

Typically single needle electrospinning is carried out at room temperature at atmospheric pressure
and humidity. Whilst atmospheric conditions are known to contribute to fibre diameter and
morphology, unless these conditions vary significantly from standard atmospheric conditions, the



effects are minimal [32, 50, 60]. Additionally these parameters are often not quoted in the literature
and are difficult to control with most laboratory setups. For these reasons standard laboratory
atmospheric conditions will be assumed in this study.

2.5 Selected parameters

Table 2 summarises which parameters will be focussed on for the development of the predictive
models. All effort has been made to focus on parameters known to have strong or moderate impacts
on electrospinning characteristics, are known in advance or can be independently varied. Some
parameters thought to have weak impacts will be included for confirmation.

Table 2. Parameters selected to be trialled in the predictive models.

Parameter Impact inferred from Easily
group Parameter literature known or
controlled
Molecular weight, (My) Strong [28, 30, 31, 49] v
Polymer | Glass transition temperature, (°C) | Unknown v
Dielectric constant at 1 MHz Unknown -
Density, (g/ml) Weak [32] v
Zero shear viscosity, (cps) Moderate [45] v
Vapour pressure, (Torr) Moderate [32, 54] v
Dielectric constant Strong [29, 53] v
Solvent .
Dipole moment, (D) Strong [54] v
Boiling point, (°C) Unknown v
Conductivity, (S/cm) Strong [30, 33, 46, 55] 4
Surface tension, (mN/m) Weak [30, 32, 44] 4
Solution Concentration, (%wy) Strong [28, 30, 33, 34, 49, 51] v
Electric field strength, (kV/cm) Moderate [39, 40, 43, 46, 64] 4

3. Experimental data:

The data used to create the predictive models was gathered from literature as shown in Tables 3 and
4. Only data relating to single needle/capillary electrospinning of primary solvent systems was used.
Differences in needle geometry, flow rate, collector geometry and atmospheric conditions are not
taken into account and are a known source of error. Effort was made to avoid including tests which
involved the effects of electrolytes to change solution conductivity. Common solvent properties
were taken from literature [65].

Table 3. Data from literature used to train and test the ANN diameter prediction models.

Polymer Solvent Fibre diameter (nm) | Data points | Reference
PS DMF 292 - 4284 21 [55]
PVOH Water 192 -731 31 [33, 66]

PEO Water 80 - 540 18 [46]
PLA DCM 200 - 1600 16 [67]
Acetone 86 - 1560 6 [31]

Ethanol 130-1000 6 [68]

PVB Isopropanol 130-350 5 [68]
n-Butanol 110-130 3 [68]




PA 66 Formic acid 117 -198 38 [69]
PAN DMF 83-2782 51 [34]
DMF 143 - 1505 18 [47]

PMMA
Ethyl acetate 3840 - 3890 2 [70]
PVDF DMAA 400 1 [71]

Numerical data for fibre diameters were taken directly from the references. Where ranges or
histograms were given mid points or distribution peaks were used to approximate averages. Some of
the data included fibres with a variety of morphologies, including beads and ribbons; however the
majority were reported to be smooth fibres. Due to the wide variety of measurement methods [72],
and the relatively high standard deviations and skewed distributions typical in electrospun fibre mats
[63], the error associated with the measured average diameter data is expected to be high.

Table 4. Data from literature used to train and test the ANN classification models.

Polymer Solvent Data points | Reference
PS DMF 26 [55]
PVOH Water 34 [33, 66, 73]
Water 22 [46]
DMF 4 [29]
PEO Ethanol 4 [29]
Chloroform 4 [29]
PLA DCM 18 [67]
Acetone 6 [31]
Ethanol 6 [68]
PVB Isopropanol 6 [68]
n-Butanol 6 [68]
PA 6 Formic acid 21 [49]
PA 66 Formic acid 43 [69]
PAN DMF 51 [34, 35]

Three classes (fibres, beaded fibres and no fibres) are used to classify the data in Table 4. As it is
impossible to define exact boundaries between what constitutes a beaded fibre versus a smooth
fibre there is inherently some error to this data. This is due to the difficulties of examining a truly
representative quantity of fibre with the limited field of vision available when using a microscope.

The data taken from these sources is also biased as researchers are more likely to present conditions
leading to fibres rather than no fibres. To balance the bias extra data points will be generated for no
fibre conditions. This can easily be done by combining non-compatible polymer/solvent
combinations or by reducing the polymer concentration to zero.

The parameter data used to train the predictive models contains significant errors. A moderate
source of error is polymer concentration. Most authors state the percentage weight to volume (%wx)
which is calculated to one significant figure. Solutes are usually dissolved with continuous mixing,
allowing significant solvent loss, particularly if the solvent is volatile. The authors own experience
has shown concentration routinely varies up to 0.5% during this process. It is also common to start
with a high concentration master batch and dilute to lower concentrations compounding the error.



As concentration is expected to play a significant role in the determination of fibre diameter the
effects of these errors will be particularly high. The dielectric constant data also contains significant
error as it was not always possible to find values for polymers with the same molecular weight as
those used in the experiments. In these cases interpolation was used.

3.1 Data subsets

Within the data outlined above, subsets were also created to compare how data containing solution
measurements compared with the same data without the solution measurements. This will provide
an idea of how much accuracy is lost by using only a priori information.

Data subsets will also be created to compare individual polymers with the generalised case.

In order to train, test and validate the predictive models each data subset was randomly partitioned
into training, testing and validation sets with respective ratios of 70:20:10. The training data was
used to train the ANNs while the testing data was used to select the highest performing networks.
The validation data was used to assess how well the model generalises for new ‘unseen’
electrospinning conditions.

4, Predictive models:

Linear regression and ANNs were used to create the predictive models. The models were trained
using Palisade’s NeuralTools add in for Excel. Results from the highest performing models will be
discussed.

4.1 Probabilistic Neural Networks (PNNs) and Generalised Regression Neural Networks (GRNNs)

PNNs are used for classification while GRNNs are often used for function approximation and
prediction [74]. All PNNs and GRNNs consist of four layers as described below:

Input layer | Pattern layer , Class/Summation , Output layer
: (radial centres) layer :

Figure 2. Architecture for a generalised regression neural network (GRNN).

—  The input layer where the number of neurons equals the number of input parameters.



—  The pattern layer contains the radial centres for all the training points, it is also where the
smoothing is applied to the radial basis function to minimise the predicted error.

—  The third layer is different for PNNs and GRNNs. For PNNs it is a class layer containing one
neuron for each class. For GRNNs it consists of two neurons, one neuron is the numerator the
other is the denominator. The denominator adds up the weight values coming from each of
the hidden neurons. The numerator adds up the weight values multiplied by the actual target
value for each pattern neuron.

—  For PNNs the output is the probability for each class. For GRNNs the output neuron divides the
numerator by the denominator to produce the predicted value.

The PNN/GRNNs are trained by optimising the smoothing factor assigned to each training data
point’s radial basis function using the conjugate gradient descent method.

Unlike linear regression, ANNs can model highly nonlinear relationships. PNN/GRNNs train almost
instantly and they do not require decisions about the system topology i.e. number of neurons or
hidden layers. One disadvantage is that they do not extrapolate well outside the training data range.
To mitigate this disadvantage a wide range of polymers and solvents have been included in the
datasets.

4.2 Multi-Layer Feed-forward Neural Network (MLFN)

MLFN, also known as multilayer perceptrons, are also used for classification, function approximation
and prediction [75]. The MLFNs used in this work contained one hidden layer, while the numbers of
hidden neurons were varied to find an optimal topology (Figure 3):

Input layer . Hidden layer | Output layer

X1

X2 Y = f(Xg,..r Xn)

Xn

Py

Figure 3. Architecture of a multilayer neural network with one hidden layer.

— The input layer contains a number of neurons equal to the number of input parameters.
Weights are applied to the inputs as they are ‘feed forward’ to the hidden neurons.

— At the hidden layer the weighted values are fed into a transfer functions which are then
distributed to the output layer. Again weights are applied to the values feed to the output layer.



—  Weighted values from the hidden layer arrive at the output neuron and are combined before
entering another transfer function. The output of the transfer function is the output of the
network.

The MLFNs were trained by optimising the weights using the conjugate gradient descent
method[76]. Training was stopped when the reduction in error dropped below 1% in a 6 minute
period.

5. Results and discussion

For each data subset statistical methods were used to find empirical predictive models. For the
MFLNs optimal topologies were found by varying the number of neurons in the hidden layer
between two and six. Trials using more than six neurons showed no improvement due to over
fitting.

The results are split into two sections, spinning classification and fibre diameter prediction.
5.1 Spinning classification

The purpose of the classification model was to try and predict whether single needle electrospinning
will occur given a polymer/solvent/concentration combination and what morphology the fibre will
have. The classes are categorised as no fibres (electrospraying), beaded fibres and fibres. PNN’s and
MLFNs were trained using three sets of data; one larger set containing only easily known parameters
and two smaller sets which were used to compare the performance of ANNs trained with and
without solution measurements such as viscosity, surface tension and conductivity.

5.1.1 Classification without solution measurements

Initially all the parameters in table 2 were used to train 10 ANNs and a parameter impact analysis
was carried out for each. Each ANN was trained with randomly selected testing data in order to
mitigate data sensitivity on the impact analysis. The results were collated and parameters ranked in
order of impact. The findings largely agreed with literature and are shown in Table 4.

Table 4. Impact of parameters on classification from impact analysis.

Impact on
. Parameter
classification
Stron Polymer concentration, Solvent density, Solvent viscosity, Polymer
9 molecular weight
Polymer glass transition temperature, Electric field strength, Solvent
Moderate y g_ . P . &
boiling point, Polymer dielectric constant
Weak Solvent dielectric constant, Solvent vapour pressure, Solvent dipole
moment

To test the validity of the impact groupings shown above the ANNs were retrained without the
‘weak’ parameters. The performance of the ANNs trained with and without the weak parameters is
shown below. The results are from the highest performing ANNs which were PNNs. The results
(Table 5) show that removing the weak parameters slightly improved the performance of the PNN
(although this is within the sensitivity range of the dataset).



Table 5. Percentage of wrong predictions with and without weak parameters used in the data.

Data inputs % of wrong predictions
Training Testing Validation
All parameters 7.4% 17.5% 23.3%
Weak parameters removed 5.2% 14.0% 19.2%

A further breakdown of the classification results for the PNN without weak parameters is shown
below. Most of the error comes from trying to predict beaded fibres. This is likely to be because, in
the parameter space, beading occurs on a continuum between electrospraying (no fibres) and
smooth fibres.

Table 6. Breakdown of classification predictions.

Predicted classes Wrong predictions %
Beaded Fibres None

Training data
Beaded 35 3 2 12.5%
Fibres 4 126 0 3.1%
None 2 1 57 5.0%

Testing data
Beaded 5 3 0 37.5%
chlzz ‘;i_d Fibres 2 26 0 7.1%
None 1 2 18 14.3%

Validation data

Beaded 2 1 0 33.0%
Fibres 2 15 0 11.8%
None 2 1 8 27.0%

The results show that it is possible to predict with over 80% accuracy whether smooth fibre
electrospinning will occur, and if beading is present, using only readily available data known a priori.
This result is significant as it could reduce the amount of time spent doing scoping exercises for new
polymer/solvent systems.

In the next section a subset of data is used to test whether adding solution measurements such as
viscosity improves the performance of the model.

5.1.2 Classification with solution measurements

The following table summarises how the performance of the networks changes if solution viscosity,
conductivity and surface tension measurements were included.

Table 7. Percentage of wrong predictions with and without solution measurements.

% of wrong predictions
Training Testing Validation

Data inputs

With solution

0% 8.3% 7.7%
measurements




Without solution

12.4% 16.7% 15.4%
measurements

It can be seen that in this case there is a reduction in wrong predictions if solution measurements
are used, however this variation can easily be accounted for by the random selection of the testing
data, as shown by the sensitivity analysis (Figure 4). The sensitivity of this dataset is high due to the
low number of case points (134).
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25.0% —_—

20.0%

H
o
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N
.

10.0% -

% Wrong Predictions

5.0%

0.0%

10% 20% 30%
% Testing Cases

Figure 4. Sensitivity analysis showing the variation in prediction performance of ANN with solution measurements using
randomly selected testing datasets and different dataset sizes.

Overall it is found that the performance gained by adding solution measurements is minimal and
compromises the utility of a tool designed to reduce the time and cost of laboratory based
electrospinning scoping exercises.

5.2 Fibre diameter prediction

The next question that might be asked after “Will it spin?” is “What will the fibre diameter be?” This
section will present the results of ANNs used for fibre diameter prediction.

The performance measure used here will be the average absolute percentage error (average %
error) as it provides a more intuitive measure than the root-mean-square error (RMSE). Again the
results will be based on three data sets; one containing all the fibre diameter cases and two smaller
sets which were used to compare the performance of ANNs trained with and without solution
measurements.

In all cases the ANNs significantly outperformed linear regression validating the claim that
electrospinning phenomena is highly nonlinear relative to common input parameters.

5.2.1 Diameter predictions without solution measurements



The predictive model in this section was trained using polymer, solvent and experimental setup data
with no knowledge of solution properties. Parameter impact analysis was used to determine the
significance of the parameters in Table 2. The results are summarised below.

Table 8. Impact of parameters on fibre diameter from impact analysis.

Impact on diameter

L Parameter
prediction

Polymer concentration, Solvent viscosity, Polymer glass transition
temperature, Polymer dielectric constant, Polymer molecular weight
Moderate Electric field strength, Solvent density, Solvent boiling point

Solvent vapour pressure, Solvent surface tension, Solvent dielectric
constant, Solvent conductivity, Solvent dipole moment

Strong

Weak

Interesting to note is the strong impact the polymer glass transition temperature and dielectric
constant have on diameter prediction. The physical relationship between the dielectric constant and
fibre diameter is unknown, however it is unlikely to be related to solubility as the solvent dielectric
constant has negligible impact.

A comparison was made for networks trained with and without the weak parameters confirming the
network could perform equally well without them. Figure 5 below shows the predicted versus
measured fibre diameters for the best performing ANN (a GRNN without the weak parameters). The
training, testing and validation data all show a high level of correlation over a wide range of
diameters (note the logarithmic scale). The average % error for the training, testing and validation
sets are 19.9%, 35.0% and 22.3% respectively which is comparable to the estimated errors of the
input data.
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Figure 5. Predicted versus measured diameter for a GRNN trained using data for 13 different polymer/solvent
combinations from over 20 independent studies.

Despite the exclusion of many parameters such as atmospheric conditions, needle diameter, flow
rate, surface tension, vapour pressure, conductivity, collector geometry and more, it is striking to
note that the average % error for the validation data is only 22.3% or a RMSE of 186.8 nm. This
combined with the knowledge that the diameter measurements came from over twenty different
studies all using different measurement methods shows that ANNs are a robust method for
electrospinning predictions.

5.2.2 Diameter predictions using solution measurement data

The following figures show the predicted versus measured diameters for ANNs trained with a
smaller dataset, with and without solution measurements such as viscosity, surface tension and
conductivity.
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Figure 6. Predicted versus measured fibre diameters for ANNs trained with (top) and without (below) solution
measurements.

The average % error of the validation data with and without solution measurements is 22.0% and
22.7% respectively. These results validate the hypothesis that good predictions can be made without
the need for solution measurements using only easily available prior knowledge.

6. Conclusion

The purpose of this work was to determine if ANNs could provide a generalised method of predicting
electrospun fibre characteristics using only easily available, prior knowledge of the polymer, solvent,
concentration and electric field strength. PNNs and GRNNs were found to outperform MLFNs and
linear regression.

Trained PNNs were found to be effective at classifying fibre morphology and spin-ability with the
validation data making over 80% correct predictions. Trained GRNNs were also effective at
predicting fibre diameters with average % error at 22.3% for the validation data.

The inclusion of solution measurements was found to have a minimal impact on prediction
performance. The parameter impact analyses for classification and diameter prediction is the largest
guantitative study of this type known to the authors. The analysis helped to focus on which
parameters influence important electrospinning characteristics, namely fibre morphology and



diameter. In addition to this the success of the model goes someway to validate the exclusion of
parameters such as feed rate and nozzle diameter.

The development of these tools will allow researchers to narrow down polymer, solvent and
concentration combinations prior to carrying out time consuming scoping exercises. Further
development of the tools by increasing the dataset size and reducing the errors associated with the
input data may also allow for direct selection of optimised parameters for a given purpose. An
interesting extension of this work would be the inclusion of fibre diameter standard deviation as a
dependent value.

This paper used data from single needle setups with primary solvent systems and therefore cannot
be used to predict needleless electrospinning or multiple solvent systems. Adapting the method for
binary or ternary solvents will require further research.
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