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Abstract
Understanding which peptides and proteins have the potential to undergo amyloid formation

and what driving forces are responsible for amyloid-like fiber formation and stabilization

remains limited. This is mainly because proteins that can undergo structural changes,

which lead to amyloid formation, are quite diverse and share no obvious sequence or struc-

tural homology, despite the structural similarity found in the fibrils. To address these issues,

a novel approach based on recursive feature selection and feed-forward neural networks

was undertaken to identify key features highly correlated with the self-assembly problem.

This approach allowed the identification of seven physicochemical and biochemical proper-

ties of the amino acids highly associated with the self-assembly of peptides and proteins

into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet

from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based

hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for pep-

tides extrapolated in 0 M urea). Moreover, these features enabled the development of a

new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capa-

ble of accurately and reliably predicting the amyloidogenic propensity from the polypeptide

sequence alone with a prediction accuracy of 84.9 % against an external validation dataset

of sequences with experimental in vitro, evidence of amyloid formation.

Introduction
Amyloid fiber formation has long been associated with several debilitating diseases and in 2014
there were approximately fifty reported human diseases linked to amyloid [1]. These include
localized amyloidosis such as pancreatic amyloidosis, atrial amyloidosis of the heart, Alzhei-
mer’s disease, Parkinson’s disease, Huntington’s disease and Creutzfeldt-Jakob’s disease [2,3],
as well as systemic diseases such as familial amyloid polyneuropathy or immunoglobulin light-
chain amyloidosis [3,4]. Amyloid diseases normally arise due to failures in the dedicated
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aggregation prevention quality control systems, which exist in vivo. Such systems range from
simple protein sequence determinants that evolved over generations, to more complex cellular
machinery, such as that involved in heat-shock response, unfolded-protein response, endoplas-
mic-reticulum associated degradation and autophagy, among others [5].

Over the last two decades several publications have shown that amyloid could be produced
through “controlled” fibrillization and with specific biological functions instead of an off-path-
way product of protein folding that leads to disease [6]. Examples include the bacterial pili [7],
curly fibrils expressed in Escherichia coli and Salmonella (involved in surface colonization and
biofilm formation) [8], human pigment binding templates [9] and regulation of the expression
reading-through stop-codon in yeast (Saccharomyces cerevisiae, Sup35p) [6]. Amyloid formation
is also involved in providing a storage mechanism for several hormones in secretory granules
[10] and structural and protective functions in the eggshell of many fish and insects [11–13].

Protein aggregation and subsequent assembly into amyloid like structures is commonly
seen as a major problem in large scale expression of peptides and proteins of potential interest
within the field of biotechnology. Usually these proteins are recombinant polypeptides from
mammalian and viral heterologous genes, which tend to adopt irregular or incomplete folds
when overexpressed in prokaryotic hosts. This frequently results in the accumulation of the
protein as insoluble aggregates within inclusion bodies, reducing the yield of extraction and
purification, and ultimately, the economic viability of the purification process [14]. In contrast,
recent work has exploited protein aggregation into amyloid fibrils and subsequent accumula-
tion in inclusion bodies with the purpose of improving protein expression. This is based on the
assumption that protein storage in inclusion bodies reduces the protein concentration in the
cytoplasm, isolating the proteins from the cytoplasmic content and thus protecting them
against proteolysis and other degradation pathways [15].

In the area of material science, amyloid fibrils are seen as an important source of innovation,
since they may provide insights into a wide range of properties that could be explored in the
design of new nanomaterials. The ability of amyloid to self-assemble or self-replicate into well-
defined structures, their nanoscale dimensions, the diversity of associated protein sequences,
the ease of production and low cost make them key systems for investigation [5,13,16]. Indeed
amyloid fiber formation has already been used as a “bottom-up” approach for the fabrication
of a wide range of nanostructured materials, from isolated fibers for the construction of syn-
thetic monomolecular wires [12] and biotemplated metal wires to be used in nanoscale electri-
cal circuitry [17], to ordered amyloid monolayers for the construction of templates for
mineralization and directed crystal growth, or scaffolds for drug delivery and tissue engineering
applications [12,18].

Amyloid fibers are unbranched filamentous protein aggregates with an indefinite length
and a diameter that can range from 6 to 12 nm [19]. They are commonly formed by polypep-
tide chains arranged in a characteristic cross-β conformation with strands perpendicularly ori-
ented to the fiber long axis. This structure results in a series of stacked β-chains that propagate
along the fiber [19–21]. Polypeptides within the amyloid fibers are thus arranged in a highly
ordered fashion [22]. Despite this structural similarity [23], proteins that can undergo struc-
tural changes that ultimately lead to amyloid formation are quite diverse, sharing no obvious
sequential or structural homology [24]. Furthermore, a number of researchers have suggested
that the ability to form amyloid fibrils is an intrinsic property of the polypeptide backbone
[7,24–28]. In fact, it has been shown that many proteins under the appropriate environmental
conditions (concentration, ionic strength, temperature, etc.), can aggregate into highly ordered
fibrillar structures [7,24,28] forming the tight packed steric zipper that constitutes the core of
the protofilament [29]. Under physiological conditions, however, even at high concentrations,
the majority of soluble proteins will remain in solution, while hydrophobic proteins usually
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tend to form amorphous aggregates [29] and only a relatively small number of proteins actually
undergo amyloid fiber formation [7]. This degree of specificity points towards protein
sequence details and native-state integrity or structural stability as major determinants of how
easily proteins are able to adopt an amyloid structure under specific environmental conditions
[30–32].

Due to the relevance of amyloid in such diverse areas of study as biochemistry, medicine,
microbiology, biotechnology and materials science, the knowledge of which and how peptides
and proteins undergo amyloid formation is of paramount importance. Experimental identifica-
tion of amyloidogenic proteins in vitro is extremely laborious and time-consuming. Hence,
computational approaches that can accurately and reliably predict the amyloidogenic propen-
sity of peptides and assess their amyloidogenic potential based on the sequence information
alone are extremely valuable. Additionally, such work can help to elucidate key driving forces
responsible for amyloid-like fiber formation and stabilization and provide new insights into
the self-assembly problem.

Over the last decade, several computational algorithms have been developed [29,33–38].
These follow two major approaches in order to predict the aggregation propensity of proteins
into amyloid fibrils and to identify within the sequence, regions more prone to form fibrils
[5,39]. Computational algorithms can thus be classified as: i) empirical or sequence based
methods that rely on physicochemical and biochemical properties of the amino acids [39], or
ii) structure-based methods that normally combine the sequence based methods with three
dimensional structural information gathered from atomistic simulation of the protein seg-
ments with the crystallographic structure of short fibril forming peptides [39].

Herein, we report the development of a new phenomenological amyloidogenicity propen-
sity predictor based on a machine learning approach through recursive feature selection and
feed-forward neural networks, taking advantage of all newly published sequences with experi-
mental, in vitro, evidence of amyloid formation. This approach relies on the assumptions that:
i) small peptide stretches within an amyloidogenic protein can act as amyloid forming facilita-
tors that will eventually direct the refolding of the protein along a path involving the formation
of an energetically favourable amyloid conformation [40,41] and ii) the minimum length of
these facilitator sequences or hot spots comprises six amino acids, given that in the literature
there are a large number of hexapeptides with in vitro experimental evidence of amyloid forma-
tion. These are reflected in the in silico experimental procedure undertaken, where recursive
feature selection and neural network training was performed through a dataset of six amino
acid sequences while the external validation of the trained neural network was performed with
a dataset of peptides and proteins with lengths greater than six amino acids, although using a
sliding window of six amino acids.

Recursive feature selection plays a fundamental role, by relieving the artificial neural net-
works learning algorithm from the “curse of dimensionality” [42]. This diminishes the number
of features composing the input vectors and thus improves its ability to learn. For our selected
predictor feature selection identified seven key physicochemical and biochemical features of
the amino acids, which are highly related to the self-assembly of peptides and proteins into
amyloid fibers. These included the normalized frequency of β-sheet [43], normalized frequency
of β-sheet from a dataset of 44 sample proteins named LG [44], first order neural network neu-
ronal weights for β-sheet at position 1 of a 13 amino acids length window [45], isoelectric point
[46], atom-based hydrophobic moment [47], helix termination parameter or theoretical esti-
mate of helix-coil stability parameter for the natural occurring amino acids when found at posi-
tion j+1 of the C-terminal region of the helix [48] and ΔG° values for peptides extrapolated to 0
M urea from a two-state model derived from urea denaturation curves that correlate the disso-
ciation constants of peptides containing one of 20 natural occurring amino acids in a guest
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position, with the urea concentration [49]. All of these factors relate to biophysical properties
which have been consistently pointed out in the literature as fundamental factors in the molec-
ular mechanism of amyloid formation and are proved here to have a high correlation with the
ability of a sequence to undergo amyloid formation [7,37,50–53].

The developed predictor based on these physicochemical and biochemical characteristics of
the amino acids proved able to accurately and reliably predict amyloidogenic propensity from
the polypeptide sequence alone and identify hot spots within these sequences. Comparison
with other published amyloidogenic propensity prediction methods (Aggrescan [34],
AMYLPRED [37], AMYLPRED2 [54], FoldAmyloid [38], MetAmyl [55], Pafig [39],Pasta [35],
Pasta2 [56], Tango [33], Waltz [29] and Zyggregator [36]) showed a high accuracy value based
on the classification of the training dataset (78.0%) and was only outperformed by MetAmyl
(79.1%). However, it obtained the highest accuracy value based on the classification of an exter-
nal validation sequence dataset (84.9%), outperforming all methods, including MetAmyl
(83.4%).

Results

Orthogonal vectors based artificial neural networks
In order to establish an internal reference predictor based on amino acids present within the
sequences, and their relative order, several artificial neural networks were trained based on
input vectors computed through an orthogonal encoding of the amino acids present. The neu-
ral network with the highest accuracy was selected and showed an overall prediction accuracy
of 82.8% in the classification of the training sequence dataset, with a sensitivity of 83.0%, a
specificity of 82.6%, a positive predictive value of 80.0% and a negative predictive value of
85.3%. Classification of the external validation sequences dataset rendered an overall accuracy
of 73.1%, a sensitivity of 90.6%, and a specificity of 31.0%, with a positive predictive value of
75.9%, and a negative predictive value of 57.9%.

Physicochemical and biochemical based artificial neural networks
A physicochemical and biochemical description of the polypeptide sequences was created
through encoding the sequence based on the APDBase [57] and AAindex [58,59] databases of
physicochemical and biochemical properties of the amino acids. The computed features vectors
were then submitted to recursive feature selection. This resulted in 96, 10, 13, 548 and 810
selected features for the input vectors computed through the APDBase encoding, and 109, 14,
334, 100 and 969 selected features for the input vectors computed through the AAindex encod-
ing, for the internal classifiers of random forests (rf), naïve bayes (nb), support vector machines
(svm), shrinkage discriminant analysis (sda) and sparse partial least squares (spls),
respectively.

Artificial neural networks were trained using newly computed input vectors based on these
selected features. For neural networks trained with feature vectors computed through APDBase
encoding, the values obtained for the overall accuracy range between 76.7% (NN_APD_sda) to
86.8% (NN_APD_svm), for sensitivity from 73.5% (NN_APD_sda) to 87.9% (NN_APD_svm)
and specificity from 77.7% (NN_APD_nb) to 86.5% (NN_APD_svm) (Table 1). For neural
networks trained with feature vectors computed through AAindex encoding, the overall accu-
racy values obtained range from 78.0% (NN_AA_rf) to 91.9% (NN_AA_sda), sensitivity from
80.1% (NN_AA_svm) to 87.4% (NN_AA_nb) and specificity from 70.2% (NN_AA_nb) to
95.6% (NN_AA_sda) (Table 1).

Classification of the external validation sequences dataset for neural networks trained with
the selected features vectors computed through the APDBase encoding, showed high overall
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accuracy for 4 of the 5 neural networks selected. The most effective neural network had an
accuracy of 83.0% (NN_APD_rf), a sensitivity of 89.4% and a specificity of 67.8%. While for
neural networks trained with the selected features vectors computed through the AAindex
encoding, only 2 of the 5 neural networks selected showed high overall accuracy. The best accu-
racy shown was 84.9% (NN_AA_nb) with a sensitivity of 87.4% and a specificity of 78.9%, and
the second best was 82.2% (NN_AA_rf), with a sensitivity of 90.8% and a specificity of 62.6%
(Table 2).

Analysis of the amyloidogenicity propensity prediction selected artificial
neural network
The artificial neural network based on the description of the polypeptide sequences through
the physicochemical and biochemical properties of the amino acids that showed the highest
overall accuracy in the classification of the external validation sequences dataset (NN_AA_nb)
was selected for further analysis, and will hereafter be referred as APPNN, standing for Amy-
loidogenicity Propensity Prediction Neural Network. This neural network was trained with a
small subset of 14 features selected from the input vectors computed through the AAindex
database of physicochemical and biochemical properties of the amino acids, by the Naïve

Table 1. Training sequences dataset classification results (%) for the selected neural networks obtained through APDBase or AAindex encoding,
after feature selection with one of the internal classifiers, rf, nb, svm, sda and spls. Where SI is the sensitivity, SP the specificity, PPV the positive pre-
dictive value, NPV the negative predictive value and AC the overall accuracy, averaged after 10-fold stratified resampling.

SI SP PPV NPV AC

APDBase NN_APD_rf 82.6 85.0 82.3 85.1 83.8

NN_APD_nb 77.1 77.7 74.1 80.3 77.4

NN_APD_svm 87.9 86.5 84.3 89.0 86.8

NN_APD_sda 73.5 80.0 75.4 78.9 76.7

NN_APD_spls 80.4 79.1 76.5 82.4 79.7

AAindex NN_AA_rf 84.0 86.4 83.9 86.4 85.1

NN_AA_nb 87.4 70.2 71.2 86.9 78.0

NN_AA_svm 80.1 76.9 75.1 82.8 78.7

NN_AA_sda 86.8 95.6 94.9 90.3 91.9

NN_AA_spls 81.0 83.3 80.1 84.2 81.7

doi:10.1371/journal.pone.0134679.t001

Table 2. External validation sequences dataset classification results (%) for the selected neural networks obtained through APDBase and AAindex
encoding, after feature selection with one of the internal classifiers, rf, nb, svm, sda and spls. Where SI is the sensitivity, SP the specificity, PPV the
positive predictive value, NPV the negative predictive value and AC the overall accuracy, averaged after 10-fold stratified resampling.

SI SP PPV NPV AC

APDBase NN_APD_rf 89.4 67.8 86.8 73.5 83.0

NN_APD_nb 78.7 82.5 91.3 62.4 79.9

NN_APD_svm 91.8 40.1 78.7 68.2 76.6

NN_APD_sda 91.9 16.3 72.7 46.2 69.8

NN_APD_spls 94.1 17.9 73.1 57.6 71.4

AAindex NN_AA_rf 90.8 62.6 85.3 73.4 82.2

NN_AA_nb 87.4 78.9 90.8 72.3 84.9

NN_AA_svm 95.6 12.6 72.4 51.0 71.2

NN_AA_sda 93.5 15.7 72.6 52.1 70.4

NN_AA_spls 93.9 12.5 72.1 48.9 70.0

doi:10.1371/journal.pone.0134679.t002
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Bayes classifier embedded within the recursive feature selection algorithm. Identification of
these features revealed that three consisted of summation properties of the amino acid of the
Normalized frequency of β-sheet [43], the Normalized frequency of β-sheet from LG [44] and
the Weights for β-sheet at the window position of 1 [45]. Another two consisted of the values
of standard deviation and range of the Isoelectric Point [46], while a further nine consisted of
the standard deviation, range and mean absolute deviation of the Atom-based hydrophobic
moment [47], the Helix termination parameter at position j+1 [48] and the ΔG° values for the
peptides extrapolated to 0 M urea [49].

A comparative analysis between the APPNN and several published prediction methods
(Aggrescan, AMYLPRED, AMYLPRED2, FoldAmyloid, MetAmyl, Pafig, Pasta, Pasta2, Tango,
Waltz and Zyggregator), was undertaken for the classification of both training and external val-
idation sequences datasets to assess if differences existed and if so if they were statistically sig-
nificant. Prediction results were used, after bootstrapping, to compute the values of sensitivity,
specificity, positive predictive value, negative predictive value and accuracy, with correspond-
ing 95% confidence intervals; and after 10-fold stratified resampling, to determine if the accu-
racy values obtained for all predictors were sampled from populations with identical
distributions (case in which all differences between groups are due to random sampling)
through Friedman’s test.

The results obtained for the classification of the training sequences dataset (Table 3), shown
for APPNN, high values of specificity (70.2%) and positive prediction value (71.1%), although
these were surpassed by several other methods. In contrast, APPNN showed the highest values
for sensitivity (87.4%) and negative predictive value (86.9%). APPNN also shown a high accu-
racy value (78.0%), only outperformed by the Metamyl predictor (79.1%). Friedman’s test
showed differences between predictors’ accuracy to be statistically significant (chi-
squared = 62.7812, df = 11, p = 2.81E-09) with pairwise comparisons identifying key differ-
ences between the APPNN and the methods Aggrescan, Foldamyloid and Tango and Zyggre-
gator (p< 0.05).

The results obtained for classification of the external validation sequences dataset (Table 4),
shown APPNN had high values of sensitivity (87.4%), specificity (78.9%), positive predictive
value (90.9%) and negative predictive value (72.3%). However it was only for the accuracy
value (84.9%) that APPNN was able to outperform all other prediction methods. Friedman’s
test again showed that the differences between predictors’ accuracy was statistically significant
(chi-squared = 78.1777, df = 11, p-value = 3.318E-12) with pairwise comparison confirming
superior performance of APPNN compared to Pasta, Pasta2, Tango, Waltz and Zyggregator
(p< 0.05).

Discussion

Orthogonal based artificial neural networks
The orthogonal encoding of the amino acids, due to its simplicity, has been used in several sec-
ondary structure prediction algorithms [45,60,61], even if only to establish an internal refer-
ence to compare to the developed predictor and determine if the features included are more
informative than merely, the type of amino acids present within the sequence and their relative
position [62,63]. With this in mind, several artificial neural networks have been trained, based
on input vectors computed through the orthogonal encoding of amino acids, from which, the
neural network with the best overall accuracy and lowest accuracy differences between training,
testing and validation sub-dataset classifications was selected, as described in the methods sec-
tion. This neural network showed relatively high values of sensitivity (83.0%), specificity
(82.6%), positive and negative predictive values (80.0% and 85.3% respectively) and overall
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accuracy (82.8%) in the classification of the sequences present in the training sequences data-
set. However, the results obtained for the classification of the sequences present in the external
validation sequences dataset were, except for sensitivity (90.6%), considerably lower for speci-
ficity (31.0%), positive and negative predictive values (75.9% and 57.9% respectively) and over-
all accuracy (73.1%). These results could be an indication that the rules developed by the
selected neural network are not easily generalized across more diverse sequences or that the
relationships established between the features present in the input vectors and expected out-
comes do not entirely describe the amyloid forming propensity problem when transposed to
peptide and protein sequences with lengths greater than six amino acids. It is interesting how-
ever, that this encoding method allowed amyloidogenicity propensity prediction with relatively
high accuracy (73.1%), considering the simplicity of the information provided to the learning
algorithm.

Physicochemical and biochemical based neural networks
The physicochemical and biochemical description of the polypeptide sequences was
obtained through the encoding sequence based on the APDBase and AAindex databases of
physicochemical and biochemical properties of the amino acids. After which, feature selec-
tion was performed with the purpose of reducing the dimensionality of the computed input
vectors, enabling the smallest subset of features to be chosen while providing the highest

Table 3. Results obtained for the classification of the training sequences dataset for each predictor, where TP corresponds to the number of true
positives, TN to the number of true negatives, FP to the number of false positives and FN to the number of false negatives. The values of sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy, with corresponding 95% confidence intervals, were obtained using
bootstrap replicates. The p-value corresponds to the p-value obtained for the comparison of the accuracy values between the APPNN and each given other
predictors using the Wilcoxon-Nemenyi-McDonald-Thompson post-hoc test performed after 10-fold stratified resampling.

TP TN FP FN Sensitivity [95%
CI]

Specificity [95%
CI]

PPV [95% CI] NPV [95% CI] Accuracy [95%
CI]

p-value

APPNN 118 113 48 17 87.4 [80.6, 92.0] 70.2 [62.7, 77.0] 71.1 [63.7,
77.7]

86.9 [79.9,
91.9]

78.0 [72.6, 82.4] -

Aggrescan 77 111 50 58 57.0 [48.5, 65.0] 68.9 [60.8, 75.6] 60.6 [51.6,
68.4]

65.7 [58.1,
73.0]

63.5 [57.1, 68.2] 0.03

Amylpred 68 141 20 67 50.4 [42.0, 58.7] 87.6 [81.4, 91.8] 77.3 [67.9,
84.7]

67.8 [61.4,
74.6]

70.6 [64.5, 75.3] 0.52

Amylpred2 77 141 20 58 57.0 [48.3, 64.7] 87.6 [81.2, 91.9] 79.4 [70.2,
86.3]

70.9 [63.9,
77.0]

73.6 [67.6, 78.0] 1.00

Foldamyloid 114 55 106 21 84.4 [77.7, 89.8] 34.2 [26.9, 42.1] 51.8 [44.6,
58.3]

72.4 [61.3,
81.8]

57.1 [50.7, 62.4] 1.48E-
04

Metamyl 104 130 31 31 77.0 [69.7, 83.6] 80.7 [74.0, 86.3] 77.0 [69.4,
83.6]

80.7 [74.5,
86.4]

79.1 [74.0, 83.1] 1.00

Pafig 115 94 67 20 85.2 [78.5, 90.4] 58.4 [50.4, 65.7] 63.2 [55.8,
69.6]

82.5 [74.8,
88.4]

70.6 [64.7, 75.0] 0.49

Pasta 84 130 31 51 62.2 [53.8, 70.2] 80.7 [73.8, 86.6] 73.0 [63.4,
80.2]

71.8 [64.9,
78.0]

72.3 [66.2, 76.7] 0.94

Pasta2 82 127 34 53 60.7 [52.1, 68.6] 78.9 [71.9, 84.6] 70.7 [61.0,
78.0]

70.6 [63.5,
76.8]

70.6 [64.3, 75.0] 0.54

Tango 6 158 3 129 4.4 [1.5, 9.1] 98.1 [94.8, 99.4] 66.7 [20.0,
92.9]

55.1 [49.3,
60.9]

55.4 [49.3, 60.8] 3.08E-
05

Waltz 91 129 32 44 67.4 [59.6, 75.0] 80.1 [73.4, 85.5] 74.0 [65.9,
81.1]

74.6 [67.8,
81.3]

74.3 [68.9, 78.7] 0.96

Zyggregator 100 91 70 35 74.1 [65.6, 79.8] 56.5 [48.4, 63.6] 58.8 [51.3,
65.8]

72.2 [63.6,
79.4]

64.5 [58.4, 69.3] 0.01

doi:10.1371/journal.pone.0134679.t003
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possible generalization, so improving the neural networks’ learning performance. In the
present study, feature selection was performed using three wrapper methods of recursive fea-
ture selection, caret, Boruta, and penalizedSVM with five different classifiers (spls, sda, nb
for caret, rf for Boruta and svm for penalizedSVM). This resulted in the selection of 96, 10,
13, 548 and 810 features for the input vectors computed through the APDBase encoding
database and 109, 14, 334, 100 and 969 features for the input vectors computed through the
AAindex encoding dataset for rf, nb, svm, sda and spls, respectively. For each subset of
selected features, new input vectors were created and used in the training of several neural
networks from which 5 neural networks per encoding dataset were selected. The selected
neural networks showed high values of sensitivity (73.5% to 87.9%), specificity (70.2% to
95.6%), positive and negative predictive values (71.2% to 94.9% and 78.9% to 90.3% respec-
tively) and overall accuracy (76.7% to 91.9%) in the classification of the sequences present in
the training sequences dataset. However, in the classification of the sequences present in the
external validation sequences dataset, only three of the selected neural networks
(NN_APD_rf, NN_AA_rf and NN_AA_nb in Table 2) for both encoding schemes, showed
high values of sensitivity (89.4%, 90.8% and 87.4%), specificity (67.8%, 62.6% and 78.9%),
positive (86.8%, 85.3% and 90.8%) and negative (73.5%, 73.4% and 72.3%) predictive values
and overall accuracy (82.2% and 84.9%), suggesting that svm, sda and spls were not the most
appropriate classifier methods for this specific type of classification problem in contrast to rf
and nb classifiers.

Table 4. Results obtained for the classification of the external validation sequence dataset for each predictor, where TP corresponds to the num-
ber of true positives, TN to the number of true negatives, FP to the number of false positives and FN to the number of false negatives. The values of
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy, with corresponding 95% confidence intervals, were
obtained using bootstrap replicates. The p-value corresponds to the p-value obtained for the comparison of the accuracy values between the APPNN and
each given predictor using the Wilcoxon-Nemenyi-McDonald-Thompson post-hoc test performed after 10-fold stratified resampling.

TP TN FP FN Sensitivity [95%
CI]

Specificity [95%
CI]

PPV [95% CI] NPV [95% CI] Accuracy [95%
CI]

p-value

APPNN 298 112 30 43 87.4 [83.4, 90.6] 78.9 [70.9, 85.0] 90.9 [87.2,
93.6]

72.3 [64.9,
78.8]

84.9 [81.2, 87.6] -

Aggrescan 284 97 45 57 83.3 [78.9, 87.0] 68.3 [59.7, 75.7] 86.3 [82.1,
89.7]

63.0 [55.1,
70.6]

78.9 [74.9, 82.4] 0.90

Amylpred 248 120 22 93 72.7 [68.1, 77.3] 84.5 [77.9, 89.9] 91.9 [88.2,
94.7]

56.3 [49.3,
63.0]

76.2 [72.3, 79.7] 0.51

Amylpred2 271 122 20 70 79.5 [75.3, 83.7] 85.9 [79.6, 90.9] 93.1 [89.9,
95.7]

63.5 [56.4,
70.3]

81.4 [77.6, 84.7] 1.00

Foldamyloid 306 74 68 35 89.7 [86.3, 92.5] 52.1 [43.9, 60.0] 81.8 [77.6,
85.5]

67.9 [58.7,
76.2]

78.7 [74.9, 82.0] 0.73

Metamyl 296 107 35 45 86.8 [82.9, 90.1] 75.4 [67.9, 81.7] 89.4 [85.5,
92.4]

70.4 [62.5,
77.2]

83.4 [79.5, 86.3] 1.00

Pafig 331 68 74 10 97.1 [94.8, 98.6] 47.9 [40.2, 56.3] 81.7 [77.3,
85.3]

87.2 [78.4,
93.8]

82.6 [78.7, 85.7] 1.00

Pasta 224 124 18 117 65.7 [60.8, 70.6] 87.3 [81.1, 91.9] 92.6 [88.6,
95.3]

51.5 [45.2,
57.9]

72.0 [67.7, 75.6] 0.03

Pasta2 208 129 13 133 61.0 [55.7, 65.7] 90.8 [85.1, 94.7] 94.1 [90.5,
96.8]

49.2 [43.2,
55.6]

69.8 [65.4, 73.5] 2.32E-
03

Tango 191 132 10 150 56.0 [50.4, 60.9] 93.0 [87.7, 96.5] 95.0 [91.1,
97.5]

46.8 [41.1,
53.0]

66.9 [62.3, 70.8] 4.07E-
05

Waltz 168 132 10 173 49.3 [43.8, 54.5] 93.0 [87.7, 96.5] 94.4 [90.2,
97.1]

43.3 [37.7,
49.2]

62.1 [57.3, 66.0] 2.42E-
07

Zyggregator 228 116 26 113 66.9 [62.0, 72.0] 81.7 [74.8, 87.5] 89.8 [85.4,
93.0]

50.7 [44.4,
57.5]

71.2 [67.2, 75.4] 0.01

doi:10.1371/journal.pone.0134679.t004
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Analysis of the amyloidogenicity propensity prediction of the selected
artificial neural network
The artificial neural network based on the description of the polypeptide sequences through
the physicochemical and biochemical properties of the amino acids that showed the highest
overall accuracy, and therefore, the most successful predictor developed, was selected for fur-
ther study (NN_AA_nb). This neural network, henceforth referred as APPNN, showed values
of sensitivity, specificity, positive predictive value, negative predictive value and overall accu-
racy of 87.4%, 70.2%, 71.1%, 86.9% and 78.0%, respectively, when classifying the sequences
present in the training sequences dataset and 87.4%, 78.9%, 90.9%, 72.3% and 84.9%, respec-
tively, when classifying sequences present in the external validation sequences dataset.

This newly developed predictor was generated from training with input vectors computed
through the AAindex database of physicochemical and biochemical properties of amino acids,
after recursive feature selection with the internal classifier Naïve Bayes, where a subset of 14
features was selected. These were the summation of the values of the Normalized frequency of
β-sheet [43], the Normalized frequency of β-sheet from a dataset of 44 sample proteins named
LG [44], the weights of a first order neural network neuronal for β-sheet at the window position
of 1 [45], the standard deviation of the isoelectric point [46], and standard deviation, range and
mean absolute deviation of the atom-based hydrophobic moment [47], the helix termination
parameter or theoretical estimate of helix-coil stability parameter for the natural occurring
amino acids when found at position j+1 of the C-terminal region of the helix [48], and the ΔG°
values, which provides a measure of structural stability, for the peptides extrapolated to 0 M of
urea from a two-state model derived from urea denaturation curves that correlated the dissoci-
ation constants of the peptides containing one of the 20 natural occurring amino acids in a
guest position, with the urea concentration [49]. Interestingly the amino acids’ propensity to
form β-sheet and α-helices and the hydrophobic moment have been consistently pointed out
in the literature as fundamental factors in the molecular mechanism of amyloid formation and
are proved here to have a high correlation with the ability of a sequence to form amyloid
[7,37,50–53]. Moreover, the isoelectric point of the amino acids in a peptide or protein
sequence can affect the intrinsic propensity of a sequence to undergo conformational changes
into amyloid fibrils as a result of charge variations caused by pH changes in the environment.
The ΔG° values for peptides extrapolated to 0 M of urea is a quantitative measure of the effect
of the amino acid point mutations on the conformational stability of peptides. This can be
directly correlated with the propensity for a peptide or protein to undergo conformational
changes into amyloid intermediates and consequently amyloid fibers, as polypeptides generally
need to partially fold (intrinsically unfolded polypeptides) or partially unfold (globular pro-
teins) in order to achieve the β-rich amyloidogenic intermediates [64]. Interestingly, these fea-
tures fit into the three major groups of features identified by Maurer-Stroh and co-workers in
the development of the Waltz algorithm (α-helical, β-sheet and solvation-related hydrophobic-
ity propensities).

A more detailed analysis of the APPNN classification results obtained using training and
external validation sequences datasets, showed some level of disagreement in terms of sensitiv-
ity, specificity, positive and negative predictive values and accuracy. This was found to be even
more marked for the neural networks that had been developed using feature selection based on
other methodologies. This could be due to the low number of training sequences, which allied
to the low variability of these sequences and may have led to an small over fitting of the neural
network and thus to a lower generalization capability when classifying never seen sequences.
Moreover, the assumption that for a sequence to be considered amyloidogenic there needs to
be at least one amyloidogenic six amino acid stretch within the sequence (hard coded into the
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algorithm), does not take into account the fact that only one stretch may not be enough to
effectively produce the destabilization of the entire peptide or protein structure required for the
transition from its native state into amyloid fibers. Additionally, it does not take into account
possible interactions between stretches, amyloidogenic or non-amyloidogenic, which could
enhance or even inhibit amyloid formation. For these reasons it is thus expected that the length
of the input sequences may play a major role in prediction results, where the overall accuracy
of our predictor should be higher for smaller sequences. In order to mitigate this problem, the
algorithm developed here provides a per amino acid prediction score, which could be used for
further analysis.

A comparative analysis between the accuracy of APPNN and several others published pre-
diction methods (Aggrescan, AMYLPRED, AMYLPRED2, FoldAmyloid, MetAmyl, Pafig,
Pasta, Pasta2, Tango, Waltz and Zyggregator), was undertaken for the classification of
sequence datasets assembled from the literature (training sequences and external validation
sequences datasets). The results show that APPNN has high overall accuracies for the classifi-
cation of the training (78.0%) and the external validation (84.9%) sequence datasets. MetAmyl
outperformed APPNN in the classification of the training sequences dataset with an accuracy
of 79.1%, although APPNN outperformed MetAmyl in the classification of the external valida-
tion sequences dataset, where MetAmyl showed an accuracy value of 83.4%. Analysis showed
that the differences between the accuracy values obtained for APPNN and the other predictions
was statistically significant hence confirming that the APPNN was able to provide enhanced
propensity prediction compared to Pasta (p-value of 0.03), Pasta2 (p-value of 2.32E-03) Tango
(p-value of 4.07E-05), Waltz (p-value of 2.42E-07) and Zyggregator (p-value of 0.01).

In this study we have thus developed a highly accurate and effective method for the predic-
tion of amyloid propensity based on the polypeptide amino acid sequence alone. This was
achieved using a very small subset of highly relevant physicochemical and biochemical amino
acid properties. Overall, this study not only provides a new amyloidogenicity propensity pre-
diction method but also gives new insights into the key driving forces underpinning the self-
assembly of peptides and proteins into amyloid-like fibers.

Methods

Sequence datasets
A dataset of polypeptide sequences with experimental in vitro evidence of amyloid formation
was assembled from the combination of sequences present in published datasets used in several
amyloidogenicity propensity prediction studies [28,29,33,34,54,55,65–68]. In addition, several
sequences meeting this requirement were also added (see S1 and S2 files for references). This
resulted in the construction of two distinct datasets (training sequences dataset and external
validation sequences dataset) in which each sequence is associated with a binary target value,
representing its ability to form amyloid. The training sequences dataset (S1 File) is exclusively
formed by peptides of six amino acids in length, with a total of 296 sequences, from which 161
have been reported negatively and 125 positively for amyloid formation. The external valida-
tion sequences dataset (S2 File) is a more general dataset comprising a total of 483 peptide and
protein sequences with lengths greater than six amino acids, from which 142 have been
reported negatively and 341 positively for amyloid formation.

Sequence encoding
In order to convert sequence information into numerical vectors that could identify each
sequence uniquely and be used to train the artificial neural networks, three encoding schemes
were prepared in MATLAB [69]. These schemes utilized a simple orthogonal encoding for the
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twenty naturally occurring amino acids, two datasets of amino acid physicochemical and bio-
chemical properties, the Amino Acid Index Database version 9.1 (AAindex) [58,59] and the
Amino Acid Physicochemical Properties Database (APDBase) [57].

AAindex is a database of numerical indices that represent the physicochemical and bio-
chemical properties of individual amino acids, from which only the first dataset (aaindex1) was
used. This dataset contains a total of 544 characteristics, 531 of which, had no missing values
for any of the twenty natural occurring amino acids and thus were used in the calculations
[58,59].

APDBase is a smaller database containing a total of 242 physicochemical and biochemical
properties for all twenty naturally occurring amino acids. APDBase was derived from two
other databases, AAindex and ProtScale by Mathura and Kolippakkam, based on properties
they felt were most relevant to the study of protein sequence, structure, and function [57].

Sequences present in both training and external validation sequence datasets were encoded
through in house built scripts in MATLAB [69] programing language. Feature vectors based on
the orthogonal descriptors of the amino acids, were created by the linear combination of the
respective individual amino acids orthogonal vectors (S1 Table). Feature vectors, based on the
physicochemical and biochemical properties of the amino acids were obtained by the concate-
nation of several smaller vectors containing the single characteristics of the amino acids, the
cumulative summation of these characteristics and some basic mathematical and statistical
measures of these characteristics (summation, mean, harmonic mean, median, mode, standard
deviation, interquartile range, mean absolute deviation, range, kurtosis and skewness).

Feature vectors pre-processing
Pre-processing was performed for all generated feature vectors, prior to training and external
validation of the neural networks, through data normalization by mapping the mean and stan-
dard deviation to 0 and 1 respectively (except for feature vectors based on the orthogonal
encoding), through removal of features with no variation across samples and removal of dupli-
cated features. This pre-processing was performed to circumvent scale effects of some features
over others and to improve feature selection performance.

Feature selection
Feature selection was performed for the characteristics vectors computed through both physi-
cochemical and biochemical properties of the amino acids encoding datasets (AAindex and
APDBase). Feature selection was performed utilizing three recursive feature selection wrapper
methods, from the caret package v.5.15–48 [70], Boruta package v.1.6 [71] and penalizedSVM
package v.1.1 [72] for R v.2.15.3 [73] with four different internal classifiers (sparse partial least
squares (spls), shrinkage discriminant analysis (sda), both linear, and naïve bayes (nb) for
caret, and random forests (rf) for Boruta and support vector machines (svm) for penali-
zedSVM). After this the input vectors were trimmed to match each set of selected features and
subsequently used in the training of 5 neural networks per encoding dataset. The generated
neural networks were posteriorly validated through the classification of the external validation
sequences dataset as described below.

Artificial neural networks
MATLAB’s [69] Neural Networks Toolbox [74] was used to create feed forward fully con-
nected neural networks. The weights and biases of the neural networks were initialized with
the Nguyen-Widrow layer initialization function (initializing weights and biases randomly but
evenly across each layer’s input space). The activation function selected for the hidden layer
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was the symmetric sigmoid function and for the output layer was the linear function. The
learning algorithm used was the scaled conjugate gradient backpropagation (backward propa-
gation of errors) and the performance measure used to stop training was the mean absolute
error. The number of neurons present in the input layer was set to match the dimensions of the
different feature vectors. The number of neurons present in the hidden layer was computed
based on the number of dimensions of the feature vectors (n/3) for the orthogonal based vectors
and (n/2 +1) for the physicochemical and biochemical properties of the amino acid based vec-
tors). The number of neurons in the output layer was one.

For each of the computed input vectors, neural networks were trained after random division
of the input sequences dataset (the hexapeptides dataset) into three distinct subsets, the train-
ing, test and validation subsets, comprising 70%, 15% and 15% of the overall training samples,
respectively. The best neural network was selected for the feature vectors computed through
the orthogonal encoding scheme from a total of 5000 trained networks, and for feature vectors
computed through the physicochemical and biochemical encoding scheme from a total of 1000
trained networks. This selection was based on the values of accuracy and standard deviation
obtained for the training, test, validation subsets and overall dataset, where the neural network
with the highest average accuracy was selected, provided that the standard deviation was below
7.5%. The selected neural networks were posteriorly validated by the classification of the
sequences present in the external validation dataset. This was performed by the submission of
the pre-processed individual input vectors, generated by a sliding window of six amino acids
that was run through the polypeptide sequence, to the corresponding neural network. A
sequence was considered amyloidogenic if at least one of these six amino acid windows was
classified amyloidogenic.

Comparison with other prediction algorithms
A careful comparison of the best neural network (APPNN) and other published methods for
amyloid propensity prediction (Aggrescan, AMYLPRED, AMYLPRED2, FoldAmyloid,
MetAmyl, Pafig, Pasta, Tango, Waltz and Zyggregator) was undertaken. This comparison
took into account that both training sequences and external sequences validation datasets
have been produced from the literature specifically for this work. Thus the amyloidogenic
propensities of the sequences present in both datasets were evaluated by all these methods
through the use of in house built Python version 2.7.5 [75] scripts that allowed sequence sub-
mission and results retrieval (input parameters and considerations made to classify a
sequence as amyloidogenic from the provided outputs, can be found in S2 Table, organized
by prediction method).

Prediction results for both training sequences and external validation sequence datasets
were summarized for each predictor in confusion matrices containing the obtained values for
sensitivity, specificity, positive predictive value, negative predictive value and accuracy, with
corresponding 95% confidence intervals. These values were calculated with the R v.2.15.1 [73]
package boot v.1.2–10 [76,77] through bootstrapping performed with 2000 replicates. More-
over, after 10-fold stratified resampling of the data with the package caret v.5.15–48 [70], the
Friedman’s test provided in the package coin v.1.0–23 [78,79] was used to determine if the
accuracy values obtained for all predictors were sampled from populations with identical distri-
butions, which was followed by the Wilcoxon-Nemenyi-McDonald-Thompson post-hoc test
[80] from the package multcmp v.1.3–2 [81], for pairwise comparison between APPNN and
every other classifier.
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