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ABSTRACT

Alzheimer’s disease (AD) is a scourge of longevity that will drain enormous resources from
public health budgets in the future. Currently, there is no diagnostic biomarker and/or
treatment for this most common form of dementia in humans. AD can be of early familial-
onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and the
neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology.
Inflammation may be caused by a local central nervous system insult and/or by peripheral
infections. Numerous microorganisms are suspected in AD brains ranging from bacteria
(mainly oral and non-oral Treponema species), viruses (Herpes simplex type 1) and yeasts
(Candida species). A causal relationship between periodontal pathogens/non-oral Treponema
species of bacteria has been proposed via the amyloid-beta and inflammatory links.
Periodontitis constitutes a peripheral oral infection that can provide the brain with intact
bacteria and virulence factors and inflammatory mediators due to daily, transient
bacteraemias. If and when genetic risk factors meet environmental risk factors in the brain,
disease is expressed, in which neurocognition may be exacerbated impacted, leading to the
of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic
treatment for AD, there is an initial need to solve the etiological puzzle contributing to its

pathogenesis. This review therefore addresses oral infection as the plausible aetiology of late

onset AD (1. OAD), the-plausible-aetiology-of-  late-onset AD-being-an-oral-infection:

Keywords: Alzheimer’s disease; pathogenesis; microorganisms; oral bacteria; direct cause
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Alzheimer’s disease (AD) is a neurodegenerative disease and the most common example of a
group of diseases that manifest as dementia. It is associated with atrophy and specific
neuronal death particularly in the hippocampal region of the brain (1). Research into AD
pathogenesis; has flagged two main categories of the disease—A: the familial-enset- onset
thataccounts for around 2% of all AD cases and the sporadic form of late-onset AD also

to as LOAD that-constitutes approximately 98% of the cases. LOAD displays genetic
susceptibility traits of which the well-known risk factor is inheritance of the apolipoprotein
(APOE-¢4) gene allele (2) and, appears to require an environmental factor for disease
expression. For example a pathogen-host interaction; can exacerbate neurocognition in some
elderly individuals who if in their 80+ years likely become diagnosed with LOAD (3, 4). The
rationale for this review therefore is to try to explain the aetiology in the vast proportion of
LOAD cases that relies upon common risk factors-and-to-date.several. Several scientists
these to be peripheral infections (5-11); and the accompanying systemic and local
inflammatory mediators (11-13). Of these, the plausible risk from oral infection is the main

focus of this review.

PREVALENCE OF AD

AD is a seourge-burden of longevity resulting from the superior quality of health care

This factor is likely to contribute to quadrupling of AD subjects living in our society during
the next 40 years (14). It is estimated that by 2050 about 13-14 million people are likely to
suffer from AD in the USA with a rise in the total costs estimated to be more than $1 trillion.
The odds of having a diagnosis of AD when over 85 years of age exceed 1:3 (15). One in six
people over 80 years in the UK have-has dementia (16). Estimates for the prevalence of AD in
USA indicate that more than 5 million individuals who are 65 years or older currently suffer

from AD (1, 15). About 200,000 subjects have been diagnosed with the early-onset familial
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AD form and health care costs for this disease are about $200 billion per year (1). It is clear
that AD is fast becoming a major health challenge in the USA and around the globe that will

financially drain public health budgets and care giver services.

NEUROPATHOLOGICAL CHARACTERISTICS OF THE AD BRAIN

The AD brain is characterized by several neuropathological features of which two seminal
hallmarks (Fig. 1) arise from proteostasis of the ongoing neurodegenerative processes and are
essential for a definitive diagnosis of the disease at post mortem (17). One of the hallmark
proteins is made up of fibrils in the form of extracellular, insoluble plaques and consists
primarily of amyloid-beta (Ap) (18). These peptide deposits in variable sizes depend upon the
secretase enzymes (a-, B and Y-secretases) that cleave it from the longer amyloid precursor
protein (APP). Initial reports suggested fibrillar Af to be neurotoxic (19) as it has been shown
to kill all types of cells by apoptosis_induction (20). However, there are two known insoluble
fibrillar Ap amyloid peptides comprised of Afaoand A4z amino-acid residues as-weH-as-their

different which exhibit distinct physiological states within the human brain. There is a general

consensus among scientists that the larger (ABaz) peptide is the neurotoxic form as the ageing
brain of cognitive intact individuals also displays AP plaques. However, in the cognitively
intact brain they are fewer in number and usually of the diffuse APao type that appears not to

bear any, as yet known, pathological significance-in-the-elderhyrwho-age-sueeessfulhy. In

monomeric, dimeric and the multimeric forms of Af (21). The relative neurotoxicity of these

isoforms remains unclear H-is-het-elearas-to-which-one-ofthese-is-mere-neurotoxie-(22).

More recently, the fibrillary forms of the ABoaz) peptides released in the AD brain are were
also recognized as “defensin” or innate immune defense molecules that act to protect the host

against infection (23). For example, both of the aforementioned amyloidogenic peptides can
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bind to bacterial membranes and in that way lyse bacterial cells. Although A is acting as an
antimicrobial peptide (AMP), it may be a part of the brain’s ancient/modern innate immune
defense mechanism. AMPs are potent, broad-spectrum, pore-forming agents against-targeting
Gram-negative and Gram-positive bacteria, enveloped viruses and protozoans (23), thereby

supporting the hypothesis that AD has an infectious origin.

Furthermore, the senile plaques (APa2) are recognized as triggers that stimulate activation of
microglial cells and initiate local immune responses (24). Activated microglia are the most
important contributors of inflammation in the central nervous system (CNS) (25). They
secrete a number of proinflammatory cytokines (24-26) and recognize pattern associated
molecular patterns (PAMPS) on bacteria and their cellular debris (27-30) te-deal-with in

response to CNS infection.

The other pathological characteristic of AD is an accumulation of intracellular
hyperphosphorylated tau and heat shock proteins constituting the neurofibrillary tangles
(NFTs). Hyperphosphorylated tau protein alters the polymerization and stability of
microtubules compromising their function (31). NFTs in AD reflect the severity of disease;
however, the significance of pathogen-host interaction to the occurrence of NFTs in the AD
brain is poorly understood. Current genetic evidence is pointing to aberrant innate immune
responses (32, 33) and cholesterol lipid genes (see-34) having greater significance in AD
pathogenesis. A dysfunctional immune system and predisposition to hyperlipidaemia also
support the role of reduced blood flow due to the vascular lesions and inflammation, Af

deposition and microorganisms in AD.

In advanced AD pathology, synaptic dysfunction is another structural defect associated with a
decline in memory (35-37). Although a circular argument, malnutrition plays a role in the

gradual loss of synapses and fewer teeth during life is a known risk factor for AD (38).
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Neurons are capable of responding to injury by expressing multiple neurotransmitters. In AD,
selective loss of cholinergic neurons in the basal forebrain (39) also correlates with the loss of

cognitive function (18, 35).

THE AMYLOID CASCADE HYPOTHESIS

Several hypotheses have been faunehed-for advanced regarding the development of AD. The

amyloid cascade hypothesis serves as a model particularly for the familial form of AD (40)
which is a disease caused by mutations involving the amyloid-f protein precursor, located on
chromosome 21 and presenilin 1 and 2 on chromosomes 14 and 1 respectively that enhance
the APP gene processing towards Ap deposition (41, 42). The model, which was first
proposed by Glenner and Wong (43), maintains that the neurodegenerative disease is due to
an imbalance between the generation and clearance of Ap. Genome wide association studies
(GWAS) highlighted the complement receptor 1 (CR1) gene playing a role in AD
pathogenesis (44). One recognized role of CR1, a membrane bound regulatory protein, is its
ability to bind C3b opsonins (Fig. 2). It is abundantly expressed especially on erythrocyte
membranes and as such participates in immune complex clearance by transporting waste to
the liver and the spleen. As the CR1 gene is a risk factor for LOAD, this suggests loss of
function as a possibility for the defective clearance of A in the brain. Other tentative
explanations suggest variation in CR1 protein isoforms (longer and shorter forms) (45),
whereby the longer form is semehow-negatively less involved in the disease process via its
ability to bind more C3b and facilitate more effective clearance of A in the brain (46). This
is a process that inevitably fails favouring disease expression with more A proteostasis
buildup and complement pathway activation. The amyloid hypothesis has been modified

several times, particularly due to the finding that soluble oligomers of A may contribute to
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early preclinical stages of the disease that initiate the cascade leading to synaptic dysfunction,

atrophy and neuronal loss (47).

THE INFLAMMATORY HYPOTHESIS

The intrinsic model

Currently there are two models of the inflammatory hypothesis of AD, an intrinsic and an
extrinsic. The intrinsic inflammation model accounts for the intact “blood-brain barrier”
(BBB) restricting entry of neurotoxic immune molecules and systemic lymphocytes to the
brain. As a consequence, the brain glial cells are able to generate a local and complete innate
immune system when challenged by foreign agents (26, 48-50). Historically,
neuroinflammation has largely been viewed as being a downstream consequence of the
amyloid hypothesis, whereby the presence of amyloidogenic peptides result in the activation
of microglia initiating pro-inflammatory cascades and the release of potentially neurotoxic
substances resulting in degenerative changes in neurons. GWAS now implicates innate
immune genes (44, 51) as being a risk factor and supports a primary role for the inflammatory
elements of AD pathology via inappropriate activation of the complement system (52-54) in

association with AB plaques and NFTs (55).

The extrinsic model

The extrinsic model accounts for communication of the glial cells with the immune challenges
presented via the blood vascular system using the circumventricular organs and the choroid
plexus that are devoid of the BBB (56). The cells from this region of the brain are fully
equipped with the CD14 receptor and the toll-like receptor 4 (TLR 4) to recegnise recognize

the peripheral blood circulation (27, 28). Hence, elements of systemic infections such as those
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originating from Gram-negative, highly virulent oral pathogens, bronchopneumonia and
urinary tract infections (3, 4, 7, 57, 58) reach all organs including the CNS. Fhe-conseguences
products entering the bloodstream trigger the are-thatthe innate immune responses of

pattern recognition receptors (PPR) and TLRs via-pattern+ecognitionreceptors{PRR)-and
infectious threat by secreting to-the-threat-ef-infection-by-seereting-immune mediators

agents. Increased risk of dementia in the elderly following multiple infectious episodes has

been reported
being-diagnosed-with-dementia-(4). In addition, systemic infections appear to contribute

towards delirium in some clinically diagnosed AD patients and such episodes can exacerbate
a premorbid cognitive status (3). Holmes et al. proposed that since cytokines are primary
mediators released by the host to defend against infection, such secondary stimuli (IL-1p and
TNF-o) may mediate their effect on the brain and indirectly contribute to cognitive decline (3,

57).

NON-ORAL BACTERIA RELATED TO AD

Honjo et al. (59) using Bradford Hill’s criteria for assessing the relationship between bacteria
and disease found Chlamydophila pneumoniae to be a likely infectious agent related to the
pathogenesis of AD. Maheshwari and Eslick (60) reported a strong correlation between C.
pneumoniae and AD, and according to Shima et al. (61) C. pneumoniae is currently the most
plausible of all infectious agents proposed to be involved in AD. Lim et al. (62) suggested that
the pro- and chronic inflammatory states in AD pathogenesis may in part be due to C.
pneumoniae infection of monocytes. C. pneumoniae antibodies from typical intracellular and

atypical C. pneumoniae antigens have been identified both from-typicakintracellularand

of the-brains from AD patients (63). Amyloid deposit and NFTs were detected in the same
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regions in apposition to one another suggesting that C. pneumoniae infection is involved in

the development of AD pathology.

Using various techniques Balin et al. (9) found C. pneumoniae in 80-90% of LOAD brain
tissue specimens. C. pneumoniae infection was correlated with the APOEe4 allele expression.
The same researchers subsequently demonstrated that astroglia, microglia, neurons,
endothelial cells and monocytes in the LOAD brain are permissive to this bacterium. The
mechanisms of pathogenesis differ between actively- and persistently-infecting chlamydiae
and it is in the persistent state that these organisms cause chronic disease (64, 65). C.
pneumoniae was cultured from two AD brain samples after one or two passages in HEp-2
cells (66). Interestingly, the study indicated that brain isolates were more related to respiratory
than to vascular/atheroma strains of C. pneumoniae. This suggested that C. pneumoniae

infection of the brain was secondary to bronchopneumonia and at the end stages of LOAD.

It has been suggested that the phages phiCPAR39 and phiCPG1, associated with C.
pneumoniae, may enter mitochondria of the bacterial host and work as slow viruses initiating
AD (67). These authors hypothesized that mitochondrial recruitment by C. pneumoniae
phages may be the primary initiating event in the pathogenesis of neurodegenerative

disorders.

In a meta-analysis based on 25 relevant, primarily case-control studies Maheshwari and Eslick
(60) found a statistically significant association between AD and detectable evidence of
infection caused by C. pneumoniae or spirochetes. They reported over a ten-fold increased
occurrence of AD when there was evidence of spirochetal infection (OR: 10.61; 95% CI:
3.38-33.29) and over a four-fold increased occurrence of AD with a conservative risk estimate
(OR: 4.45; 95% CI: 2.33-8.52). There was a five-fold increase in occurrence of AD with C.

pneumoniae infection (OR: 5.66; 95% CI: 1.83-17.51). Accordingly, a strongly positive
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association between bacterial infection and AD was shown for both types of bacteria, but it

was strongest for spirochetes.

It is generally accepted that the syphilis spirochete Treponema pallidum can cause chronic
neuropsychiatric disorders including dementia as well as other neurodegenerative disorders
(11). T. pallidum causes brain atrophy and AB deposition in the atrophic form of general
paresis (68, 69) and is a strong indication for involvement of spirochetes in AD pathogenesis.
Chronic diseases such as syphilis are frequently associated with deposition of amyloid (68,
69). Actualyamyloid-is-considered-as-Amyloid is an integral part-component of spirochetes

which may contribute to amyloid deposition in AD (70). Syphilis-aceumulation-of-spirochetes

Spirochete accumulation in the cerebral cortex in the context of syphilis will also lead to

formation of senile plaques, NFTs and granulovacuolar degeneration (71).

Miklossy (68, 69) analyzed data on the ability of spirochetes to induce pathological and
biological hallmarks of AD in vitro following Koch’s and Hill’s postulates and demonstrated
a plausible causal relationship between neurospirochetosis and AD. The data revealed a
statistically significant association between spirochetes and AD (P = 1.5 x 1017, OR = 20,
95% CIl = 8-60, N = 247). When mammalian cells were exposed to spirochetes, the
pathological and biological hallmarks of AD were reproduced in vitro (68, 69). Miklessy(72}

also-found-that-historical Historical observations supported the conclusion that-that

observations-paved-the-way-for-drawing-conchusions-sueh-as-chronic spirochetal infections

can cause dementia and reproduce the neuropathological hallmarks of AD_(72). According to
Miklossy (72), these observations represent further evidence in support of a causal

relationship between various spirochetal infections and AD.

Another spirochete also implicated in AD is; Borrelia burgdorferi, has-alse-been-implicated-in

AD—Thisis-the causative agent of Lyme disease -which-is-which is transfected to humans via
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tick vectors through-infected-tick-bites. There are great similarities in the clinical and

syphilis and Lyme disease (72, 73). The occurrence of B. burgdorferi in the brains of AD
patients was first reported by MacDonald and Miranda (74) and was confirmed later by
MacDonald (75, 76), Riviere et al. (5) and Miklossy et al. (77). Interestingly, Bu et al. (78)
found that the infectious burden consisting of B. burgdorferi, C. pneumoniae, Helicobacter
pylori, and Herpes simplex-1 (HSV-1) is associated with
Gutacker et al. (79) and Pappolla et al. (80) found no evidence for an association between B.

burgdorferi and AD.

Among other bacteria H. pylori alere-(monoinfection) has been found to be related
to AD (59). These authors suggested that AD pathology can be initiated and exacerbated by
some microorganisms with inflammatory and oxidative responses which may affect the brain
continuously and gradually over time. However, the H. pylori status did-net-depend-on-was

not associated with AD in a study from Japan, probably due to the high prevalence of the

organism in controls (81). This was refuted by Kountouras et al. (82) who had previously
found that successful eradication of H. pylori infection was associated with significantly

lower mortality risk in AD patients [HR (95% Cl)=0.287 (0.114-0.725), p=0.008] (83).

ORAL BACTERIA RELATED TO AD

The oral cavity harbours an impressive range of bacterial phylotypes (84). Molecular
identification methods have detected close to 900 different predominant bacteria of
which 35% cannot yet be cultured (85). The oral microbiome profiles appear to be
individualized (86), meaning that bacterial microbiomes can vary both qualitatively and

quantitatively between individuals, although there are also significant overlaps. Each

individual can harbeur harbor up to 200 different bacterial taxa in their mouth and there is a
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variation in the microbiota in different oral sites (84, 87). Furthermore, the composition of the
oral microbiota irrespective of being indigenous or pathogenic in the oral cavity keeps
changing in view of major oral diseases (caries, gingivitis, aggressive and chronic
periodontitis, periodontal-endodontic lesions, peri-implantitis and mucositis) (88-94).
Particularly plaque-induced oral diseases such as periodontitis are associated with a change in
the oral microbiota. There is a predominance of anaerobic bacteria in the oral cavity. Many of
the major periodontal microorganisms are anaerobic, e.g., Porphyromonas gingivalis,
Treponema denticola and Tannerella forsythia. The abundance of anaerobes tend to increase

with the development of plaque-induced oral diseases.

Periodontal bacterial pathogens are related to AD

Major pathogens of chronic periodontitis such as P. gingivalis, T. forsythia; and T. denticola
are implicated in the development of several inflammatory diseases at remote organ sites.

Except for T. forsythia, all the-abeve-three of the above-named organisms of which T.

denticola represents a spirochetes, have been found in the AD brain (5, 8). Spirochetes are
strongly neurotropic. They can spread along nerve fibers and via lymphatics (67, 68) and have
been detected in the trigeminal nerve and trigeminal ganglia (95). Spirochetes and their
antigens as well as DNA have been found associated with AD and are strongly implicated as
the causative agents leading to dementia (68, 69). In 14 studies spirochetes were detected in
AD by different authors in different laboratories and countries by means of different
techniques (for a reviews see Miklossy (68, 69). Riviere et al. (5) demonstrated the presence
of seven different oral Treponema species in 14 out of 16 AD brain specimens (Fig. 3).
Spirochetes were even cultivated from the brains of AD patients indicating that they were

viable in the brain (67, 68, 77). Miklossy suggested a co-infection by several spirochetes in
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AD including the oral varieties (T. socranskii, T. pectinovorum, T. denticola, T. medium, T.
amylovorum and T. maltophilum) as demonstrated by Riviere et al. (5). Spirochetes
reproduced the biological and pathological hallmarks of AD after exposure of mammalian

neuronal and glial cells in organotypic cultures (68, 69).

It has-been was demonstrated that LPS from periodontal bacteria can access the AD brain

during life as-while detection in corresponding controls, with equivalent or longer postmortem

interval was absent (8). This study supports the literature on elevated antibodies to periodontal
disease-associated bacteria such as P. gingivalis, being found in AD patients (7). Furthermore,
in 2,355 people 60 years and over, the third NHANES study found associations between
periodontitis and cognitive impairment and between measures of immunoglobulin to P.
gingivalis and cognitive test performance (96, 97)-used-cohert-methodology-analyzing-serum
levels-of-antibedies-to-periodontal-disease. Al-In this study all participants were cognitively

intact at baseline. Those who went on to develop AD had higher levels of serum antibodies to
periodontal pathogens at baseline. Fhis-The study sugggested suggested a temporal

periodontal disease came before AD.

Other important periodontal pathogens related to AD are Fusobacterium nucleatum and

Prevotella intermedia. In the NHANES study antibody Antibedy-levels to these organisms

were significantly increased (o = 0.05) at baseline serum in patients with AD compared to
controls (97). The results were significant after controlling for baseline age, Mini-Mental
State Examination score, and allele APOEe4 status. Noble et al. (98) found that a high anti-
Actinomyces naeslundii titer (> 640 ng/ml, present in 10% of the subjects) was associated
with increased risk of AD (HR=2.0, 95% CI: 1.1-3.8). This association was stronger after
adjusting for other significant titers (HR=3.1, 95%CI: 1.5-6.4) and confirmed that periodontal

pathogens be associated with AD.



308

309

310
311
312
‘313
314
315
‘316
317
318

319

320
‘321
322
‘323
324
325
326
327
328
329
330
331

332

14

Possible consequences to the brain-ef carrying oral bacterial pathogens

The fact that inflammation is sustained in the AD brain suggests that local immunogenic
hallmark proteins and/or peripheral infections are key perpetrators. This is supported by
reports highlighting microorganisms and their toxic products as well as DNA in brain tissue
of AD patients and experimental animals (see 3 ). Bacteria activate pathways that
include the integrin receptor CR3 (CD11b/CD18) and TLR signalling (99) and the
complement cascade (100). The NF-«B signalling pathway for cyto/chemokine release (TNF-
a, IL-8) (101) produces free radicals, nitric oxide triggers and apoptosis (102). The oral
cavity, lungs and gastrointestinal and urinary tracts are plausible sources of brain
microorganisms. The likely passage of the microorganisms of interest from their original sites

to the brain is described below.

Infections with spirochetes can cause cerebral hypoperfusion (103), cerebrovascular lesions
and a severely disturbed capillary network (68, 69). Chronic spirochetal infections can also
induce slowly progressive dementia, cortical atrophy, chronic inflammation and A
deposition, which-cannot-be-distinguished indistinguishable from that occurring in AD brains
(for reviews see 68, 69, 72). Furthermore, cultured neuronal cells exposed to spirochetes
produce AP (104). Spirochetes are also able to form plaque-, tangle- and curly fiber-like

lesions (72, 105). They induce a latent and slowly progressive infection by evading host

defenses. This promotes their survivial and proliferation in the brain by blocking the

complement cascade. Spirochetes may even survive and proliferate in hosts that are immune-

competent; Interestingly, the remarkable ability of T. pallidum to evade clearance from the
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immune system has earned it the designation “stealth pathogen” (106). Alse-anThe activated
complement cascade can-be-seen-following spirochete infections (11) which-may be used as a
non-specific marker of CNS inflammation. Spirochete-host interactions initiate and sustain

chronic inflammation triggering various immune responses that activate and-ene-tp-with

various-tmmune-respenses-activating the innate and adaptive immune system, free radicals

production, apoptosis and amyloid deposition typically seen in AD brains (107).

P. gingivalis has been designated as one of the “keystone” periodontal pathogens because it is
able to establish and maintain the periodontal disease-associated “inflammophillic”
microbiota (108). It is able to perform this task as it possesses an awesome variety of
virulence factors, recently reviewed by Singhrao et al. (109), to evade the host immune
defenses, thus serving two major functions: initialbyfer survival of P. gingivalis itself via a
sustainable inflammatory milieu and then-to-satishy-its sustainment of nutritional sources by
eliminating microbial competitors needs-and-to-stamp-out-competition-(108).

The P. gingivalis endotoxin LPS demonstrates differences in the number of phosphate groups
together with both the amount of lipid A fatty acids and their specific position. The presence
of multiple lipid A structures makes it more difficult for the innate host responses to recognise
recognize the molecule thereby aiding the virulence of P. gingivalis (110). The consequences

of finding P. gingivalis LPS in the host’s body, e.g. the brain (8), are-include priming of

cells for differential activation of the TLR-mediated NF-kB signalling pathway (111) leading

to cytokine liberation, complement activation and maintenance of intracerebral inflammation.

P. gingivalis evades circulating phagocytes by adhering to erythrocytes (112). An active
invasion of P. gingivalis and infection-induced complement activation with bystander neural
injury was detected in the brains of ApoE” mice (113). This supported previous notions that

bacterial infections can contribute to the development of AD pathology via mechanisms



357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

16

involving acute phase proteins such as cytokines and the complement cascade where neurons

would be attacked.

ORAL VIRUS RELATED TO AD

Herpes simplex virus (HSV) is present in more than 70% of the population after 50 years age
(114-116). It persists latently in the peripheral nervous system and is periodically reactivated.
Characteristically, HSV-1 has been designated as the enemy within (10). Herpes viruses,
including Epstein-Barr virus and cytomegalo-virus, are found in high copy counts in
aggressive periodontitis, and may interact synergistically with periodontopathic bacteria in the
pathogenesis of this disease (117). Periodontal infections activated by Herpes virus Herpes

virus-active-periodental-infections-may impair local host defenses and thus increase the

aggressiveness of resident periodontopathic bacteria. The bacteria, in turn, may augment the

virulence of the herpes viruses.

High proportions of viral-associated proteins in amyloid-containing plaques and/or NFTs
corroborate with the involvement of HSV-1 in AD pathology (118). Fhis-suppertsa-study-by
Notably, De Chiara et al. (119) whe-found reported an association between Ap accumulation
in the brain and HSV infection. Itzhaki et al. (120) suggested that not only does HSV-1
produce the main components of amyloid plaques and NFTs (i.e. AR and
hyperphosphorylated tau), but it also interferes with the autophagic events that prevent
degradation of these proteins and eventually leading to their accumulation in the AD brain.
Further, in vitro and in vivo investigations usirg-meuse in murine models following HSV-1

demonstrated AB accumulation (121).

A number of scientists have suggested that there is imbalance between production and

clearance of B-amyloid in the brain, a theught-premise first proposed by Wisniewski et al.
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on the discovery of soluble species of this protein and later confirmed by Zlokovic et al. (123)
(123) . Fhus-t It is now widely accepted that defective clearance of this protein
brains that-leads leading to its accumulation in the form of insoluble ABaous2 plaques.

and cytomegalovirus have been detected in the brains of older adults with and without AD
(124-126), HSV-1 viral DNA is present in a higher proportion of AD patients (127). It is
particularly seen in the temporal and frontal cortices which are the brain regions that are most
damaged in AD (128, 129). The relevance of this association is still under investigation;
however a plausible role for the HSV-1 viral DNA could be #-associated with the plaque
maturation process. Jamieson et al. (127) found that the virus was absent from the brains of
most young people, probably because it enters the brain during old age either when-the
senescence (130) or the virus itself is initially responsible for weakening the host’s immune

defenses-first. This latter explanation is likely and is supported by us and others (131).

HSV-1 is a strong risk factor for AD in the brains of those with the APOEe4 allele (125, 132).
This virus is not only a dormant passenger but can persist in the latent form in neurons or
replicate at a very low level in neuroglia (133). During persistence it may release toxic
products continuously and induce pro-inflammatory cytokines at low levels which become an
additional burden to the-a host whe-is-already challenged by age, poor diet, faiting-restricted
exercise as well as any genetic susceptibilities. Itzaki and Wozniak (10) suggested that stress
or peripheral infection can reactivate the virus periodically from latency in the brain. This
may cause an acute but presumably localized infection, and subsequent damage modulated by

the APOe gene can lead to formation of AP plaques and NFTs.

The presence of anti-HSV IgM, a sign of reactivated infection, almost doubled the risk for AD
while anti-HSV 1gG did not influence the risk (134). Kobayashi et al. (135) suggested that the

anti-HSV-1 1g antibody avidity index could be a useful biomarker for early diagnosis of
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anamnestic mild cognitive impairment, which is prodromal to AD, as well as for AD

sufferers.

Reactivation of HSV seropositivity is highly correlated with incident-AD (136). Letenneur et
al. (136) speculated that AD pathology starts many years before frank dementia and recurrent
reactivation of HSV can act as a potent stimulus to brain microglia, increasing cytokine
levels, and triggering a positive feedback cycle leading to increasing accumulation of
neurohistopathological changes. In other words, infection, followed by local CNS
inflammatory reaction is the likely primary eeccurrence-stimulus wheras proteostasis is a

consequence of the primary event leading to the development of AD.

Hill et al. (137) suggested a role for HSV-1-induced miRNA-146a in the evasion of HSV-1
from the complement system-which-Fhis which is a major first-line host defense mechanism,
and the activation of key elements in the arachidonic acid cascade known to contribute to AD-

type neuropathological changes.

ORAL YEASTS RELATED TO AD

Oral yeast infection is-represents a secondary opportunistic infection disease-ef-the-diseased
where particularly involving Candida albicans, but increasingly alse-non-albicans species,
e.g. Candida glabrata-are-irvelved. With a growing population of elderly, severe systemic
fungal infections have increased dramatically in this age group during the last 30 years (138,
139). Oral yeasts can be found in periodontal pockets, in root canals, on the mucosae and
underneath dentures (denture stomatitis) (140-142). Denture stomatitis is prevalent in elderly
wearing dentures that are heavily contaminated with yeasts which can be a source of systemic

mycosis-{Fig—3}. Disseminated mycoses have recently been reported in AD patients (143,
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144). Fungal molecules including proteins and polysaccharides [(1,3)-B-glucan] were detected
in peripheral blood serum, and fungal proteins and DNA were demonstrated by PCR in brain
tissue of AD patients. Adse-chitinChitin-like fungal structures have also been found in the AD
brain (145) and chitinase activity has been proposed as a powerful biomarker of AD (146).
Immunohistochemical-analysesrevealed -albeitin-afewcells-in_In AD brains, . containing

cytoplasmic material in a small number of eeH cells were was targeted by antibodies with

immunoreactivity to thatimmunoreacted-with-antibodiesraised-against some-yeast cells

(147). These findings were consistent with the idea that neurons can be infected by fungi.

Interestingly, antifungal treatment reversed the clinical symptoms of some AD patients (148,

149).

HOW DO ORAL MICROORGANISMS REACH THE BRAIN?

Blood stream dissemination

The most likely pathway ef-for dissemination ferof oral microorganisms to the brain is
through the blood stream (150). Dental treatment procedures-as well as brushing, flossing,
chewing and use of tooth picks in a patient with periodontitis will release a bacteraemia (151).
This can occur several times during the day and has been estimated to last for up to 3 hours
for oral bacteria (152). The bacteraemia is usually taken-care-ef contained by immune cells of
the body. However, in people with reduced immune defense, e.g. older individuals, bacteria

may settle-dewn-within localize to crevices of the oral cavity and vascular channels (150).

The blood- brain barrier

An intact blood-brain barrier (BBB) prevents microorganisms in the blood from accessing the

brain. However, aging favors overgrowth of oral microorganisms, particularly anaerobic

bacteria and facultative yeasts that established earlier in life and provoked pro-inflammatory

—

Commented [PB9]: chewing while eating?

\\{ Formatted: Font color: Red, Strikethrough

Commented [PB10]: also in the general population.
Although not on a regular basis, tooth extraction provides a huge
bolus of bacteria.



20

‘452 responses that weakened the BBB (16). ActuathyNotably, magnetic resonance imaging (MRI)
453  confirmed loss of BBB integrity in a mouse model of disseminated candidosis (153). Loss of
454 integrity allows microorganisms to spread through the blood stream and quietly contribute in
‘455 the pathogenesis of AD. During immunosenescence, the innate immune system gradually
456  takes over for the acquired immune system. This contributes to a rise in circulating

457  proinflammatory cytokines such as TNF-a (16). Indeed, proinflammatory mediators can

458  cross the BBB (3, 7, 154). APOE&4, TNF-a and perhaps Ephrin Type-A Receptor 1 (EphAl)
459  may influence BBB integrity and thus be important for penetration of bacteria, LPS and other
460  toxic bacterial products as well as yeasts into the brains of AD patients (16).. APOEe4 affects
461  the integrity of the BBB by activating the cyclophilin A matrix metalloproteinase MM-9

462  pathway (155).

463 It is also plausible to suggest that the permeability of the BBB increases with age and thus
464  promotes AD pathogenesis making the brain accessible to microorganisms. Mice with a
465  mutation in the amyloid precursor protein gene which is related to early-onset AD in man,
466  showed increased permeability of the BBB and increased formation of senile plaque

467  compared to control mice (156). The changes increased with age.

468
469  Circumventricular organs and perivascular spaces

470  Circumventricular prgans (permit polypeptide hypothalamic hormones to leave the brain Commented [PB11]: May want to briefly define. | had to
look it up. Eg. Small organs in the brain that allow peptide
\ hypothalmic hormones to leave the brain without disrumpting

471  without disrupting the BBB) are not dependent on the BBB (56) and may act as another entry \\ | the 888
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472 portal to the brain for bacteria (157). Poole et al. (8) postulated that bacteria and their \
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The olfactory hypothesis

The “olfactory hypothesis” suggests the olfactory tract as a potential route for pathogenic
bacteria to enter the brain and thereby trigger the production of Ap and NFTs (158). The
olfactory and trigeminal nerves are known to be used by periodontal pathogens to bypass the
BBB for direct passage to the CNS (5, 150, 159, 160). Identification of oral treponemes in the

trigeminal ganglia supports such a route of dissemination (5). Further, sSpirochetes may alse

spread along the fila olfactoria and tractus olfactorius (68, 69).

Olfactory unsheathing cells (OECs) engulf bacteria and migrate towards TNF-a released by
activated astrocytes (161). Therefore, OECs could be a vehicle for transporting live bacteria to
the brain (i.e., Trojan horse). The olfactory bulb was the first area where NFTs and AB
deposition were detected in the neuropathological trajectory of AD in humans (162) and in

mouse models of AD (163).

GENETIC, NUTRITIONAL AND ENVIRONMENTAL FACTORS PROMOTING AD

While early-onset AD is genetically determined, LOAD is thought to result from interaction
between genetic and environmental factors (12). Several mutated genes are associated with
the familial AD, such as the amyloid beta (AB) precursor protein (ABPP) gene and the
presenelin-1 (PSEN-1) and PSEN-2 gene (164-166). A major risk factor for LOAD is
polymorphism in the APOe4 allele (2). Also cytokine-related genes seem to be involved in the
susceptibility to inflammation in both LOAD (167, 168) and periodontitis (169-171). Thus,
polymorphisms that increase TNF-a also increase the risk of both AD and periodontitis (172,
173). Lambert et al. (174) found that 20 different loci can increase host susceptibility to AD
including polymorphisms in genes associated with interleukin-1 (IL-1) (71, 175-178) and

TNFo (71, 172, 179-181). The APOe4 gene which is one of these 20 loci is highly correlated
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with AD (182) but it is also a risk factor for infection and increases the expression of
inflammatory mediators (11). Recently, genetic overlap between AD, C-reactive protein
(CRP) and plasma lipids was demonstrated by using summary statistics from GWAS of over
200,000 individuals (183). There may also be interplay between genetic risk and
environmental risk factors such as toxins and or bacterial, viral and fungal pathogens in

LOAD reflecting its complex and multifactorial etiology (1).

Diet with its content of essential B-vitamins, phospholipids and other micronutrients are
important for forming new nerve synapses (184). Nutritional deficiencies are common both in

elderly and in dementia subjects as briefly discussed by Singhrao et al. (150).

ASSOCIATION BETWEEN CHRONIC PERIODONTAL DISEASE AND AD

There is increasing evidence for an association between chronic periodontitis and LOAD
(185). Cross-sectional and longitudinal studies have demonstrated that gingival bleeding, loss
of periodontal attachment, periodontal probing depth, alveolar bone loss and antibodies to
periodontal pathogens are significantly associated with lower cognitive function and decline
after adjustment for co-variates (for a review see (12)). Acute phase proteins, including
cytokines are possible indirect links between periodontal pathogens and/or their virulence
factors (12, 13). Elderly often show neglect of oral hygiene {Figs—3-5)}-which can stimulate
recurrent chronic oral infection (150). This again promotes inflammation which can lead to
confusion and dementia (3, 4, 154). In 152 subjects 50-70 years of age who were followed for
20 years, greater levels of periodontal inflammation correlated with lower cognitive levels
(186). Furthermore, gingival bleeding and loss of periodontal attachment apparatus-were
associated with cognitive impairment in a cohort of 5,138 people aged 20-59 years (187). In

144 nuns, those with-encoding APOEe4 and who had fewer teeth had-experienced more rapid
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decline than those with neither or either of these risk factors (188). Clinical and
epidemiological studies showed that loss of teeth is associated with poor memory (6, 96, 187,
189). In another study with-of 597 community dwelling men followed for 32 years, tooth loss,
increasing periodontal pockets depths and progression of alveolar bone loss were associated
with impaired cognition particularly in those over 45 years of age (190). Recently, de Souza
Rolim et al. (191) found that periodontal infections were more frequent in patients with mild

AD than in healthy subjects. Another interesting feature related to the pathogenesis of AD is

the low level of infection by “commensals on the loose” (16). These “immuno-tolerated”
bacteria may silently multiply in sites outside of their primary niche and an ongoing Htess
at their secondary location may have significant deleterious effects upon the health of the

elderly or demented host with an existing immunocompromised status.

PUTATIVE TREATMENT AND PROPHYLAXIS OF AD
There is no effective treatment or prophylaxis yet for AD, but several approaches have been
proposed. Efforts in this respect are important. If we could delay onset of dementia by only 2

years we might lower the prevalence of AD by more than 22 million cases over the next 40

years (14). indeed-delaying-the-disease-process-is-a-better-optionas-the NotableyNotably, the

of the APOEe4 allele in the very old (90+) age group, appears to confer protection (192),

having bypassed a period of being at risk around 85+ years of age,

If periodontal disease is implicated in AD, periodontitis prophylaxis sheutd-be-feasible could
be of help. It would be interesting to see if this has any effect on the initiation and aggravation

of AD but an observation period of decennia is probably needed.

In a study of subjects with mild to moderate AD, a A-3-month course of doxycycline and

rifampicin reduced cognitive deterioration ir-during a 6 months’ feHew-upfollow-up interval
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stuey-in subjects-with-mild-te-mederate-AB-(193). It was concluded that use of antibacterial

the treatment of C. pneumoniae but had a beneficial effect on cognitive decline in AD (193).
This might be related to prevention or attenuation of a number of peripheral infections or
dampening down the proinflammatory cytokine response. MinieyetineMinocycline was found
early, pre-plaque neuroinflammation and inhibit the APP cleaving enzyme 1 (BACE-1) in a
transgenic model of Alzheimer's disease-like amyloid pathology (194). It was suggested that
interfering with inflammation could be a useful therapeutic approach in early, pre-plaque

stages of AD-like amyloid pathology.

Anti-inflammatory drugs given for at least 2 years before the onset of dementia delayed the
disease process (£94195-196197). It may also be beneficial to combine anti-inflammatory
antibacterials (193). Examination of several available Non-steroidal Anti-Inflammatory Drugs
(NSAIDs) showed that only a few of them had any useful Ap-modifying or other activity of

therapeutic use in LOAD (for a review see (1)).

Itzhaki and Wozniak (10, £97198) suggested that antiviral therapy and perhaps vaccination
against HSV-1 in early life could be useful. If HSV-1 is implicated in AD, vaccination could
prevent the excessive accumulation of AB in the brain. VVaccination with mixed HSV
glycoproteins prior to HSV infection protected against viral latency in mouse brains (£98199).
Also Mori (499200) maintained that antiviral approaches including chemotherapy and
vaccination are promising for prevention and treatment of AD and remain to be validated.
Furthermore, Carter (118) suggested that vaccination or antiviral agents and immune
suppressants may be considered as therapeutic options before or in-during the early stages of
AD. Interestingly, exposure of HSV-1-infected cell cultures to intravenous immunoglobulin
acting via anti-B-amyloid antibedies;antibodies reduced the accumulation of Ap and

phosphorylated tau (266201).
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Angiotensin-converting enzyme (ACE) from Stigmatella aurantiaca may cleave the AB
peptide similar to human ACE and may be used as a novel form of treatment against AD
(261202). Furthermore, Chiarini et al. (262203) maintained that calcilytics could halt AD
progression and preserve the patients' cortical neurons, cognitive abilities, and eventually life
if given at minimal cognitive impairment or at earlier stages. Studies mice
suggested the use of tau aggregation inhibitors as potential drugs for the treatment of AD and

other tauopathies (203204).

Resveratrol is a polyphenol present in red wine. Its capability of directly interfering with the
toxic B-amyloid protein aggregation in AD has recently been shown (204205). Resveratrol
was found to reduce AB-induced toxicity in a Caenorhabditis elegans model of AD by
targeting specific proteins involved in proteostasis and thereby reducing the amount of
aggregated AP (205206). This is in concert with our previous finding that the effect of a
drinking pattern of 2-7 times per week reduced the risk of myocardial infarction among men

who had a history of tooth extractions due to periodontal/dental infection (206207).

Potent inhibitors of AP oligomer formation or AB-induced cell toxicity have proven to be
attractive means for therapeutic intervention of AD. Song et al. (267208) found that the anti-
Alzheimer effects of centipedegrass, which contains several C-glycosyl flavone constituents,
occurred through inhibition of neuronal cell death by intervening with oligomeric A
formation and reducing beta-site amyloid precursor protein cleaving enzyme 1 {BACEL)
activity. The authors suggested that Maysin, a major flavonoid of corn silk, in centipedegrass

could be an excellent therapeutic candidate for the prevention of AD.

Active immunization against important domains of Alzheimer tau eliminated tau aggregation
and neurofibrillary pathology (268209). The AD type of tau hyperphosphorylation was

abolished in transgenic mice by vaccination across a wide range of AD phospho-epitopes.
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Kontsekova et al. (208209) demonstrated that active immunization of rats with a tau peptide
encompassing the epitope revealed by monoclonal antibody DC8ES led to elimination of all
major hallmarks of neurofibrillary pathology involving a 95% reduction in the AD-type

hyperphosphorylation of tau.

CONCLUSIONS

LOAD which is the predominant form of AD, does not seem to have a single cause. On the
contrary, a multitude of factors may be involved and they may act in concert. ©ftheseAmong
others ;-both genetic and environmental factors may be involved. Even among
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Irrespective of the cause, systemic inflammation may predict the onset of dementia.

Organisms such as spirochetes, P. gingivalis, C. pneumoniae, H. pylori, Hrerpes simplex type

virus and Candida are among the prime candidate pathogens the-mest-suspected-pathogens in

events causing AD, oral microorganisms may play a role, particularly anaerobic bacteria such
as treponemes, P. gingivalis, Prevotella spp., Fusobacterium and Actinomyces, but also
facultative anaerobic Candida species. It is important to recognize that infection can occur
decades before the manifestation of dementia. The most convincing evidence for a causal

relationship between oral bacteria and AD is that-noted for spirochetes which are both

neurotropic and motile. Fhey-also-fulflH<och’s-and- Hill's-postulatesfora-causal-relationship- Commented [PB15]: Is this accurate? Certainly not in
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long-term use of antibiotics may be impractical and could select for resistant bacteria. This is

worrisome as the prevalence of AD and the public expenses related to its management are

expected to increase greatly in the next decade.

in AD, then-dental hygiene and treatment will provide the AD prophylaxis from an early age

this-oral-disease-periodontitis is modifiable. However, improving oral hygiene and treating

in the AD patient can be challenging since patients are often uncooperative.- There is also

for training care-givers to assist with oral care in such patients.

Vaccination against key organisms and important domains of AD has had some beneficial
effect. Also several agents interfering directly with the pathogenesis of AD have been tested.

In order to find a cure, there is a need for clinical diagnostic information and knowledge of

the causal agents for AD AB-causative-agents-so that specific treatment_options targeting

these organisms; -against-these-erganisms; can be developed. As for diagnostic biomarkers,

increased antibody levels to specific oral pathogens in particular to P. gingivalis may be used
as a preventive-monitoring tool years before clinical manifestation of AD. This is important

because treatment will probably have to start early.
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Fig. 1. The pathological hallmarks of AD, numerous extracellular amyloid-Af plaques
and intra-neuronal neurofibrillary tangles (NFTs). Although there are several NFTSs,

only one is picked out in boxes at x 10 and x 40 objective lens magnification.

Fig. 2. Immunofluorescence labelling (green dots) of hippocampal CA neurons
opsonised by iC3b following monoinfection with P. gingivalis at 24 weeks of APOe

gene knockout (ApoE—/—) mice. This is indirect evidence of an oral infection having

affected the host’s brain.
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