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Abstract:

In this paper, we revisit the analysis of cross-country convergence by combining spatial
econometrics and panel quantile regressions to estimate conditional f-convergence
models. Moreover, we use both exogenous and endogenous weight matrices. Our results
show that indeed the effects of initial per capita income, investment rate, population
growth and human capital on growth rates vary considerably across the estimated
quantiles. Convergence is not a generalized phenomenon across the conditional growth
distribution. Moreover, while using exogenous spatial weight matrices does not
substantially alter the findings found in a-spatial models, it appears that endogenous

weights dramatically affect the estimates of the convergence process.
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1. Introduction

Given the persistent disparities in aggregate growth rates between countries, it should
come as no surprise that the question of income convergence has received a lot of
attention in the last three decades. Following the seminal contributions of Barro (1991)
and Mankiw et al. (1992), the empirical literature on the subject tends to adopt a
common approach that consists in regressing output growth rates on a number of
variables using a cross-section or a panel of countries. These variables typically include
initial per capita income, investment share, population growth and schooling as a
measure of human capital accumulation. Then, the finding that the coefficient on initial
level of per capita income is negative is generally interpreted as evidence of cross-
country conditional convergence. This is known as the f-convergence concept.

However, a number of contributions have pointed out that there are substantial
problems and pitfalls in estimating and interpreting growth regressions, such as, for
instance, the lack of robustness of the explanatory variables (Levine and Renelt, 1992)
or their endogeneity because of omitted variables or measurement errors (Temple,
1998). We focus here on two other important criticisms.

The first concerns the assumption of parameter homogeneity in the convergence
equations, meaning that the parameters of the models are assumed to be country-
invariant. However, wide evidence for convergence clubs between countries has been
found (Durlauf and Johnson, 1995; Durlauf, 2000). Several methods have been
suggested to characterize parameter heterogeneity, such as regression trees (Durlauf
and Johnson, 1995) or other forms of semi-parametric varying coefficient models
(Desdoigts, 1999). One particular appealing method to deal with parameter
heterogeneity is the use of quantile regression models. Indeed, when applying a quantile
approach to convergence analysis, it is possible to use each estimated quantile to
describe a particular segment of the conditional distribution of income growth. Hence,
this analysis provides a more complete description of the relationship between income
growth rate and initial level of per capita income and other variables and has potentially
important policy implications in terms of the best ways to foster growth depending on

the position of the country in the conditional distribution of income growth rate. Such an
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approach to convergence has been used, among others, by Cunningham (2003), Barreto
and Hughes (2004), Canarella and Pollard (2004), Foster (2008), Ram (2008) and
Dufrenot et al. (2010). Note however that all these papers only apply cross-sectional
versions of quantile regressions methods. This is unfortunate as it has been argued that
the cross-sectional versions of the f-convergence model are affected by unmodelled
country-specific unobserved effects on output levels so that panel versions of the model
are preferable (Islam, 1995). By extension, panel versions of quantile regressions should
be used in convergence models to control both for parameter heterogeneity and
unobserved country effects.

The second concern deals with the assumption of independence between countries.
However, there is now wide recognition that countries are not exchangeable. Hence,
specific econometric techniques should be adopted to account for this cross-sectional
interdependence. In the regional science literature, a large number of papers have
applied spatial econometrics to explicitly include spatial autocorrelation in convergence
regressions on regional data (see Abreu et al., 2005; Ertur and Le Gallo, 2009 or Rey and
Le Gallo, 2009 for literature reviews). The recognition that space matters and that
spillovers are an important part of the growth process is also apparent in cross-country
analyses. In particular, sound theoretical foundations for the inclusion of spatial
dependence in f-convergence models is provided by Ertur and Koch (2007) who show
how a spatial econometric specification of the f-convergence model can be obtained
from a theoretical growth model with Arrow-Romer externalities and spatial
externalities implying inter-country technology interdependence. They then apply their
model to cross-country data and indeed find wide evidence for spatial autocorrelation.
In this context, our paper contributes to the literature in two ways. On the one hand, to
the best of our knowledge, this is the first paper that applies panel quantile regressions
to analyse cross-country f-convergence. On the other hand, we explicitly take into
account spatial spillovers by including a spatial lag term in our specification. While
spatial versions of quantile regressions exist (Kostov, 2009, 2013; Su and Yang, 2011),
they still remain scarce and none concern the issue of convergence. Moreover, not only
do we consider exogenous weights matrices based on geographical distance, as is usual
in the spatial econometric literature, but we also draw on recent papers that consider

endogenous weight matrices in spatial econometric models (Kelejian and Piras, 2014).
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In all, we intend to provide a broader and complete view of cross-country convergence
by combining panel quantile regressions with spatial econometric considerations. Our
approach has several advantages. First, we are able to detect the countries which, given
their endowments, grow faster (resp. slower) than the other comparable countries:
these countries are over-achievers (resp. under-performers). Second and as a
consequence, our framework allows uncovering complex patterns of conditional
convergence across the conditional distribution and the way the speed of convergence
varies across quantiles. As we detail below, our expectation is that the speed of
conditional convergence is significant and increases with quantiles as higher quantiles
group the over-achievers. Third, we can provide a detailed account of the way the effects
of the control variables (average savings, population growth and human capital) on
income growth rate vary across quantiles. These effects may indeed be heterogeneous
depending on the position of the countries in the conditional distribution. Hence,
detecting precisely how they impact growth is important from a policy point of view to
specify the relevant leverages to enhance growth.

Our results show that indeed the effects of initial per capita income, investment rate,
population growth and human capital on growth rates vary considerably across the
estimated quantiles. Convergence is not a generalized phenomenon across the
conditional growth distribution. In particular, while a mean regression implies a
coefficient for the lagged income significant and negative equal to -0.005, we only find
conditional convergence in the upper part of the distribution, with coefficients up to
-0.015 for exogenous weights matrices. Moreover, while using exogenous spatial weight
matrices does not substantially alter the findings found in a-spatial models, it appears
that endogenous weights dramatically affects the estimates of the convergence process:
the convergence effect appears for larger part of the distribution and is generally
stronger. Moreover, while for the exogenous specifications, the impact of human capital
is only significant for the upper part of the distribution; it is significant and positive for

the whole distribution in the endogenous case.

This paper proceeds as follows. In the next section we briefly review the quantile

approach in econometrics and show how it can be extended to panel data and/or spatial
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data. We then present (Section 3) the data and weight matrices used in the empirical

analysis. Section 4 outlines our estimation results. Finally Section 5 concludes.

2. Methodology

2.1  Formulation of the general model
The general econometric model employed in the present paper can be expressed as

follows:

y=1W t+Xfﬁr+aT+uU =1.T (1)
In (1) above y,is a (N,1) vector of the dependent variable for all cross-sectional
observations in time ¢,  =1_..T. The (N,K) matrix XI similarly contains the covariates for
time ¢ and W, is a (N,N) cross-sectional spatial weighting matrix for time t. We also

include a vector of individual ‘fixed effects’ («, below) for each individual i. All

coefficients are dependent on a given quantile 0 <7 <1. Ignoring the individual effects

a,, which make the model in equation (1) infeasible, is equivalent to a cross sectional

quantile spatial autoregression (see Su and Yang, 2011 and Kostov, 2009, 2013) for a
period t. However if the above formulation holds for each period ¢t (1<t <T ), then we

can combine all these equations implied by (1) for Vt (1<t<T ) to obtain the following
panel quantile spatial autoregressive formulation we employ in this paper:

y=AWy+X B +y +u (2)
st g (ulesy,X)zﬂ (3)
In equation (2), u,y and X are the stacked versions of U,y and X: over time and

Ws is a (NT,NT) block diagonal matrix formed by the cross-sectional spatial weighting

matrices W,. The block-diagonal structure excludes time-dependence. Moreover, in the

case of a balanced panel and time-invariant spatial weighting matrices, these will be

identical: W =W ,Vt and W =1 ®W. We also include a similarly stacked vector of

individual ‘fixed effects’ ( v =e, ® af) yielding the panel quantile spatial autoregressive
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formulation we employ in this paper. Equation (3) represents the linear quantile
restriction that states that the 7 th conditional quantile is zero. It is the equivalent to the
zero-mean restriction on the residuals in a mean regression model.

While the conventional mean regression models the mean of a dependent variable and
basically assumes that the same relationship is applicable over the whole distribution of
the response, the quantile regression models the conditional quantile(s) and hence
allows different effects of the covariates over the conditional distribution. Consequently,
estimating quantile regression over a range of quantiles allows one to model the whole
conditional distribution.

Consequently, with this specification, we can account for both a ‘spatial’ spillover

process (via the spatial lag 4_) and individual heterogeneity (via the individual effects in
¥,)-

2.2 Interpretation of coefficients in spatial panel quantile models

Excluding the individual effects stacked in 4 would reduce our model to the ‘spatially

autoregressive quantile regression model’ of Su and Yang (2011). Kostov (2009, 2013)
refers to this cross sectional version as simply “spatial quantile regression”, but such a
term could be easily confused with other quantile regression formulations in the context
of spatially dependent data that do not involve endogeneity, but use spatially varying
coefficients (e.g. Hallin et al., 2009; Reich et al., 2011; Lum and Gelfand, 2012; Chen et al,,
2012).

One should nevertheless have to be careful in drawing analogies between spatial
quantile autoregressions and mean models, since quantile models are intrinsically non-
linear. In particular, inference in the mean spatial autoregression relies on the
computation of the partial derivatives, following LeSage and Fischer (2008). As Kostov
(2013) noted for the spatial quantile autoregression, such a computation can be done
similarly to the linear spatial lag model. However, the interpretation of these would be
quite different due to the nonlinearity of the quantile regression. To clarify this, let us
rewrite the non-panel version of (2) in the following reduced equivalent form, as in the

mean spatial autoregression literature:

y=(1=2W,) " X8 +(1=2W,) ", +(1 - 2W,) "u, (4)
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Equation (4) above is the basis for formulating the average direct and indirect effects
and it can be used to derive these in exactly the same way as this is done in the mean
spatial literature. However, there is one important difference. The mean models are
identified by the corresponding conditional mean restriction (as opposed to the
conditional quantile restriction in (3) above). Viewing (4) as a linear quantile regression
model means to associate it with a linear quantile restriction, similar to (3). However, in
general the quantile restriction implied in this would be a different one (to the one given
in (3)). Hence viewing (4) as a model representation produces a very different model
from the one specified in (2). Whether one wants to do this is another story since the

actual interpretation for these two alternative models would be quite different.

The model in (2) above can be considered as both a spatially autoregressive model with
added individual effects, or alternatively as a ‘fixed effects’ panel quantile model with an
endogenous spatial lag. The latter is more convenient from an estimation point of view.
Therefore our estimation strategy follows this logic: we account for the spatial lag
endogeneity in a panel quantile regression framework. This allows us a gradual
transition from the simpler panel quantile regression to our model. Below we briefly

review the issues and estimators for panel quantile regression models.

2.3  Estimation issues for panel quantile models

Introducing individual effects to account for possible unobserved individual
heterogeneity in quantile models leads to complications. Indeed, since the quantile
regression is essentially a non-linear model, there is no transformation (such as the
within transformation, time differencing, orthogonal deviations used to cancel the
individual effects in linear models) that can eliminate the individual effects. Hence, these
will have to be estimated directly by including individual dummies. Such a strategy can
however lead to a version of the incidental parameter problem (when the cross-
sectional dimension increases with the sample size, i.e. N going to infinity with fixed T in
a more usual terminology) resulting in inconsistent estimates. Rosen (2009) and
Chernozhukov et al. (2009) study these identification issues in more detail.

Probably the first and best-known approach is the proposal of Koenker (2004) who
suggested shrinking the 'fixed effects' (via L1 penalty) to overcome the bias. The idea is

very simple. While the introduction of individual effects increases the variability of their
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estimates, shrinking them towards a common value (via the L1 penalty) helps reducing
this variability. The asymptotics in this case relies on both T and N growing to infinity
(at the same rate, so it is not applicable to short-time panels). In practice, implementing
the ‘fixed effect’ quantile regression is relatively straightforward. The main stumbling
block is the choice of optimal amount of shrinkage. Lamarche (2010) showed that under
some regularity conditions, the regularised quantile estimator of Koenker (2004) is
asymptotically unbiased. Then, choosing the amount of shrinkage that minimises the
asymptotic variance is equivalent to minimising the average mean square error (AMSE)
of the estimator.

The proposal of Koenker (2004) is known as the ‘fixed effects’ (FE) approach to panel
quantile regression and has been much more extensively studied and developed than
any of the other alternatives. Consequently, fixed effects models have been dominating
the quantile panel modelling literature. One should however be very careful when
directly comparing quantile models with their linear counterparts, since direct

generalisations are not always possible.

We now briefly review some alternatives to the ‘fixed effects’ approach.

The second most well-known estimator is probably that of Abrevaya and Dahl (2008).
They impose a particular structure on the relationship between individual effects and
regressors resulting in a correlated-random-effects (CRE) quantile regression model. As
a result, they obtain a correlated random coefficients model that can be estimated
consistently using standard quantile regression techniques. The main problem here
from practical point of view is the need to specify the correlation structure (which may
be far from obvious). The other issue with the Abrevaya and Dahl (2008) estimator is
that since it uses the Chamberlain (1982) projection approach, it is only applicable to
balanced panels. Bache et al. (2013) propose a restricted version in which, when
specifying the correlation structure, they replace the regressors correlated with the
individual effects by a weighted average of their time realisations, which, in the simplest
case of unweighted averages, yields their time means and hence can be applied to
unbalanced panels.

[t is worth noting at this point that the terminology used in the panel quantiles literature

mimicking the linear panel modelling tradition is slightly misleading. Indeed, since all
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quantile coefficients are in principle variable (by definition) they resemble the random
effects in the linear model case. Therefore, technically speaking, the quantile 'fixed
effects’ are essentially shrunken random effects. Given this distinction, it would have
been much more natural to use ‘random effects’ specification. In particular, such random
effects formulation would arise naturally if a Bayesian modelling framework is adopted.
As shown e.g. in Yuan and Yin (2010) if one penalises the subjects specific effects by an
L2 (instead of L1 as in Koenker, 2004) penalty, since the L2 penalty can be expressed as
the logdensity of a Gaussian random effects prior, this naturally leads to a Bayesian
random effects approach. Following Yu and Moyeed (2001) the Bayesian approach to
quantile regression uses the asymmetric Laplace (ASL) density for the error terms to
formulate Bayesian quantile regression models. The location-scale mixture
representation of the ASL distribution, proposed by Kotsumi and Kobayashi (2009)
allows one to reformulate this Bayesian quantile model as an alternative conditionally
Gaussian representation and hence apply existing sampling techniques available for
Gaussian models (see e.g Reed and Yu, 2009). Kostov and Davidova (2013) use the
equivalence between Laplace prior and L1 penalty (aka Bayesian lasso) to construct a
Bayesian equivalent to the Koenker (2004) estimator, but their approach is
computationally more demanding than that of Yuan and Yin (2010). Canay (2011)
proposes a two-step estimator that is particularly easy to implement. However, he
imposes the restriction that the individual effects do not change across quantiles.
Moreover, in addition to being much more restrictive, Canay’s (2011) estimator requires

a balanced panel dataset.

In considering alternative panel quantile models, one needs to take into account the
theoretical properties of the alternative estimators and their computational
requirements. Here we will not discuss the former and will briefly consider the practical
implementation issues.

Although by far the most popular, the Koenker (2004) estimator is the most demanding
computationally in that the search for optimal amount of shrinkage carries considerable
computational costs. Bayesian estimation via Markov Chain Monte Carlo (MCMC(C)
simulation is always computationally demanding, but workable approximations, such as

variational inference (Waldmann and Kneib, 2014), or (integrated nested) Laplace
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approximation (Yue and Rue, 2011) are available to reduce the computational costs.
Finally, the CRE approach is computationally the most appealing, although it requires
practical examination and justification of the identification assumptions and hence may

not always be applicable to the specific estimation problem.

In the first part of our empirical analysis, where we don’t allow for spatial effects, the FE
and CRE models are estimated jointly at all considered quantiles by weighting the
individual quantile objective functions. Equal weighting for all quantiles is used. The
optimal amount of shrinkage for the FE model is calculated following Lamarche (2010).
The individual effects in the CRE models are allowed to be correlated with the lagged
income. With regard to the random effect formulation, we have implemented Bayesian
MCMC inference using the sampling scheme suggested in Waldman et al. (2013) which
avoids the mixing and convergence issues found by Yue and Rue (2011). We have
implemented the variational approximation as detailed in Waldmann and Kneib (2014).

Taking into account the endogenous spatial lag can generalise the above estimators to
the model we consider in this paper. For simplicity we will only focus on the non-
Bayesian approaches. Harding and Lamarche (2009) plugged-in the instrumental
variables quantile regression estimator of Chernozhukov and Hansen (2005, 2006) to
obtain a panel quantile regression under endogeneity. Since the estimator of
Chernozhukov and Hansen (2005, 2006) is numerically convenient (i.e. it involves
search over one dimensional grid in the case of a single endogenous variable), is the
basis of the implementation of Kostov (2009) and its properties for spatial quantile
autoregressive models have been studied in Su and Yang (2011), such implementation is
in the spirit of previous research in this area. In principle, there is nothing preventing
one combining in the same way alternative endogeneity and panel estimators, although
the theoretical properties of such alternative combined estimators remain to be
established. We applied the Chernozhukov and Hansen (2005, 2006) estimator to the
panel ‘fixed effects’ and ‘quantile’ formulation of Koenker (2004) by instrumenting the
endogenous spatial lag by spatial lags of the exogenous variables as in Kostov (2009,
2013) and Su and Yang (2011). However, the optimal shrinkage determination in the
‘fixed effects’ model is computationally demanding. For this reason, we have also applied

the control function approach (see Lee, 2007) to control for the endogeneity of the
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spatial lags, since it avoids two sets optimisation (over the shrinkage parameter and the
spatial lag coefficients). The results from the two alternative approaches were not
significantly different. We only report the control function approach estimates for the

CRE estimators.

3. Data and weight matrices

3.1 Data
We base our analysis on the well-known Mankiw et al. (1992) specification to evaluate

the impact of saving, population growth, human capital and location on the growth rate

of per capita income. Our dependent variable (J’: in (2)) is a 5-year average of growth

rate of per capita GDP. Following Mankiw et al. (1992), the explanatory variables (Xt in

(2)) should be initial per capita GDP and proxies of average saving rate, population
growth and average human capital.

Specifically, the data for per-capita GDP, saving, population growth are extracted from
the Heston et al. (2012) Penn World Table (PWT version 7.1), which contain information
on real income, investment and population for a large number of countries. With respect
to the control variables, we proxy population growth as the average growth of the
working age population (15 to 64) on a basis of 5-year interval. The number of workers
needed for the computation of this variable has been obtained as:
RGDPCH *POP/RGDPW, where RGDPCH is real GDP per capita computed by the chain
method, RGDPW is real-chain GDP per worker and POP is the total population. The
savings rate is measured as the average share of gross investment in GDP for each five-
year interval. Finally, the data on human capital is extracted from the Barro and Lee
(2011) dataset. We use the educational attainment in secondary school for total
population over age 15. Again, these data are available for five-year intervals. Hence the
data used in this study consists of 5-year averages for the per-capita GDP, saving,
population growth and human capital measures. In the empirical specification, we use
the lagged value for the GDP per capita as initial income measure, which in this case is
the value for the previous 5 years. Such aggregation is a standard practice in panel data
growth studies and have been shown to improve significance of the result in accordance

with theoretical predictions (Krueger and Lindahl, 2001).


http://doi.org/10.1111/kykl.12093

This is a post-print of Kostov, P. and J. Le Gallo (2015) Convergence: a story of quantiles
and spillovers, Kyklos, 68(4), 552-576. The definitive version is available at
http://doi.org/10.1111/kykl.12093

These variables are constructed for an unbalanced sample of 120 countries over the
period 1955-2010. Hence we have t = 1...11 and N= 120. The same dataset is used in the
spatial models. The availability of distance metrics to construct the spatial weighting
matrices imposes further exclusions. With regard to the exogenous case, since we use
readily available geographical information, this results in an identical sample. For the
endogenous spatial weighting matrix however the availability of data to construct the
spatial weighting matrices excludes 20 countries. Moreover, since the market potential
data varies from year to year, its availability further restricts the years for which the
exogenous models can be implemented. The countries in the dataset and the years of

availability in both cases are displayed in Table S.1 in a supplementary appendix.

3.2 Spatial weight matrices
To avoid confusion below, when we mention a spatial weighting matrix, we mean the

cross-sectional ones. Conversely, we refer to W, in equation (2) above which is

constructed from these cross-sectional matrices, as the ‘global’ spatial weighting matrix.
In the empirical application, we compare two categories of weight matrices: exogenous
matrices purely based on the spatial configuration of the countries on the one hand and
endogenous matrices based on economic characteristics on the other hand.

With respect to exogenous weight matrices, we use three different specifications: (i) A
binary W with 100km definition of neighbourhood (i.e. countries within 100 km of each
other being defined as neighbours); (ii) A binary W with the neighbourhood defined as
the 10 nearest (geographically) neighbours (iii) Finally a W with inverse squared
(geographical) distances as weights and cut-off definition of the neighbourhood, as
explained below. One can view the above as illustrations for three different types of
spatial weighting matrices. We have tried several alternative representations for each of
these three types (i.e. different definitions of neighbourhood as distance in (i) or number
of neighbours in (ii) as well as inverse distances and alternative cut-off definitions in
(iii)) and the estimation results are insensitive to such alternative parameterisations. All
the presented specifications (and the omitted ones) share the common property that
each country has at least one neighbour for each year.

For all the cases above, we create separate W for each year in the dataset and combine

these into a ‘global’ W . Moreover, for the last case we apply the following cut-off rule.
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We calculate the number of neighbours for each country and each year. For each annual
W we then calculate an annual ‘threshold’ as the minimum weight (equivalently the
maximum distance) for which every country has at least one neighbour for that
particular year. This allows us to take the maximum over all annual thresholds and use
this as cut-off, by setting all weights below this threshold to zero. The above procedure
ensures that locally (i.e. for every separate year) each country has at least one
neighbour). Since all exogenous weights above are calculated from geographical
measures of proximity, the underlying ‘local’ spatial weighting matrices are time-
invariant. However due to the unbalanced nature of our panel data combining the ‘local’
(i.e. annual) W into a global one results in a global spatial weighting matrix replicating
the structure of the panel data.

With respect to endogenous weight matrices, we use data on market potential from
Mayer (2009) for the period 1960-2003. The dataset is available at
http://www.cepii.fr/anglaisgraph/bdd/marketpotentials.htm. Since we use 5-year
intervals, we have used the 2003 market potential data for 2005. The market potential
concept (labelled Market Access (MA) by Redding and Venables (2004) or Real Market
Potential (RMP) by Head and Mayer (2004)) relates the level of factors’ income of a
country to its export capacity. More specifically, the level of factor incomes in each
country (since in the case considered here labour is the only factor, it means the wages)
can be explained by a weighted sum of expenditures of all countries in the world (the
sample). The weights are given by the bilateral trade costs calculated by export
destination. It is this weighted sum that is termed market potential. Hence the market
potential reflects the structure of international trade and countries with similar market
potential face similar terms of trade defined with regard to the factor under
consideration (i.e. labour). Increasing wages outside a country relative to its own level of
wages would therefore increase its market potential measure. Therefore one can view
the market potential as a trade competitiveness measure (with regard to labour in this
instance). Using the differences amongst the countries’ market potential as distances to
construct spatial weighting matrices defines a spillover process representing trade
competition reflecting returns for labour, while holding returns to other factors

constant.
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The endogenous W is hence based on the market potential. The latter is available on
annual basis so that the resulting spatial weights are time specific. The market potential
based W is based on the pairwise differences in the market potentials for different
countries and the corresponding ‘spatial’ weights are calculated as inverse distances.
The construction of a global W is implemented using a cut-off rule similarly to the
exogenous case, i.e. selecting a global cut-off that ensures each country has at least one
neighbour in each separate year.

It is clear from the nature of the differences underlying the construction of this spatial
weighting matrix that the exogeneity assumption can no longer hold. Consequently, we
used the sum of bilateral distances and the sum of estimated bilateral trade costs for
each pair of countries to construct instruments for the endogenous W, following the
approach proposed by Kelejian and Piras (2014). These instrumental matrices are
similarly calculated for each separate year and then combined together. We have also
implemented alternative sets of instruments (only sum of bilateral distances or only
sum of estimated bilateral trade costs based matrices) as well as inversed squared
distances based W. These alternative specifications produce very similar results.

Finally, we standardize all the weight matrices (both exogenous and endogenous) using
the procedure described in Kelejian and Prucha (2010) and based on the spectral radius.
The reason we prefer the spectral radius based procedure over the more commonly
used standardisation using row sums is that the latter converts absolute distance-based
interactions into relative distance-based interactions, hence changing the information

content of the connection structure.

4. Results

Before discussing the results, it is useful to recall the way in which the quantile
regression results should be interpreted in our context of conditional S-convergence
models. In particular, note that the word ‘conditional’ may be used for two different
concepts. Indeed, we estimate conditional f-convergence models: compared to absolute
[-convergence, additional control variables are added, which implies that each country
converges to its own steady state. These are estimated in the context of conditional

quantile regressions, i.e. conditional to the distribution of income growth rate. Then, the
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upper conditional quantiles represent the countries which, given their endowments (i.e.
savings, population growth, human capital and initial income), grow faster than the
other comparable countries (i.e. faster than they should). These countries can be
labelled as “over-achievers” (Barreto and Hugues, 2004). Once again, note that these do
not need to be the unconditionally faster growing countries. On the contrary, lower
conditional quantiles group the “under-performers”. Assuming that the process of
conditional S-convergence holds, this has the following implications for our empirical
model. In mean models, the negative sign of the lagged income is an indication of
conditional convergence. In the quantile regression specification, the same applies, but
we can have different patterns of conditional convergence (negative sign), non-
convergence (no effect) or divergence (positive sign) across the conditional distribution.
Larger negative coefficient of lagged income implies faster convergence. Looking at the
quantile distribution, since upper quantiles signify conditionally faster growing
countries, one should expect that the latter should also converge faster. In other words
faster growth should be associated with better catching up. Hence one would expect the
coefficient of lagged income to be both negative and increasing in magnitude with the
quantiles. Deviations from this expectation could be interpreted as violations of the

assumed convergence to a single steady state dynamics.

4.1  Non-spatial panel quantile models

Before proceeding to the main panel data estimators, it would be useful to put these in
comparative perspective. Figure 1 contains a comparison of the fixed effects quantile
regression estimates (which is the main panel QR estimator we consider) with simple
OLS estimates and standard quantile regression (i.e. respectively pooled versions of
mean and quantile regressions).

A range of quantile regression models from the 0.05t% to the 0.95% quantile at 0.01
increments are estimated. In this particular case the fixed effects and standard quantile
regression results appear similar. This is due to the fact that the optimal shrinkage term
applied to the fixed effects is quite large, hence shrinking them more severely towards
zero and moving panel quantile estimates closer to the conventional quantile regression
ones. This similarity can be attributed to using 5 year averages which reduce the year

on year variability in the data (more pronounced differences are observed if non-
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averaged data is used instead). However ignoring the individual country effects leads to
underestimation of the standard errors and the confidence intervals produced by simple
quantile regressions are tighter than what they should be, resulting in potentially
inefficient inference.

[Figure 1 around here]

We present results from non-spatial panel quantile models on Figure 2. We applied four
different specification/estimation methods:

- FE refers to the fixed effects panel quantile regression (Koenker, 2004) with optimal
shrinkage estimated following Lamarche (2010);

- CRE is the correlated random effects estimator of Abrevaya and Dahl (2008) amended
following Bache et al. (2013) to allow for unbalanced panels;

- MCMC is a Bayesian formulation with country random effects with Dirichlet process
priors, estimated by the modified Markov Chain Monte Carlo algorithm of Waldmann et
al. (2013). This version has been chosen because of improved convergence;

- VA is a computational simplification of the Bayesian formulation with more restrictive
Gaussian priors on the random effects and estimated using the variational
approximation method of Waldmann and Kneib (2014). This provides a more restrictive
model, but considerably reduces the computational costs.

The FE and CRE results are obtained by jointly estimating all the considered quantiles,
while the Bayesian formulations are estimated on a quantile by quantile basis.

Overall, these different estimation methods produce similar results. The main difference
resides in the confidence intervals, which are wider for the more general specifications
and notably narrower for the more restrictive VA model. Interestingly, the MCMC model
results agree with the VA results in the lower part of the conditional distribution, but
converge to the FE and CRE results in the upper part. Bearing in mind that the Bayesian
formulations impose independent random effects, this suggests that this assumption is
more likely to be violated in the lower part of the distribution since it affects the results
to a greater extent there.

The convergence effects (i.e. coefficient of lagged income) are shown on Figure 2a. In
general, we only find conditional convergence (i.e. a negative coefficient) in the upper

part of the distribution. This finding is consistent with Cunningham (2003), Barreto and
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Hughes (2004) and Canarella and Pollard (2004). In the lower part of the distribution
the lagged income coefficient is not statistically significant, which indicates non-
convergence, but importantly does not exhibit divergence. Since the lagged income
coefficient is in general decreasing (i.e. increasing in magnitude) with the quantile, when
countries are converging the catching up countries are converging faster. However, the
presence of non-converging countries (at the lower quantiles) is consistent with the

phenomenon of convergence clubs.

[Figure 2 around here]

With respect to the control variables, first note that the effect of average savings (Figure
2b) is positive, as expected. This effect does not appear to be varying with quantiles with
the possible exception of the lower tail where it appears to be larger. Intuitively, this
makes sense because it means that larger investment in physical capital share leads to
higher growth. Note that Barreto and Hughes (2004) find that the importance of
investment share increases with quantiles and interpret this as a failure for
underperformers to convert relative investment into economic growth. It is also at odds
with the findings of Canarella and Pollard (2004) who only find significant coefficients
for lower and higher quantiles. We do not confirm these results when using panel
quantile techniques rather than cross-sectional ones.

The effect of (working) population growth (Figure 2c) is positive, but decreasing with
quantile and becoming statistically insignificant in the upper part of the distribution.
Hence, increasing workforce contributes to economic growth but up to a certain point.
For conditionally slower growing economies this effect is larger and it reduces and
totally disappears for faster growing ones. Labour intensive growth is therefore more
beneficial to conditionally slower growing economies. For faster growth it is the quality
(see next result) rather than the quantity of the workforce that accelerates growth.
Finally, a somewhat unexpected result is that the effect of the human capital on growth
(Figure 2d) is insignificant except in the extreme upper tail of the conditional
distribution where it is positive (as it is to be expected). This means that only the fastest
growing (conditionally) economies are indeed able to translate investment in human

capital in higher economic growth. Moreover, in the upper tail, the effect is increasing
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with quantile, so that the conditionally fastest growing countries are able to exploit
human capital more effectively to further economic convergence. Again, this result does
not follow that of Barreto and Hughes (2004) who found that the importance of
secondary school attainment reaches a peak between the 30t percentile and the median
and then drops for higher percentiles. It is however closer to Canarella and Pollard
(2004) who found that the estimates for human capital increase with quantiles and are

not significant for lower quantiles.

4.2  Spatial panel quantile models

When comparing spatial models (or spatial and nonspatial ones), one uses the partial
derivatives (see LeSage and Fischer, 2008). More specifically, since the partial
derivatives vary with each observation, the average total impacts are useful in
comparing such models. In linear spatial quantile models, the relationship assumes a
linear functional form and hence the average total impacts can be computed in the same
way as for the linear mean models (Kostov, 2013). Hereafter we will refer to these
comparable effects (i.e. the average total quantile effects from the spatial models, as well
as the coefficients from the nonspatial ones) simply as ‘effects’.

Figure 3 shows a comparison between the effects from a non-spatial (FE) and the
average total quantile impacts from spatial exogenous spatial weighting matrix
estimators. The choice of estimators from each class is based on popularity (for the non-
spatial) and realisticness (for the spatial one). The exogenous (case (iii) in section 3.2)
and endogenous spatial weighting matrices model specifications were discussed above.
The main purpose of Figure 3 is to provide an overall comparative perspective on the
way results change with specification. It appears that using different versions of spatial
and non-spatial panel quantile regression estimators does not change the qualitative
conclusions drawn from such a comparison. The main conclusion is that the exogenous
spatial specification results are broadly speaking compatible with the non-spatial model
results. In general terms, these two sets of estimators produce comparable results and
lead to similar conclusion. The main qualitative difference concerns the effect of human
capital. While the non-spatial estimation only discovers positive effect of human capital
in the extreme right (upper) tail of the conditional growth distribution, the spatial

estimation locates such positive effects in larger part of the upper tail (approximately
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after the 0.85%h quantile). Therefore accounting for potential (exogenous) growth

spillovers leads to a more widespread effect of human capital.

[Figure 3 around here]

The endogenous spatial model formulations however produce drastically different
results. Figure 4 shows the estimated average total impacts form a range of spatial panel
quantile models. We present results for one endogenous and the three exogenous spatial
weighting matrix specifications, as discussed in section 3.2. Further results (on
additional specifications) are available upon request.

It is important to note that the quantile impacts for spatial quantile autoregressions can
only be compared qualitatively, rather than quantitatively. To understand this, consider
equation (2). The conditional quantiles (3) are specified with regard to all covariates,
including the spatial lag, i.e. they are also conditional on the assumed spatial spillover
process. In other words faster growing economies in this case are the ones that grow
faster given not only their endowments, but also the nature of the assumed spillover
process.

In general terms, the total impacts from the presented (and omitted) exogenous
specifications are similar and lead to the same conclusions. The other general difference
is that as it is to be expected the confidence intervals for the endogenous spatial
weighting matrix specification are considerably wider, accounting for the additional
uncertainty embodied in the model. We now consider the differences between the
endogenous and the exogenous cases on a variable-by-variable basis.

First, with respect to convergence, although the convergence effect in the endogenous
specification is stronger (i.e. larger in magnitude) than in the exogenous specifications
and its confidence intervals are much wider (Figure 4a), the qualitative conclusions are
similar. Both types of specification show insignificant impact in the lower part of the
growth distribution and significant negative impact in the upper part of the distribution.
This implies only a partial conditional convergence (for the faster growing economies,
but not for all). Further differences are worth noting. Indeed, in spite of the wider
confidence intervals, the endogenous specification uncovers convergence effects in

larger part of the distribution (these appear at around the 0.4t quantile as opposed to
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the 0.5t for the exogenous specification). Coupled with the larger magnitude of these
one may say that endogenous spillovers imply ‘more’ convergence. Also, generally
speaking in both specifications, convergence effects increase with quantile (which is to
be expected). In terms of magnitude the endogenously derived convergence impacts are
larger implying higher rates of convergence that those obtained from exogenous

specifications.

[Figure 4 around here]

Second, with regard to savings (Figure 4b) both specifications show positive impacts, as
expected. There seems to be difference in the size of the impacts in that the
endogenously defined impact of investment shares are larger, but for the lower part of
the distribution up to the 0.2th quantile where they are smaller. Hence endogenous
spillovers lead to larger impact of investment by (endogenously) amplifying their impact
relative to the lack of such endogenous mechanism. However this amplification
(multiplier effect) only happens after a relative threshold in the conditional growth rate
is reached (there is a jump in the impact at around the 0.2th quantile). Therefore, we are
able to recover evidence for potential investment ‘traps’.

Third, the workforce impacts (Figure 4c) are similar for both types of specification.
Owing to the wider confidence intervals in the endogenous case, these impacts are only
significant between roughly the 0.25t and the 0.4t quantile (as opposed to most of the
lower part of the growth distributions in the exogenous case).

Finally, it is with regard to the total impact of human capital (Figure 4d) where the
difference between the endogenous and exogenous specification is striking. Note that
the issue of measures of human capital and their potential effect is a subject to some
controversy in the cross-country growth literature. The nature of the adopted proxies
has been criticised (see e.g. Gemmell, 1996). The significance of this measure has also
been shown to depend on sample and functional form choices. Previous studies have
found either insignificant effects of human capital proxies (e.g. Benhabib and Spiegel,
1994) or negative effects (e.g. Islam, 1995; Caselli et al. 1996). The inconsistency in the
previous results for human capital effect have been explained by the deployment of

inappropriate assumptions about constant coefficient and linearity (Krueger and
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Lindahl, 2001) or measurement and functional form issues (Delgado et al.,2014). While
for the exogenous specification the impact of human capital is only significantly positive
in the upper tail (beyond the 0.85% quantile), the impacts from the endogenous
specification are positive across the whole distribution and considerably larger than
those in the exogenous case. There appears to be an increase in the impacts in the upper
tail implying that faster growing economies manage to better utilise their human capital.
Recently Delgado et al. (2014) using non-parametric tests failed to discover significant
effect of different human capital measure (years of schooling) but find strong evidence is
support of human capital quality effects. One has to be careful in drawing parallels since
their approach is univariate and focused on mean effects but our results appear to
confirm such a conjecture. In particular the results from the non-spatial and the
exogenous spatial weighting matrix model confirm the insignificance of the human
capital measure for most of the conditional distribution, but the upward trend in the
upper tail does suggest role for the quality of human capital. Its significance alongside
the whole conditional distribution in the endogenous spillovers model on the other hand
strongly supports the quality explanation. Since our endogenous spillovers specification
is defined by wages (as factor income determining the market potential and ultimately
the distance metric) if we assume that returns to labour are related to its quality, then
our spillover specification implicitly includes the quality of human capital and hence
one could expect it to be significant. The inability of the existing human capital measure
to capture its quality, which is theoretically the driving force of the growth process, is a
recurrent issue in the growth literature (see e.g Pritchett, 2001). Quality is hence a
possible (and credible) explanation for these differences. Indeed, since the endogenous
spatial weighting matrices are based on wage differences, they implicitly allow for
interdependence between growth outcomes based on differences in labour returns,

which is an implicit measure of labour quality.

5. Conclusion

This paper applies a spatial panel quantile regression models to the issue of conditional

f-convergence. While previous analyses have taken into consideration spatial spillovers

or have looked into the conditional growth distribution using quantile regression
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methods on cross-sectional data, we are the first to combine together both spatial
spillovers and panel quantile analysis. This combination allows for deeper insights into
the cross-country convergence process.

Our analysis shows that the nature and strength of the effects do not depend on this
whether one assumes or not the presence of spillover effects, but on the nature of these
spillovers. Assuming endogenous spillovers dramatically affects the estimates of the
convergence process. Furthermore, the effect of human capital differs considerably
between endogenous and exogenous spillover specifications. Our results suggest that
the effect of human capital probably depends on its quality and the nature of the
economy. We find evidence of conditional convergence amongst approximately half of
the conditional growth distribution, while the rest do not demonstrate convergence.
Interestingly we find no evidence for growth divergence.

Our specification does not include time dynamics. For this reason we cannot deduce
whether they do not converge because they have already reached the steady state, or
simply they are moving to a different steady state (club convergence). However the lack
of non-convergence (positive lagged income effect) is quite important. It implies that
even if there is club convergence, the different steady states are not entirely
independent, but related since countries converging to a different steady state do not

move away from the main one.
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Figures

Figure 1. Comparison of the main estimator with conventional estimators
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Dotted lines (and shaded area for the QR estimator) show the corresponding confidence intervals
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Figure 2 Results from non-spatial panel quantile models
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VA - random effects quantile regression estimated via variational approximation
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Dotted lines (and shaded area for the FE estimator) show the corresponding confidence intervals


http://doi.org/10.1111/kykl.12093

This is a post-print of Kostov, P. and J. Le Gallo (2015) Convergence: a story of quantiles
and spillovers, Kyklos, 68(4), 552-576. The definitive version is available at
http://doi.org/10.1111/kykl.12093

Figure 3. Comparison of spatial and non-spatial panel quantile models
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FE - fixed effects quantile regression (non-spatial model)

Exogenous W- Spatial model with exogenous spatial weighting matrix

Endogenous W - Spatial model with endogenous spatial weighting matrix.

The spatial models results present the total average quantile effects.

Dotted lines (and shaded area for the FE estimator) show the corresponding confidence intervals


http://doi.org/10.1111/kykl.12093

This is a post-print of Kostov, P. and J. Le Gallo (2015) Convergence: a story of quantiles
and spillovers, Kyklos, 68(4), 552-576. The definitive version is available at
http://doi.org/10.1111/kykl.12093

Figure 4. Spatial panel quantile model results
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Endogenous W - Spatial model with endogenous spatial weighting matrix.

Binary 100 km distance W- Spatial model with a binary spatial weighting matrix based on 100 km definition of
neighbourhood.

Binary 10 nearest neighbours W — Spatial model with a binary spatial weighting matrix based on the 10 nearest
neighbours.

Inverse squared distance weights with global cut-off - Spatial model with spatial weighting matrix
constructed from inverse squared distance weights by applying a global cut-off.

The estimates refer to the total average quantile effects.

Dotted lines (and shaded area for the endogenous specification) show the corresponding confidence intervals


http://doi.org/10.1111/kykl.12093

This is a post-print of Kostov, P. and J. Le Gallo (2015) Convergence: a story of quantiles
and spillovers, Kyklos, 68(4), 552-576. The definitive version is available at
http://doi.org/10.1111/kykl.12093

Appendix 1

Table S.1. Countries in the dataset and years of availability

Country Years of availability
Non-spatial models and Spatial models
Spatial models with endogenous W
with exogenous W

Afghanistan 1975-2010 1980-1985
Albania 1975-2010 1990-2005
Algeria 1965-2010 1980-1995
Argentina 1955-2010 1985-2000

Armenia 2000-2010 -
Australia 1955-2010 1980-2000
Austria 1955-2010 1980-2005

Bahrain 1975-2010 -
Bangladesh 1965-2010 1980-1995
Barbados 1965-2010 1980-1995

Belgium 1955-2010 -

Belize 1975-2010 -
Benin 1965-2010 1980-1980
Bolivia 1955-2010 1980-2000

Botswana 1965-2010 -
Brazil 1955-2010 1990-2005
Bulgaria 1975-2010 1980-2005
Burundi 1965-2010 1980-1990
Cambodia 1975-2010 1995-2000
Cameroon 1965-2010 1980-2000
Canada 1955-2010 1980-2000

Central African 1965-2010

Republic -
Chile 1960-2010 1980-2000
Colombia 1955-2010 1980-2000
Costa Rica 1955-2010 1985-2000
Croatia 2000-2010 1995-2005
Cuba 1975-2010 1980-1985
Cyprus 1955-2010 1980-2005
Czech Republic 1995-2010 1995-2005
Denmark 1955-2010 1980-2005
Ecuador 1960-2010 1980-2005
Egypt 1955-2010 1980-1995
El Salvador 1955-2010 1980-1995
Estonia 1995-2010 2000-2005
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Fiji 1965-2010 1980-1990
Finland 1955-2010 1980-2000
France 1955-2010 1980-2005
Gabon 1965-2010 1980-1995
Ghana 1960-2010 1980-2005
Greece 1960-2010 1980-1995

Guatemala 1955-2010 1980-1995
Guyana 1980-2010 -
Haiti 1965-2010 1980-1995
Honduras 1955-2010 1985-1995
Hungary 1975-2010 1980-2000
Iceland 1955-2010 1980-1995
India 1955-2010 1980-2005
Indonesia 1965-2010 1980-2005

Iraq 1975-2010 1980-1985
Ireland 1955-2010 1980-2000
Israel 1955-2010 1980-2005

Italy 1955-2010 1980-2005
Jamaica 1960-2010 1980-1990
Japan 1955-2010 1980-2000
Jordan 1960-2010 1980-2005

Kazakhstan 2000-2010 2000-2005
Kenya 1955-2010 1980-2005
Kuwait 2000-2010 2000-2000

Kyrgyzstan 2000-2010 2000-2005
Latvia 2000-2010 2000-2005
Lesotho 1965-2010 -
Liberia 1975-2010 1985-1985

Lithuania 2000-2010 2000-2005

Luxembourg 1955-2010 -

Malawi 1960-2010 1980-2000
Malaysia 1960-2010 1980-2005
Maldives 1975-2010 -

Mali 1965-2010 -

Malta 1975-2010 1980-2005
Mauritania 1965-2010 -
Mauritius 1955-2010 1980-2000

Mexico 1955-2010 1980-2000
Mongolia 1975-2010 1990-2000
Morocco 1955-2919 1980-2005

Mozambique 1965-2010 1990-2000
Namibia 1965-2010 -
Nepal 1965-2010 1990-1990

Netherlands 1955-2010 1980-2005
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New Zealand 1955-2010 1980-1995
Nicaragua 1955-2010 1980-1985
Niger 1965-2010 2000-2005
Norway 1955-2010 1980-2000
Pakistan 1955-2010 1980-1990
Panama 1955-2010 1980-2000
Papua New Guinea 1965-2010 1980-1985
Paraguay 1960-2010 -
Peru 1955-2010 1985-1995
Philippines 1955-2010 1980-2005
Poland 1975-2010 1980-2000
Portugal 1955-2010 1980-2005
Qatar 1995-2010 2000-2005
Rwanda 1965-2010 1985-1985
Saudi Arabia 1995-2010 -
Senegal 1965-2010 1980-2000
Sierra Leone 1970-2010 -
Singapore 1965-2010 1980-2005
Slovenia 1995-2010 1995-2000
South Africa 1955-2010 1980-2005
Spain 1955-2010 1980-2005
Sri Lanka 1955-2010 1980-2000
Sudan 1975-2010 -
Swaziland 1975-2010 -
Sweden 1960-2010 1980-2000
Switzerland 1955-2010 2000-2000
Taiwan 1960-2010 1980-1995
Tajikistan 2000-2010 -
Thailand 1955-2010 1990-2000
Togo 1965-2010 1980-1980
Tonga 1985-2010 1985-2005
Tunisia 1970-2010 1980-2005
Turkey 1955-2010 1980-2000
Uganda 1955-2010 1985-2000
Ukraine 1955-2010 2000-2005
United Arab Emirates 1995-2010 -
United Kingdom 1955-2010 1980-2005
Uruguay 1955-2010 1980-2005
Venezuela 1955-2010 1980-1995
Yemen 1995-2010 2000-2005
Zambia 1960-2010 1980-1990
Zimbabwe 1960-2010 1980-1995
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