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Title: Design and evaluation of additively manufactured parts with three dimensional continuous 

fibre reinforcement. 

 

Abstract: 
 

Additive manufacturing (AM) provides many benefits such as reduced manufacturing lead 

times, streamlined supply chains, part consolidation, structural optimisation and improved buy-

to-fly ratios. Barriers to adoption include high material and processing costs, low build rates, 

isotropic material properties, and variable processing conditions. Currently AM polymer parts 

are far less expensive to manufacture than AM metal parts, therefore improving the properties 

of polymer parts is highly desirable. 

 

This paper introduces a design methodology used to integrate continuous reinforcement into 

AM polymer parts with the aim of improving their mechanical properties. The method is 

validated with the design and testing of three case studies, a pulley housing, hook and universal 

joint used to demonstrate the applicability of the method for tensile, bending and torsion loading 

types respectively. 

 

Physical testing showed that it was possible to improve the strength of parts by over 4000%, 

elongation to failure by over 2000% and stiffness by approximately 200%. In addition a method 

of integrating condition monitoring capabilities into the parts was demonstrated. 

An analysis of the specific strength of the parts suggests that the reinforced parts are 

comparable to aluminium alloys, suggesting that in some cases AM polymer composite parts 

could supplant more costly metal parts. 

 

Graphical abstract: 

Evolution of a pulley design from left to right: a) volumetric design space, b) topological 

optimisation, c) FEA of fibre reinforced part, d) final iteration after first physical tests. 



 

  

 
 

 

Highlights: 

- New design methodology for AM parts with continuous reinforcement 

- Verified methodology with three case studies 

- Improved strength by over 4000% and elongation to failure by over 2000% 

- Introduced method of integrating sensors 
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Additive manufacturing, Condition monitoring. 

 

1. Introduction 

 

Additive manufacturing (AM) is seeing increased utilisation in sectors such as aerospace and 

motorsports due to its ability to produce parts with high geometrical complexity and short 

manufacturing lead times [1]. Revenues from the production of end use parts, as a proportion of 

total AM production, has risen from under 4% in 2003 to 34.7% in 2013 [2].  Both Airbus and 

Boeing are currently producing aircraft with AM polymer parts while GE Aviation incorporates 

AM metal parts in its commercial jet engines [3]. These AM parts offer many advantages such 

as optimised geometries for structural loads, better flow characteristics and part consolidation. 

AM also helps to streamline manufacturing enabling highly responsive manufacture of short-run 

orders and replacement parts [4]. To date AM as a proportion of the total manufacturing sector 

is still very low due to the high cost of AM machines and materials, variable processing 

conditions, material quality issues and low volumetric deposition rates [5]. These drawbacks are 

a)                                b)                                       c)                                    d) 



currently restricting the use of high specific strength alloys such as Al-Si-10Mg and Ti-6Al-4V 

produced via AM [6]. Conversely, additively manufactured polymer parts have relatively 

favourable economics but suffer from inferior mechanical and thermal properties [7, 8]. 

 

One of the main drivers for the adoption of AM is the lightweighting of parts and assemblies. By 

optimising design for function and reducing the buy-to-fly ratio it is possible to significantly 

reduce life cycle energy use and materials costs [9, 10]. For similar reasons metals are being 

replaced with polymers and polymer matrix composites (PMCs). PMCs are already routinely 

used in aerospace and motorsport to replace metal parts due to excellent strength to weight 

ratios and fatigue properties [11]. Unfortunately PMCs with continuous fibres require a range of 

processing methods and tools that limit the design freedoms and turnaround times when 

compared with AM. The exception to this is extrusion based AM machines which embed 

reinforcement in layers along with the polymer beads e.g. the Mark One manufactured by 

Markforged. Currently this method only allows fibre to be laid in the horizontal plane. Short fibre 

reinforced polymers may be processed by conventional AM technologies such as Fused 

Filament Fabrication (FFF) and Selective Laser Sintering (SLS) however these only provide 

modest increases in material strength [12]. 

 

This work outlines how hybrid AM parts can be reinforced to create complex, low weight, low 

cost, high strength parts. As AM polymers accounted for 98% of the AM materials market in 

2013 any improvements to the properties of AM polymer parts could have a large commercial 

impact [13]. 

 

The following section will describe the design methodology used to determine the location of the 

fibre reinforcement, followed by the results of finite element analysis and physical testing. 

 

2. Design methodology 

The aim of this methodology is to design channels within the parts that may be filled with 

continuous reinforcement and will take the majority of the load. The first condition for applying 

this methodology is that the loads are well specified. The specific placement of the 

reinforcement will greatly improve the strength of the parts for the known loads, however the 

part will retain the polymer material strength in other directions. Assuming this condition is met 

then the iterative design process can be summarised according to figure 1. 

 



 
In the following sections a simple pulley housing will be used to demonstrate the design 

methodology. 

 

2.1 Define the design space 

The first step is to define the volume the part may occupy and how the loads are going to be 

applied. The volumetric design space should be represented as simply as possible and guided 

only by bounding dimensions as shown in Figure 2. 

 

 
Figure 2. 3D representation of the volumetric design space 

 

2.2 Determine internal load paths 

The second step is to determine where within the volumetric design space load carrying 

material is needed. In this process the load carrying material is assumed to be the 
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Figure 1. Schematic of the design process. 
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reinforcement, whilst the polymer is considered a preform that holds the reinforcement in place. 

Assuming the reinforcement is much stiffer than the polymer material (Er >> Em) it will take a 

proportionately higher percentage of the load, as demonstrated by applying the rule of mixtures 

to the Voigt model for axial loading [14]. 

 

 𝐸𝐸𝑐𝑐 = 𝜎𝜎𝑐𝑐 𝜀𝜀𝑐𝑐⁄ = (1−𝑓𝑓)𝜎𝜎𝑚𝑚+𝑓𝑓𝜎𝜎𝑟𝑟
(𝜎𝜎𝑟𝑟 𝐸𝐸𝑟𝑟⁄ )

= (1 − 𝑓𝑓)𝐸𝐸𝑚𝑚 + 𝑓𝑓𝐸𝐸𝑟𝑟 Equation (1) 

 

The force lines method is a powerful qualitative way of visualising how the internal load travels 

through the part, and is a good analogy for how reinforcement carries the load in PMCs [15]. 

For complex loading states a quantitative method, such as topological optimisation, may be 

needed. It should be apparent that for the case of the pulley housing both results point towards 

similar geometries (figure 3). The granularity of the topological optimisation in figure 3 is 

primarily due to the resolution of the initial FEA and the step size of the volume fraction 

reductions. The boundary conditions also have a large impact on the optimised shape, as 

evidenced by the top hole which was set as a fixed face and the bottom holes which were not. 

   

 

 

 
2.3 Apply the reinforcement design guidelines 

The geometries shown in figure 3 are only to be used as a guide as to where the reinforcement 

should be placed. Due to the fact the topological optimisation assumed isotropic material 

properties it is not a perfect analogy for fibre placement. Reinforcement design guidelines 

Figure 3. Qualitative force lines method (left). Quantitative topological 
optimisation (right). 



inspired by tensegrity should additionally be used to find path geometries that minimise the load 

in the polymer [16]. These guidelines are as follows: 

1. The reinforcement path should go through all areas of high Von Mises stress but be 

aligned with the first or second principal stresses. 

2. The reinforcement path should be continuous with as few discreet loops as possible. 

3. In areas of high tensile load the fibre centre of curvature should be directed into the part 

and not away from the surface. This reduces the likelihood of the fibre separating from 

the part. 

4. Internal channels as an alternative to open channels can help to improve bonding 

between the reinforcement and the part and also delays fibre buckling in compressive 

areas. 

5. The beginning and end points of the reinforcement should be in areas of low stress. 

6. Access ports are needed to allow the reinforcement to be fed into any internal channels. 

The number and length of access points will depend on the part geometry and the form 

of the reinforcement. 

7. Points of inflexion may need to be accessible as they can complicate winding. 

 

The last three points are primarily design for manufacture guidelines. Figure 4 shows the final 

design of the pulley housing with a few modifications for aesthetics, weight reduction and design 

for AM considerations. 

 
Figure 4. Pulley housing with reinforcement channel and access ports. 



 

In the example of the pulley housing above it is relatively straight forward to meet the 

reinforcement design guidelines, however, if the upper hole was rotated 90° about the vertical 

axis, two discreet channels (or a crossover point) will have been necessary. This demonstrates 

why the process needs to be iterative and how the reinforcement guidelines may require the 

loads or constraints to be applied in a different orientation than originally intended. 

 

In practice it may also be necessary to add metal threaded inserts or compression limiters to 

critical holes or features. This is relatively easy to do by heat staking the insert into the receiving 

hole. No inserts were used in this work so that the effect of the reinforcement alone may be 

demonstrated. 

 

2.4 Mechanical Analysis 

The next stage is to simulate part loading to assess whether any design iterations are 

necessary. For the pulley housing a static finite element analysis was used to visualise the 

stress distributions. The reinforcement material properties were modelled as unidirectional 

continuous carbon fibre in an epoxy matrix with a volume fraction of 60%, whilst the polymer 

was Polyamide 12. The materials are anisotropic, however for simplicity the materials were 

assumed to be isotropic. Due to the fact the reinforcement is not supporting high shear loads, 

and the polymer is carrying a very low proportion of the load, the simulation is deemed accurate 

enough to evaluate the altered stress distributions. Perfect bonding was assumed between the 

reinforcement and the polymers. Figure 5 shows the stress distribution for a non-reinforced and 

reinforced pulley with a load of 500N. The non-reinforced part clearly experiences a higher level 

of stress throughout the polymer volume. The isoclip of the reinforced part shows how all the 

stress over 15MPa is held within the reinforcement while the polymer experiences negligible 

stress. 

 



 
The pulley housing represents a part with predominantly tensile loading. Figures 6 and 7 show 

two further parts; a hook and a universal joint (half), designed to demonstrate the applicability of 

the methodology to real world bending and torsion applications respectively.  

 

 
Figure 6. Evolution of the hook design from left to right: volumetric design space, topological 

optimisation, FEA of composite, final iteration after first physical tests. 

Figure 5. Results of static finite element stress analysis for an un-reinforced part 
(left), reinforced (middle) and an isoclip of the reinforced part showing areas over 

15MPa only (right). 



 

 
Figure 7. Evolution of the universal joint design from left to right: volumetric design space, 

topological optimisation, FEA of composite, final iteration after first physical tests. 

 

The results of physical testing of all three designs are presented in the following section. 

 

3. Manufacture and Physical testing 

 

A range of polymer and reinforcement material combinations were tested. Fused filament 

fabrication (FFF) was used to print polylactic acid (PLA) and acrylonitrile butadiene styrene 

(ABS). The PLA parts were printed on a MakerGear M2 with FormFutura filament whilst the 

ABS parts were printed on a da Vinci 1.0A with da Vinci ABS filament. Selective laser sintering 

(SLS) was used to print Polyamide 12 (PA12) parts. The parts made by FFF consisted of 0.2 

mm layers with 25-50% infill and were printed with the layers perpendicular to the direction of 

the principal stress i.e. the least favourable orientation for strength. The PA12 part was printed 

with the layers parallel to the principal stresses i.e. the most favourable orientation for strength.  

 

Carbon, Kevlar, basalt and 316 stainless steel wire cord (Ø 1.5 mm) were all used for 

reinforcement. All reinforcement channels were modelled with 2.8 mm nominal diameters, 

however due to the variations in manufacturing processes (particularly with FFF) the channel 

diameters ranged from 2.3 mm to 2.8 mm. 

 

Carbon, Kevlar and Basalt fibres were sourced in tow form (untwisted bundles of unidirectional 

fibres). The tows were then cut to length and cyanoacrylate glue was used to create nibs on 

each end. Each tow was then threaded through the part in a similar fashion to lacing shoes. 

Once the channels were filled any excess fibre was cut off and the threaded fibres were held in 

place with a small amount of cyanoacrylate glue in a low stress area. A low viscosity epoxy 



laminating resin, EL2 from Easy CompositesTM, was used to bond the reinforcement within the 

channels. Threaded parts were submerged in the resin and a brush was used to encourage 

complete infiltration of the reinforcement channels. Excess resin was then allowed to drain from 

the part before being cured in an oven at approximately 50°C overnight. Copper ferrules were 

used to fix the loose ends of the stainless steel cord instead of epoxy. This required a slight 

modification of the design to allow space for the ferrule. Total lead time for the construction of 

one pulley was approximately 24 hours. This included 40 minutes printing time and 30 minutes 

of labour to thread and epoxy each pulley. The majority of the time was spent curing the epoxy. 

 

The pulley housings and hooks were tested on a Testometric FS100SCCT 100KN universal 

testing machine with a constant strain rate of 2.5 mm/min. Figure 8 shows the experimental 

apparatus. In all cases un-reinforced parts (with the channels removed) were tested for 

reference. 

 

   
Figure 8. Fixtures for pulley and hook tests. 

 

The universal joint design was tested on a manual torsion rig and torqued in 2.49 Nm 

increments (figure 9). After each weight was added to the lever arm a torque was applied to the 

end of the part until the weighted lever arm returned to horizontal. The change in angle was 

then measured and the process repeated. 



 

 

 
Figure 9. Manual torsion testing machine. Bottom right insert: close up of universal joint half with 

fixtures and constraints. 

 

4. Results 

In all cases the reinforced parts showed significant increases in part strength, toughness, 

elongation to failure and stiffness over the unreinforced parts. A summary of the results for the 

various pulley material combinations is shown in Table 1. 

 

Table 1. Maximum load and elongation at maximum load for a variety of polymer/reinforcement 
pulley combinations. 

Reinforcement 

3D printed pulley 
PLA ABS PA12 

Load (N) Elongation 
(mm) Load (N) Elongation 

(mm) Load (N) Elongation 
(mm) 

None 928 1.07 152 0.34 1503 1.62 
Carbon 8002 6.65 7280 7.86 8816 7.74 
Kevlar - - 7645 9.39 - - 

Stainless steel - - 2906 5.78 - - 
Basalt 3647 3.41 - - - - 

 

The strongest combination was found to be PA12 with carbon fibre reinforcement. PLA and 

carbon fibre was a close second suffering from a more anisotropic structure and a sparse infill. 



In most cases the stiffness of the parts increased approximately 200%, whilst the elongation to 

failure, in the case of ABS and Kevlar, increased by 2660%. Failure typically occurred in the 

polymer whilst the reinforcement remained intact and still able to support significant loads. The 

stainless steel reinforcement was found to fail prematurely due to imperfect crimping of the 

ferrules. 

 

Figure 10 shows the load-displacement curves for PLA pulley housings with and without carbon 

fibre reinforcement. The unreinforced pulley failed in the lower leg near the hole as predicted by 

the FEA. The reinforced part exhibited steady deformation around the holes with minor cracks 

forming in the polymer/resin at around 2 mm of elongation (3.3% strain). Final failure of the 

reinforcement occurred near the holes, again in agreement with FEA predictions. 

 

 
Figure 10. Load-elongation curves for PLA pulley housings with and without carbon 

reinforcement. 

 

The reinforced PLA pulley exhibited a 762% increase in strength over the unreinforced PLA 

pulley and a 521% increase in the elongation to failure. 

 

The hook and universal joints also showed significant gains in strength and toughness as 

shown in figure 11. The universal joint showed the smallest gain in improvement. Coincidently it 

was the only part designed with the fibre wrapped on the outside of the part. This was done to 

maximise the parts polar moment of inertia but also allowed the fibres, which were in 
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compression, to buckle and delaminate from the parts surface. This observed failure mode may 

go some way towards explaining the performance of the universal joint test pieces. 

 

   
Figure 11.  Load-elongation curves for ABS hooks with and without carbon reinforcement (left). 
Torque-rotation curves for ABS universal joints with and without carbon reinforcement (right). 

 

Despite the three parts having markedly different geometries and loading conditions the load-

displacement curves are all fairly similar. A possible reason for this is the fact that the 

reinforcement fibres are predominantly orientated in the direction of the 1st and 2nd principal 

stresses and therefore all react in a similar way. The shape of the curves is similar to that you 

would expect for a polymer, only scaled up. The pulley housings demonstrated the largest 

improvement in mechanical properties due to the fact the reinforcement only supported tensile 

stresses, unlike the other parts which also had compressive stresses. 

 

Figure 12 compares the performance of the pulley housings, hooks and universal joints in 

unreinforced ABS, reinforced ABS and reinforced PLA.  
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Figure 12. Left: Load-elongation data for pulleys and hooks. Right: Torque-rotation data for the 

universal joints. 

All pulley parts were printed with 25% infills. Comparing the reinforced ABS with the reinforced 

PLA shows that there is a slight trade-off between strength and elongation to failure between 

the two polymers. This is expected as PLA is stronger and less ductile than ABS. The ABS 

hooks and universal joints were printed with a 50% infill density compared with 25% for the 

PLA. This is the likely reason for why the ABS outperformed the PLA in the case of the 

universal joint. Why the difference in infill significantly affected the universal joint performance 

but not the hook is not fully understood and needs further investigation. 

 

4.1 Inbuilt sensing 

Due to the unique location of the reinforcement channels they may be used to add extra 

functionally to the parts, such as condition monitoring capabilities. As a proof of concept, 

Kanthal resistance wire Ø 0.15 mm (28 Ω/m) was added to the carbon fibre reinforcement of a 

pulley housing. 100 mm of wire was left protruding from the entry and exit points so that a multi-
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meter could measure the resistance across the wire. The pulley was tested in the universal 

testing machine at a strain rate of 1 mm/min whilst the load, elongation and resistance where 

recorded at 5 second intervals. 

 

Figure 13 shows the change in resistance with elongation for the test. Unfortunately the multi-

meter only measured to 0.1 Ω so the captured data contains significant uncertainty. Plotting a 

line of best fit (least squares method) shows a fairly strong linear correlation with an R² value of 

0.797. Using smaller diameter wires or increasing the length of embedded wire will help to 

amplify the signal. This sensing capability could be used for structural health monitoring or 

fatigue analysis and would be particularly useful for large scale parts and assemblies. 

 

 
Figure 13. Change in resistance with elongation for embedded resistance wire in a pulley 

housing. 

 

Replacing the reinforcement fibre with piezoelectric fibres may provide an ideal way to 

incorporate high frequency low amplitude actuation into parts with complex geometries. 

 

5. Discussion 

The methodology outlined in this paper allows significant improvements to the capabilities of 

polymer AM parts with minimal quantities of reinforcement. On the downside extra design and 

manufacturing time increases the part costs over unreinforced parts. To determine if the 

benefits outweigh the drawbacks it is useful to compare the performance of the composite parts 
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with other relevant materials. From the load, cross-sectional area and stress concentration at 

the point of failure, it is possible to calculate an effective tensile strength (𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒) for the composite 

pulleys (Equation 2 and 3) [17, 18]. 

 

 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐾𝐾𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐾𝐾𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴𝐹𝐹⁄  Equation (2) 

 𝐾𝐾 = 3.00 − 3.14𝐷𝐷 𝑊𝑊⁄ + 3.67(𝐷𝐷 𝑊𝑊⁄ )2 − 1.53(𝐷𝐷 𝑊𝑊⁄ )3 Equation (3) 

 

Where 𝐾𝐾 = Stress concentration for a hole in a plate, 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = the load acting on 𝐴𝐴𝐹𝐹, 𝐴𝐴𝐹𝐹 = the 

cross-sectional area at the failure point, 𝐷𝐷 = hole diameter, 𝑊𝑊 = width of material at the point of 

failure. The effective tensile strength for PA12 and PA12/PLA parts reinforced with carbon fibre 

are shown in table 2. 

 

Understandably, the effective tensile strength calculated using this method is not a true material 

property but a function of loading, geometry and the volumetric ratio between reinforcement and 

polymer. In the case of the pulley leg the reinforcement channel almost completely filled the 

internal part volume around the hole, providing a natural limit to the amount of reinforcement 

able to be applied. Increasing the design space would allow for more reinforcement however it 

should not be assumed that the part strength will simply increase in proportion to the added 

reinforcement. A limit exists whereby failure moves to an unreinforced part of the polymer. Once 

this limit is reached then increasing the size of the existing channels has little effect and new 

reinforcement channels are required. 

 

For high performance industries such as transport and sport, the strength to weight ratio is often 

more important than the absolute material strength. Table 2 compares how the composite AM 

parts compare with other common engineering materials, if used in a similar context. The 

reinforced AM parts were weighed, whilst the pulley weights of the other materials were 

calculated in Solidworks. Unless otherwise stated all material property data was sourced from 

the Solidworks materials database. 

 

Table 2. Comparison of different potential pulley materials density and strength.  

Pulley material Pulley 
weight (g) 

Density 
(kg/m³) 

Tensile strength 
(MPa) 

Specific strength 
(kPa/(kg/m³)) 

PA12 13.3 950 32** 34 
PA12 + Carbon 14.0* 1066 190** 178 
PLA + Carbon 12.8* 975 170** 174 

Al-Si-10Mg 36.8 2680 337 123 
7075 – T6 38.6 2810 570 203 
Ti-6Al-4V 60.9 4429 1050 237 
316 SS 110.0 8000 550 69 

*Weighed before testing. **Effective tensile strength calculated by equations 1 and 2. 

 



The specific strength of the reinforced polymer pulleys is comparable to that of Al-Si-10Mg and 

7075 – T6, aluminium alloys used in the aerospace industry, and are over double the specific 

strength of 316 stainless steel. The material costs and manufacturing times for metal AM parts 

are currently an order of magnitude higher than for polymers [6-8, 19]. These results suggest 

that utilising polymers with minimal additions of reinforcement can create high strength parts at 

a fraction of the cost and manufacturing time required for metal AM parts. Using natural fibres 

such as flax or basalt in combination with PLA also provides options with lower environmental 

impact [20]. 

 

The parts tested in this paper were of the order of 125 cm³ however it is believed that the 

method could be successfully scaled for larger parts. Replacing loose fibre tows with cord or 

rope is an effective way to reduce threading time. How the reinforcement distributes the loads to 

the polymer at large scales will need to be carefully considered to avoid concentrated forces. 

Elliptical or ‘flat’ channels can be used to help distribute the internal loads. The use of metallic 

inserts and compression limiters will likely be essential in most cases. 

 

Accurate simulation of these parts is difficult due to the composite nature of the materials, the 

organic geometries and complex stress states. Therefore integrating sensing technology into 

the parts may prove extremely useful. 

 

6. Conclusions and recommendations 

This paper introduced a new methodology for designing AM polymer composite parts. The 

methodology was validated by designing and testing three parts with tensile, bending and 

torsion loads respectively. A wide range of polymer/reinforcement combinations were tested 

including low environmental impact materials. 

 

The reinforced parts showed significant improvements in strength, stiffness and toughness over 

non-reinforced parts. An analysis of the specific strength of the pulley housing showed the 

reinforced polymers to be comparable with common aerospace aluminium alloys. The method is 

believed to be scalable and can produce parts with short manufacturing lead times. 

 

Further research is needed to determine if the methodology may be used to reinforce 3D printed 

metals, ceramics and polymers for high temperature applications. 

 

In line with the novelty of the introduced method there are still many opportunities for future 

developments. The time taken to design the parts could be significantly reduced by developing 

a quantitative force line analysis tool that uses FEA results as input data. This has already been 

shown to be possible for 2D problems [15]. Extending a quantitative force lines tool to three 

dimensional assemblies would also be of immense benefit to design engineers. 



 

Manual threading of the fibres is very labour intensive, requires access holes, and is a major 

source of performance variability. Innovative methods of introducing the fibres, such as using air 

jets or magnets to lead the fibres through the channels would drastically reduce labour and 

process variability. 

 

There is a need for in-depth analysis of the failure modes under different loading conditions. 

Fibre pull out, fibre delamination, fibre buckling, tensile yielding, sparse infill crushing and 

delamination of the printed layers are all failure modes that have been witnessed but cannot 

currently be predicted. 

 

A full cost comparison is needed to compare the economic and environmental costs of 

reinforced 3D printed parts with conventional manufacturing methods. This is crucial information 

for decision makers within companies who will need to weigh the risks of adopting this 

methodology against the potential benefits. 

 

Whilst the strength, toughness and elongation to failure have all been dramatically improved 

with this method there are a number of extremely important surface properties such as 

hardness, friction and wear that are left unchanged. Research is ongoing to test whether 

coatings can be used to significantly improve surface properties. In addition novel internal 

structures and infills are being investigated for their ability to improve the parts thermal 

properties. 

 

Finally the condition monitoring capabilities demonstrated in this work were not sensitive 

enough to be of practical use. Further research is needed to develop higher resolution inbuilt 

sensors and to investigate whether it is practical to create smart parts that can sense and 

respond to changing environments whilst communicating via the internet of things. 
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