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HAMILTON CYCLES IN DENSE VERTEX-TRANSITIVE GRAPHS

DEMETRES CHRISTOFIDES, JAN HLADKY, AND ANDRAS MATHE

ABSTRACT. A famous conjecture of Lovasz states that every connected vertex-transitive graph contains
a Hamilton path. In this article we confirm the conjecture in the case that the graph is dense and
sufficiently large. In fact, we show that such graphs contain a Hamilton cycle and moreover we provide
a polynomial time algorithm for finding such a cycle.

1. INTRODUCTION

The decision problems of whether a graph contains a Hamilton cycle or a Hamilton path are two of
the most famous NP-complete problems, and so it is unlikely that there exist good characterizations of
such graphs. For this reason, it is natural to ask for sufficient conditions which ensure the existence of a
Hamilton cycle or a Hamilton path. To this direction, the following well-known conjecture of Lovész is
still wide open.

Conjecture 1. FEvery connected vertex-transitive graph has a Hamilton path.

Let us recall that a graph is vertex-transitive if its automorphism group acts transitively upon its
vertices.

In contrast to common belief, Lovész in 1969 [23] asked for the construction of a connected vertex-
transitive graph containing no Hamilton path. Traditionally however, the Lovasz conjecture is always
stated in the positive.

At the moment no counterexample is known. Moreover, there are only five known examples of con-
nected vertex-transitive graphs having no Hamilton cycle. These are K, the Petersen graph, the Coxeter
graph and the graphs obtained from the Petersen and Coxeter graphs by replacing every vertex with
a triangle. Apart from Ks, the other four examples are not Cayley graphs and this leads to the con-
jecture that every connected Cayley graph on at least three vertices is Hamiltonian. Similarly as with
Conjecture 1 this is now folklore, and its origin may be difficult to trace back, but probably the first
conjecture in this direction is due to Thomassen (see e.g. [6]), and asserts that there are only finitely
many connected vertex-transitive graphs that do not have a Hamilton cycle. At the moment however,
the best known general result which is due to Babai [3] states that every connected vertex-transitive
graph on n vertices has a cycle of length at least v/3n.

The conjecture has attracted a lot of interest from researchers and there is no common agreement as
to its validity. For example, in the negative direction, Babai [4] conjectured that there is an absolute
constant ¢ > 0 and infinitely many connected Cayley graphs G without cycles of length greater than
(1-0)Gl.

We will omit any further overview of the vast research these questions have motivated, referring the
reader to the following surveys [29, 11, 22, 25] and their references.

In this paper we prove that every sufficiently large dense connected vertex-transitive graph is Hamil-
tonian.

Theorem 2. For every a > 0 there exists an ng such that every connected vertez-transitive graph on
n = ng vertices of valency at least an contains a Hamilton cycle.
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1.1. Relation to previous results. As said above, we do not aim to survey results related to Conjec-
ture 1. However, it turns out that Theorem 2 is implied in several settings by other results. We want to
describe these and pinpoint some situations when the Hamiltonicity given by Theorem 2 was not known
before. We will restrict the discussion to the family of Cayley graphs.

Recall that Fleischner’s Theorem [12] asserts that the (distance-)square of a 2-connected graph is
Hamiltonian. Suppose that G is a connected Cayley graph over a group I'" with a generating set X. 2-
connectedness is easily shown to be implied by connectedness for Cayley graphs. If we find a set Y C X
which generates I, and such that Y2 C X, then Fleischner’s Theorem applies and the Hamiltonicity of
G follows. This is a ‘typical’! situation when X is dense in I'. However, there are examples, when the
set Y does not exist.

There are two important classes of groups where Hamiltonicity of the corresponding Cayley graph
follows by other methods. One class is abelian groups. In the abelian setting, the Hamiltonicity of
the Cayley graph is known for all generating sets. The argument has been pushed further by Pak and
Radoici¢ [25] to groups which are close to abelian. Another important class is groups with no non-trivial
irreducible representations of low dimension. This family for example, contains all non-abelian simple
groups. For these groups, Gowers [14] proved that the corresponding Cayley graph is quasirandom
(in the sense of Chung-Graham-Wilson [10]), no matter what the set X of generators is taken to be
(provided that X is dense). In this case, the Hamiltonicity follows from the well-known fact (see e.g. [19,
Proposition 4.19]) that dense pseudorandom graphs are Hamiltonian. However, there are groups which
are very far from abelian and yet have non-trivial low-dimensional representations. Soluble groups are
one such example.

1.2. Overview. Here is an overview of the rest of the paper. Section 2 contains some notation that we
are going to use. Our proof will use Szemerédi’s Regularity Lemma. In using the Regularity Lemma, we
would like some properties of the original graph G to be inherited by the reduced graph obtained from
the application of the lemma. In Section 3 we discuss some results from matching theory in this direction.
These results will enable us to show that the reduced graph (after a minor modification) contains an
almost perfect matching. In Section 4 we discuss two non-standard notions of connectivity: robustness
and iron connectivity. The main result of Section 4 is Theorem 8 which says that G can be partitioned
into a bounded number of isomorphic vertex-transitive pieces each of which is iron connected. This is a
much stronger notion than the standard notion of vertex connectivity. In particular, iron connectivity is
inherited by the reduced graph as well. It will turn out that if G ‘looks very much like a bipartite graph’
then there are some additional difficulties that need to be overcome. In Section 5 we quantify what we
mean by the phrase ‘looks very much like a bipartite graph’ and prove that in this case the vertex set
of G can be partitioned into two equal parts such that every automorphism of G respects this partition.
In Section 6 we collect all the tools needed for the application of the Regularity Lemma. In Section 7
we apply the Regularity Lemma to show that every sufficiently large iron connected vertex-transitive
graph contains a Hamilton cycle. In fact, we will need and prove a somewhat stronger property. Finally,
in Section 8 we put all the pieces together. We first partition G into the bounded number of vertex-
transitive, iron connected pieces, then find a Hamilton cycle in each of these pieces, and then show how
to glue these pieces together. It turns out that what we need for the glueing is not Hamilton cycles but
rather more general objects which we call /-pathitions. Their existence is also guaranteed from our work
in Section 7.

It turns out that all the steps of our proof of Theorem 2 can be performed algorithmically. In Section 9
we discuss how to turn the proof into a polynomial time algorithm for finding a Hamilton cycle in dense
vertex-transitive graphs.

2. NOTATION AND PRELIMINARIES

Given a positive integer m we will often denote the set {1,...,m} of the first m positive integers by
[m].

If every vertex of a graph G has the same degree k then we say that G has wvalency k, and write
deg(G) = k. For a set E' C E(G) we write A(E’) for the maximum degree of the subgraph induced
by E’. Further, for two disjoint sets A, B C V(G) we write Ag(A4, B) for the maximum degree of the

n the sense that most examples that come to mind are of this sort



HAMILTON CYCLES IN DENSE VERTEX-TRANSITIVE GRAPHS 3

bipartite graph G[A, B]. For a vertex v € V(G) and a subset A C V(G) we write N 4(v) for the set of
neighbours of v which lie in A. We denote the size of N4(v) by deg(v, A).

We denote the automorphism group of G by Aut(G). We will usually denote the elements of Aut(G)
by f or g.

Recall that a graph G is Hamilton-connected if for any pair of distinct vertices x, y there is a Hamilton
path with x and y as terminal vertices. Another important connectivity notion is that of linkedness: G
is ¢-linked if for any set of distinct vertices x1,..., 2, y1,...,ye € V(G) there exist vertex-disjoint paths
Py, ..., Py such that x; and y; are terminal vertices of P;. For our proof of Theorem 2, we will need a
combination of the two notions above. Given a graph G and a subset U of the vertex set of G, we say
that G is £-pathitionable with exceptional set U if for any ¢’ € [{], and for any set of distinct vertices
Xiyeeos oY1y, € V(G) \ U there exist vertex-disjoint paths Py, ..., Py such that x; and y; are
terminal vertices of P;. Furthermore, we require that the paths Pi,..., Py cover all the vertices of G.
So a graph is 1-pathitionable with exceptional set () if and only if it is Hamilton-connected.

Observe that for example the complete bipartite graph K, ,, is not 1-pathitionable. Indeed, we cannot
connect two vertices of the same colour class of K, ,, by a Hamilton path. Yet, we will need to deal
with graphs which are bipartite or even almost bipartite. To this end we introduce a modification of
pathitionability to bipartite setting. Suppose that a graph G together with a partition V(G) = AUB is
given. We say that G is £-bipathitionable with exceptional set U with respect to the partition AUB if for
any ¢’ € [¢], and for any set of distinct vertices x1,..., Ty, y1,...,ye € V(G)\ U such that

|{$17~'~71'Z’;y17”~7y5’}m14| = |{x1,...7m4/,y1,...,yy}ﬁB| (1)

there exist vertex-disjoint paths Py, ..., Py such that x; and y; are terminal vertices of P;. Furthermore,
we require that the paths Py, ..., Py cover all the vertices of G.

Suppose that S = {Py,..., Py} is a system of vertex-disjoint paths in a graph G. We then say that a
system of paths &’ = {P,..., P;} is an extension of S if the paths P] are vertex-disjoint, and for each
i € [{] we have V(P/) D V(F;), and P; and P/ have the same endvertices. If S covers all the vertices of
G then we say that S’ is a complete extension.

Given a graph G and a natural number ¢, the ¢-blow-up of G, denoted ¢ x G is the graph in which
every vertex of G is replaced by an independent set of size £, and each edge of G is replaced by a complete
bipartite graph between the two corresponding independent sets.

As an auxiliary tool we will need to work with digraphs as well. For basic terminology about digraphs
we refer the reader to [5]. In particular we do not allow loops or multiple edges. (We do however allow
edges between the same two vertices which have different direction.) Recall that a digraph G is strongly
connected if for any pair of distinct vertices a, b € V(G) there is a directed walk from a to b. We will also
need the following extension of the notion of strong connectedness: we say that a digraph D is ¢-strongly
connected if for every set U C V(D), |U| < £ and for any pair of distinct vertices a,b € V(G) \ U there
exists a directed walk from a to b avoiding U.

Given a (finite) set X and a function f: X — R we will write || f|[; for the sum »__ [f(2)].

Finally, to avoid unnecessarily complicated calculations, we will sometimes omit floor and ceiling signs
and treat large numbers as if they were integers.

3. SOME MATCHING THEORY

Let us recall that a function f : V' — [0,1] is a fractional vertex cover of a graph G = (V, E) if
f@)+ f(y) = 1 for every xzy € E. We write 7%(G) for the weight of the minimum fractional vertex cover,

1.€.

7*(G) = min{|| f]|1 : f is a fractional vertex cover of G} .

A function M : E — [0,1] is a fractional matching of a graph G = (V, E) if for every v € V we have
> ese M(e) < 1, where the summation is taken over all edges e € E containing the vertex v. We write
v*(@) for the weight of the maximum fractional matching, i.e.

v*(G) = max{||M||; : M is a fractional matching of G'}.

The fractional matching M is said to be half-integral if M(e) € {0, 3,1} for every e € E.
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It is easy to see that for every graph G we have 7*(G) > v*(G). The duality of linear programming
guarantees that in fact we have equality. Moreover, the half-integrality property of fractional matchings
(cf. [27, Theorem 30.2]) says that there is a half-integral matching with weight v*(G).

Theorem 3.
(a) For every graph G we have 7*(G) = v*(G).
(b) For every graph G there is a half-integral matching M of G with ||M|; = v*(G).

The next lemma asserts that removal of a small fraction of edges from a vertex-transitive graph G
does not decrease 7*(G) much.

Lemma 4. Let G be a vertez-transitive graph on n vertices. Suppose G’ is a spanning subgraph of G
such that e(G') = (1 — 0)e(G). Then 7*(G") = (1 — §)7*(G).

Proof. Let f: V(G) — [0,1] be an arbitrary fractional vertex cover of G’. To prove the lemma, it suffices
to show that there is a function f’: V(G) — [0, 1] such that

(@) ([ flh= 1513
(b) f'(z)+ f'(y) =1 — 0 for every edge zy € E(G).

Indeed, if the above hold then the function g : V(G) — [0,1] defined by g(x) = f'(z)/(1 —0) is a
fractional vertex cover of G with (1 — d)||g]|1 = ||f]|1 and the claim of the lemma follows.
To show that such an f’ exists, we define

J'(w) = |Aut >, fl
gGAut G)

As G is vertex-transitive, f’ is constant. Further, (a) is satisfied. Suppose for contradiction that (b) fails
for some edge xy of G. Since f’ is constant, we get that (b) fails for every edge of G. Thus,

Yo (') <1-0e@) <el@) < Y (flu)+ f(v), (2)
weEE(G) weE(G")

where the last inequality follows from the fact that f is a fractional vertex cover of G’. Plugging the
defining formula for f’ in (2) we get

S Y @)+ fee) < XY (W + fw),

geAut(G) quE(G) geEAUt(G) weE(G’)
Observe that the sum }°,, c e (f(9(w) + f(g(v))) does not depend on g. Therefore, -, c g (f(u) +
f() <X wver@n(f(u) + f(v)), a contradiction. O

The following lemma asserts that 7%(G) = 5 for every non-empty vertex-transitive graph of order n.
This is easy and well-known; nevertheless we include a proof for completeness.

Lemma 5. Suppose that G is a vertex-transitive graph of order n and at least one edge. Then 7*(G) =

|3

Proof. The constant one-half function is a fractional vertex cover of G, thus establishing 7*(G) < %.
Suppose for contradiction that there exists a fractional vertex cover f : V(G) — [0,1] such that
Iflli < %. The function f": V(G) — [0,1] defined by f'(v) = m > geant(c) /(9(v)) is a constant
function, which is a fractional vertex cover. Since ||f'[i = ||f|l1 < %, we have f'(v) < 3 for each
v € V(G). In particular, f/'(z) + f'(y) < 1 for an edge zy € F(G), a contradiction. O

The next lemma asserts that 2-blow-up graphs contain an integral matching which is twice the weight
of the maximum fractional matching of the original graph.

Lemma 6. There exists a matching of weight 2v*(H) in the graph 2 x H.

Proof. Suppose that each vertex v in H was replaced by two vertices v!' and v? in the graph 2 x H.
Consider a half-integral matching M in the graph H of weight v*(H). Such a matching exists by
Theorem 3(b). We now construct an integral matching (i.e. a matching) M’ in 2 x H of weight 2v*(H)
as follows: For any edge uv with weight 1 in M, we add the edges u'v! and u?v? in M’. The set of edges
with Weight Lin M form a subgraph of R which is a union of paths and cycles. For every such path
V1 Uy WE add in M’ all edges of the form v] g+1 with 1 <s<2,1<j<r—1andj+s even. Finally,
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for every such cycle vy - - - v,v; we add in M’ all edges of the form vjv] +1 with 1 <s<2,1<j<r—-1
and j+ s even, together with either the edge vlv? if r is odd or the edge v2v? if r is even. It is 1mmed1ate
by the construction that M’ is indeed a matching of 2 x H of weight ||M’||; = 2||M||: = 2v*(H). O

The next lemma says that the property of containing a large matching is inherited by the reduced
graph as well. Here we formulate it without referring to the Regularity lemma (and the notion of the
reduced graph, both notions introduced only in Section 6).

Lemma 7. Suppose that a graph R is given and let G be a subgraph of its m-blow-up. Then I/*(R) >
v (@)

m

Proof. Suppose that a fractional matching M in G is given. We can then define a fractional matching
Mp in R by defining its weight on an edge AB € E(R) as

1
Mg(AB) = — > M (ab) .
m a€A,beB,abe E(G)

This is indeed a fractional matching as for each A € V(R) we have

S Mpan =3 Y M@)< Y Y Mw)<- i<t

B:ABeE(R) M oea b:abe E(G) M aea b:abe E(G) acA
Moreover,
1
Mzl = — M(e) ,
Ml = 30 M)
(G)
and the lemma follows. |

4. ROBUSTNESS AND IRON CONNECTIVITY

We introduce two non-standard notions of connectivity: robustness and iron connectivity. These no-
tions turn out to be suitable in combination with the Regularity Lemma — roughly speaking, when a
graph has high iron connectivity, then the reduced graph corresponding to it also has high iron connec-
tivity.

We say that a graph G is ¢-robust if G remains connected even after removal of an arbitrary set
E' C E(G) with A(E’) < £. We say that G is £-iron if G stays connected after simultaneous removal of
an arbitrary edge-set E' C E(G) with A(E’) < £ and an arbitrary vertex-set U C V(G) with |U| < £.

Our main aim in this chapter is to show that every dense vertex-transitive graph can be partitioned
into not too many isomorphic vertex-transitive subgraphs which have high iron connectivity. This is
stated in the following theorem.

Theorem 8. For every a > 0 there exist 5, R, Ny > 0 such that the following holds: Suppose G
is a vertez-transitive graph of order n > Ny and valency at least an. Then there exists a partition
V(G) = ViU---UV, into r < R parts such that all the graphs G[V;] are isomorphic to a graph G' which
is vertez-transitive and (Bn)-iron. Furthermore, for each g € Aut(G) and each 1 < j < r we have

g(V;) e{Vh,..., Vi.}.

A typical example of a connected vertex-transitive graph G with very low iron connectivity (and even
robustness) is a graph formed by two disjoint cliques of order n/2, say on vertex sets V; and Vs, with a
perfect matching between V; and V5. The sets V7 and V, are likely to be the decomposition of G given
by Theorem 8 and indeed this is the decomposition our proof would give.

The first step towards the proof of the above theorem would be to gather together vertices of G which
cannot be separated from the removal of an edge set of small maximum degree. To this end, given two
vertices u and v of G we say that u and v are £-robustly adjacent if whenever we remove from G an
arbitrary set £’ C E(G) with A(E’) < ¢ then u and v are still in the same connected component. We
write u ~(g) v in this case.

We shall also associate to a graph G an auxiliary graph H, called k-codeg graph of G. H is on the same
vertex set as G. Two distinct vertices vy, ve € V(H) are adjacent in H if and only if [Ng(v1)\Ng(v2)| = k.

The following lemma summarizes properties of the relation ~ ), and of k-codeg graphs.



6 DEMETRES CHRISTOFIDES, JAN HLADKY, AND ANDRAS MATHE

Lemma 9.

(a) The relation ~y is an equivalence relation on V(G). The equivalence classes of ~y) are called
{-islands.

(b) Suppose that a vertex v of G has more than £ neighbors in some (-island L. Then v € L.

(¢) If G is vertex-transitive then all {-islands induce mutually isomorphic, vertez-transitive graphs.

(d) If G is vertex-transitive then the k-codeg graph H of G is vertex-transitive as well. We have
deg(H) > d8@° _j;

(e) Suppose that n > 10a~2. If G is a vertex-transitive graph on n vertices with valency at least an
then each (a®n/5)-island contains at least a®n/2 vertices.

Proof. Parts (a)—(b) are trivial. For part (c), note that each automorphism of G maps an ¢-island again
onto an f-island. In particular, all ¢-islands induce mutually isomorphic graphs. Moreover, taking the
set A C Aut(@) of automorphisms of G which map a given ¢-island L onto itself and considering the
restriction Ajp := {g;L : g € A} on L, we get a subgroup A, < Aut(G[L]) which witnesses vertex-
transitivity of G[L].

The first part of (d) is obvious. For the second part we count the number of triples (z,y,z) with z
adjacent to both x and y in two different ways to get

ndeg(G)* = Z ING(z) N Ne(y)l

z,yeV(G)
< > (n—2)+ Y (n—1)+ > (k—1)
z,y€V(G),zyEE(H) z€V(G) z,y€V(G),z#y,xy¢E(H)

=n(n—2)deg(H)+n(n—1)+n(n—1—deg(H))(k —1)
< n?deg(H) +n’k
and the claim follows.

To prove Part (e), consider the (a?n/2)-codeg graph H of G. By Part (d), H is vertex-transitive of
valency deg(H) > a?n/2. Observe now that if [Ng(u) N Ng(v)| > 2% + 1 then u and v lie in the same
(a®n/5)-island; in particular, the conclusion applies when uv is an edge of H. Since deg(H) > a?n/2 we
deduce that each (a?n/5)-island of G contains at least a?n/2 vertices. O

As a corollary of Lemma 9 we get the following.

Lemma 10. Suppose G is a vertex-transitive graph on n vertices with valency at least an. If G is
not (a*n/40)-robust, then there exists a partition V(G) = ViU...UV, with 2 < r < 2 such that all
the graphs G[V;] are isomorphic to the same vertez-transitive graph G’ of order n’ and valency at least
4dan’ /3.

Proof. Let ViU...UV, be the (a*n/40)-islands of G. If » = 1 then G is (a*n/40)-robust and there is
nothing to prove. Thus we assume that r > 1.

Observe that since a*/40 < a?/5, each (a*n/40)-island consists of several (a®n/5)-islands. In con-
junction with Part (e) of Lemma 9, we get that r < 2a72. By Part (b) of Lemma 9 each vertex v € V;
sends at most a*n/40 edges to V; for i # 1. It follows that

a'n a’n _ 2an
d Vi) 2 —(r—1)—2= -_— = —
eg(v,V1) Zan— (r — 1) 0 2% 5 3
On the other hand, for n’ = |V;| we have n’ = % < 5. Therefore the valency of the graph G’ = G[V1] is
at least 4an’/3. This proves the lemma. O

Lemma 10 says that if G is not robust then we can partition it into a few island each having higher (by
a constant factor) density than G. Repeating this process, it will follow that every dense vertex-transitive
graph can be partitioned in a symmetric way into a bounded number of robust graphs.

Lemma 11. For every a > 0 there exist numbers R, Ny and p € (0,/2) such that the following holds:
Suppose G is a vertez-transitive graph of order n > Ny and valency at least an. Then there exists a
partition V(G) = V1U---UV,, into r < R parts such that all the graphs G[V;] are isomorphic to a graph
G’ which is vertez-transitive and (un)-robust. Furthermore, for each g € Aut(G) and each 1 < j < r we
have g(V;) € {V4,...,V,.}.
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Proof. We first set up necessary constants. Let @ = ﬂog4/3(éﬂ, and a; = (4/3)%a for i = 0,1,.... Let
R= H;‘Q:O(Qai_Q), and g = a*/(40R). Last, let Ny be sufficiently large.

Set Gy = G, and ng = n. Inductively, in steps i = 0, 1,... we either get that G is (afn;/40)-robust,
or by Lemma 10 that there is a partition V(G;) = V; 1U... UV, ., (with r; < 2/a?) such that each graph
GilVi;l (7 = 1,...,7;) is isomorphic to a vertex-transitive graph G;;1 of order n,y;, thus allowing a
next step of the iteration. By induction, and the properties of the partition output by Lemma 10 the
vertex set of the original graph G can be partitioned into vertex-sets inducing graphs isomorphic to G;41.
Observe that it is guaranteed by Lemma 10 and induction that G;;1 has valency at least a;11m441.

Since ag = 1, the above procedure must terminate in step isop < @. It is easily checked that the
partition of V(G) into copies of G satisfies the assertions of the lemma. O

Tstop

Observe that f-iron connectivity implies ¢-robustness. If the converse was true then we could im-
mediately deduce Theorem 8 from Lemma 11. However, the converse is very far from being true. For
example, the union of two cliques of size 2m having exactly one common vertex is (m — 1)-robust but it
is not even 1-iron as the common vertex of the two cliques is a cut-vertex. The following lemma gives a
partial converse for the class of vertex-transitive graphs.

Lemma 12. Let G be a (un)-robust vertez-transitive graph of order n and valency at least an, for some
a, w, with 2a/3 > > 0. Let A = min{w%/a, ZH%} Then G is (An)-iron.

Before diving into the proof of Lemma 12 let us give a heuristic why the lemma ought to hold. The
graph G is robust by the assumptions of the lemma. On the other hand it is known ([13, Theorem 3.4.2])
that connected vertex-transitive graphs of high valency have high vertex connectivity. Therefore one can
hope for a combination of the two properties, that is for iron connectivity.

Proof of Lemma 12. Let d = an be the valency of G. Suppose for contradiction that G is not (An)-iron.
That is, we have a partition V(G) = AgUUgUBy, |Ug| < An, Ag(Ag, By) < An. We proceed with an
iterative procedure described below. For i > 0 we are given a partition V(G) = A;UU;UB;. We further
have the following properties:

(I1), |Ui| < 2">n,

(12), Ac(A;, B;) < 2°An, and

(I3), 0 <|A;] <n— S~
We terminate this iterative procedure when for each g € Aut(G), if there is an a € A; such that
g(a) € A; then for each b € B; we have that g(b) ¢ A;. Otherwise, as we shall show below, we can
produce a partition V(G) = A;+1UU;+1UB; 41 satisfying (I1) (12) and (I3) Note that from
(I3) it follows that we must terminate in isiop < % steps.

Suppose we did not terminate in step i. Then there exists ¢ € Aut(G), a € A;, b € B; such that

g(a),g(b) € A;. Observe that (12), gives [N(b) \ (B; UU;)| < 2'An, and consequently with the help of
(I1), we have [N(b) \ B;| < 2°*'An. Similarly, |N(g(b)) \ A;| < 2°T'An. We conclude that

4 N g(B)] = IN(g(0)] — IN(g(6)) \ A4i] = [N(9(b) \ g()|
= d— IN(g()) \ Ail — IN(®) \ By 3)

X on
>an— 22 > >

i+1 417 i+1°

where the last inequality follows since o > 2312/@)\ > 2347 ),

Define A1'+1 = Al N g(Al), Ui+1 = Ul U g(Uz), and Bi+1 = (Bl U g(Bz)) \ Ui+1. This is a partition
of V(G) (see Figure 1). (I1),,, and (I2),,, are obviously satisfied. The lower bound in (I3), ., follows
from the fact that g(a) € A; N g(A4;). The upper bound is then established through the following chain
of inequalities:

3) an
[4i N g(A)] < |Ail = AN g(Bi)| < [Ai] = =
This finishes the iterative step.

We now deal with the situation of termination in the step isop < % For simplicity, we write A = A
B=B and U = U; We have

stop )

Tstop ? stop *

) 1 1
|U| < 2%=tor An < 22/%\n < Tk and similarly Ag(A4, B) < ViR (4)
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FIGURE 1. The sets A;11, U;r1 and B;yq as intersections of the sets A;, U;, B;, g(4;),
g(Ui), and g(B;). The set A;41 is represented by black, U, 1 by grey, and B; 11 by white.

Furthermore, we have
For every g € Aut(G), if g(a’) € A for some a’ € A, then g(b') € A for each V € B. (5)

We first prove that each vertex u € U has either almost all its neighbors in A, or in B.
Claim 12.1. For each u € U, either [N(u) N A| > d — 3un, or [N(u) N B| > d — 3pun.

Proof of Claim 12.1. As d — %un > % we have that at most one of the assertions of the claim can hold
for a given vertex u € U. Suppose now the statement fails for some v € U. Then we have

IN(w) N A| = |N(u)| — [N(uw) N B| — |N(u) N U| > %n ,and (6)
IN(u) N B| = [N(u)| = [N(u) N A] = [N(u) N U| > gn (7)

Let a € A be arbitrary and take a g € Aut(G) such that g(u) = a. We then have N(a) = N(g(u)) =
g(N(u)), and in particular g(N(u) N A) C N(a).

We claim that there exists an o’ € N(u) N A such that g(a’) € A. Indeed, if this was not the case,
then g(z) € BUU for each z € N(u) N A. Therefore, we would then have

IN(a) N (BUU)| = |g(N(w)) N (BUU)[ = |(g(N(u) N A) N (BUT)|

— |g(N(u) N A)] = [N(u) N 4] & /2,

contradicting (4).
Similarly, using (7) and the fact that g(N(u) N B) C ¢g(N(u)) = N(a), we get that there exists a
b € N(u) N B such that g(b') € A. The properties of g,a’ and ¥’ contradict (5). O

By Claim 12.1 we have a partition U = U4UUg, where Uy = {u € U : deg(u, A) > d — 3un} and
Up={ueU: deg(u,B) >d— %,un}. Define Vi = AUU4 and Vo = BUUp. We have V1, V5 # 0. Tt is
straightforward to verify that Ag(V1, Va) < pn. This contradicts the fact that G is (un)-robust. O

Observe now that Lemma 12 together with Lemma 11 immediately imply Theorem 8.

We conclude this section with three easy lemmas which are tailored for applications later in the proof
of Theorem 25.

Lemma 13. Suppose that a graph H is (-iron. Then the 2-blow-up 2 x H is also {-iron.?

Proof. Observe first, that the minimum degree of H is at least 2/ + 1. Indeed, if there exists a vertex
v with deg(v) < 2¢ then this vertex can be isolated from the rest of the graph by deletion of at most £
edges incident with v, and at most £ vertices in the neighbourhood of v.

Observe that there are two natural vertex disjoint copies of H in 2 x H, say Hy and Hy. Consider
any sets B/ C F(2 x H), with A(E") < £ and V' C V(2 x H) with |V’| < {. Since H is ¢-iron, both H;
and H, remain connected after the removal of V' and E’. Since the minimum degree of H is at least
20 + 1, then every vertex of H; has at least 2¢ 4+ 1 neighbours in Hs. In particular after the removal of

2In fact it is not much more difficult to show that the 2-blow-up is 2¢-iron but ¢-iron connectivity is enough for our
purposes and has a clearer proof.
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V' and E’ there is still an edge between H; and Hs and therefore (2 x H) \ (V' U E’) is still connected.
Therefore 2 x H is {-iron. g

Lemma 14. Let R’ be a graph on k' vertices. Suppose that there exist sets Ly, Ly C V(R') such that
|L1] < /oK', and e(La, V(R')\ (L1ULo)) < ok’. If there exists disjoint sets W1, Wo C V(R')\ (L1ULs),
such that N(W3) C L1 U Ly, and min{|W1|,|Wa|} > 2,/0k’, then R’ is not (2,/0k’)-iron.

Proof. Let L = {v € Ly : deg(v,V(R') \ (L1 U L2)) > 2,/0k'}, and P = {v € V(R') \ (L1 U Ly)
deg(v, La) > 2,/0k"}. We have max{|L|, |P|} < \/ok'/2. In particular,

Wl\(L1ULUP)7é@ and WQ\(L1ULUP)7E@. (8)

Define E' C E(R’) to be edges running between Ly \ L and V(R') \ (L1 U Ly U P). We have Ag/(E’) <
2,/0k’. By (8), R' is not connected after removal of the vertex set L; UL U P and the edge set E'.
Indeed, after the removal of E’ we have that there are no more edges between W5 \ (L; U LU P) and
V(R)\ (W2 ULy ULU P). Therefore, R’ is not (2,/0k’)-iron. O

Lemma 15. Let H be an n-vertexr h-strongly connected digraph and let x,y be two distinct vertices of
H. Then there exists a (directed) path from x toy of length at most 7 + 1.

Proof. By directed version of Menger’s Theorem (cf. [5, Theorem 7.3.1(b)]), there exist h internally
vertex-disjoint directed paths from z to y. Therefore one of these paths must contain at most "}1;2

internal vertices and so must have length at most "T_z +1< % + 1. O

5. BIPARTITE CASE

In this section we give a fine description of dense vertex-transitive graphs which are almost bipartite.
Their properties are stated in Lemma 16.

The edit distance dist(G1,G3) between two n-vertex graph is the number of edges one needs to edit
(i.e. to either remove or add) to get G2 from G, minimized over all identification of V' (G;) with V(Gz).
Given an n-vertex graph G, we say that it is e-close to a graph property P if there exists an n-vertex
graph H € P such that dist(G, H) < en?. Otherwise we say that it is e-far from P.

Lemma 16. Let ¢ € (0, 1—17) be arbitrary. Suppose that G is a cn-iron vertez-transitive graph G on n
vertices which is ¢*-close to bipartiteness. Then there ezist a bipartition V(G) = AUB such that |A| = |B|,
for each u € A and each v € B we have deg(u, A) < 6¢?n, and deg(v, B) < 6¢2n. Furthermore, we have

g(A) = A or g(A) = B for each g € Aut(G).

Proof. We write A for the valency of G. Observe that since G is cn-robust, then A > cn. Let AUB =
V(G) be the bipartition which maximizes e(A, B). We have

e(A) +e(B) < c¢*n? . (9)
We claim that
min{|A, B} > % . (10)
Indeed, suppose for contradiction that, for example, |A| > %" and |B| < . Counting e(4, B) in two
ways we arrive to ), deg(v) —2¢e(A) = > . pdeg(v) —2¢(B), and therefore
2A A
Tn < A|A| < A|B| +2¢*n? < ?n + 2¢*n?,

a contradiction as A > cn and c is sufficiently small. This proves (10).
Define A’ = {v € A : deg(v,A) > ¢®n}, and B’ = {v € B : deg(v,B) > ¢?*n}. By (9) we have
|A’| + |B'| < 2¢?n. Together with (10) this gives that

A\A' #0 and B\ B #£0. (11)

Claim 16.1. For each g € Aut(G) we either have |A N g(A)| > |A| — 5c¢*n or |AN g(B)| > |A| — 5¢2n.
Also, for each g € Aut(G) we either have |B N g(A)| > |B| — 5¢*n or |[BNg(B)| > |B| — 5¢%n.
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Proof of Claim 16.1. Tt is enough to prove the first statement.

We start with some general calculations. We shall later use them to show that if ¢ € Aut(G) failed to
fulfil the assertions we would get a contradiction to cn-iron connectivity.

Let A= A\ A’ and B = B\ B’. Consider the partition V(G) = XUYUU, where X = (AN g(A)) U
(BNg(B)),Y =(Ang(B)U(BNg(A)),and U = V(G)\ (X UY). We have

U] < |4+ B+ |g(A)] + [9(B))| < 4c’n < en . (12)
We claim that
Ac(X,)Y)<en. (13)
To prove this it suffices to prove that
cn
maX{AAA,AB’AAA,E}Aa App,in ABE,BAAABAd Api il DiB BB ABA,BB} <S5 (14)

where Acp pr = max{deg(v, ENg(F)) : v € CNg(D)} defines the eight new symbols above. Here
we only bound the first two terms; the methods to this end apply to the remaining six as well. To
prove that Aj; 15 < %, consider an arbitrary v € AN g(A). We have v ¢ A’. We then have
deg(v, AN g(B)) < deg(v, fl) < deg(v, A) < ¢®n, where the last inequality follows from the definition of
the set A’. To bound A4 i we again consider an arbitrary v € AN g(/Nl) We have

deg(v, BN g(A)) = deg(g ™! (v).97 (B) Ny~ (9(A))) = deglg™'(v),g7 (B) N A) < deg(g ™' (v), 4) .
We observe that g~ 1(v) € g~ (A)Ng~1(g(A)) C A, and the bound follows by the definition of the set A’.

Suppose now that the statement of the Claim fails for g € Aut(G). We then have X # () and Y # 0.
Indeed, to show for example that X # (), we note that

IX| > |Ang(A)| —|A'| — |g(A)] > 5c*n — 2¢*n — 2620 > 0 .
Let E’ be the edges of G running between X and Y. Now if we remove U and E’ from G we get

a disconnected graph. Together with the bounds (12) and (13) this proves that G is not cn-iron, a
contradiction. O

Claim 16.2. For every v € A we have deg(v, A) < 6¢?n. Also, for every v € B we have deg(v, B) < 6¢n.

Proof of Claim 16.2. By symmetry, it suffices to prove the first part of the statement. Let w € B\ B’
be arbitrary; such a choice is possible by (11). Let v € A and take g € Aut(G) be such that g(v) = w.
Let P =N(v) N A, and Q = N(v) N B. Suppose for contradiction that |P| > 6¢?n. Since the bipartition
AUB was chosen to maximize e(A, B), we must have |Q| > $*. Since N(w) = g(P)Ug(Q) and since also
w ¢ B’ we have that |g(A) N A| > |g(P) N A| > 5¢*n and so |g(A) N B| < |B| — 5¢?n. Similarly, we also

have |g(B)NA| > |g(Q)NA| > 5¢?n and so |g(B)N B| < |B| —5c¢*n. But these contradict Claim 16.1. O

Claim 16.3. For every g € Aut(G) we either have AN g(A) = 0, or ANg(B) = (. Likewise, we have
Bng(A)=0,or BNg(B)=0.
Proof of Claim 16.3. Let C,D € {A,B}. Let ¢! = V(G)\ C, and D' = V(G)\ D. (Thus C',D’ €
{4,B})
Suppose that C' N g(D) # (. We can take a v € C with g~!(v) € D. Using Claim 16.2 for g~ (v), and
then for v we get.
6¢*n >deg(g™" (v), D) = [N(¢7"'(v)) N D| = |N(v) Ng(D)| > N(v) N C" N g(D))|
= |N(v) N C'| = N(v)nC"Ng(D')| = [N(v)| — [N(v) N C| = |C" N g(D')]
> A —6c¢*n—|C'Ng(D')| = cn—6c*n—|C' Ng(D)|.
Thus [C' Ng(D')| = cn — 12¢*n > 5¢*n. Hence C' N g(D') # ). Repeating the previous argument for C’
and D’ yields |C N g(D)| > 5c*n.
Therefore for every C, D € {A, B} we have
|ICNg(D) =0or |CNg(D)|>5cn . (15)

We use this for C = A and D = B. We get that |[AN g(B)| = 0, or |AN g(B)| > 5¢*n. We are done
in the former case. In the latter case, we have |[A N g(A4)| < |A| — 5¢*n. Claim 16.1 then gives that
|ANg(B)| > |A| —5c¢*n. Using again (15), this time with C' = A, D = A, we get that |[ANg(A)| =0. O
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Claims 16.2 and 16.3 show that the bipartition AUB satisfies the conclusion of Lemma, 16. ]

Remark 17. In the above proof we showed that the partition maximizing e(A, B) satisfies the conclusion

of Lemma 16. In fact we only used the following two properties of the partition:

(1) The partition satisfies (9).

(2) For every v € A we have deg(v,A) < deg(v,B) and for every v € B we have that deg(v, B) <
deg(v, A).

In particular any partition satisfying the above two properties also satisfies the conclusion of Lemma 16.

This fact will be important in the proof of Theorem 27 which provides an algorithmic version of Theo-

rem 2.

Remark 18. Note that the bipartite subgraph G[A, B] obtained from the partition AUB given by
Lemma 16 by removing all edges within the parts A and B is itself vertex-transitive. Indeed observe that
for any automorphism g € Aut(G) and any edge e between the parts A and B we have that g(e) also lies
between these parts. Therefore every automorphism of G restricted to G[A, B] is also an automorphism
and so G[A, B] is vertex-transitive.

6. SZEMEREDI’S REGULARITY LEMMA

Szemerédi’s Regularity Lemma is one of the main tools in our proof of Theorem 2. In this section we
collect all the tools related to the Regularity Lemma that we will need. For surveys on the Regularity
Lemma and its applications we refer the reader to [18, 15, 17, 21].

Before stating the lemma, we need to introduce some more notation. The density of a bipartite graph
G with vertex classes A and B is defined to be dg(A, B) = elf‘(I‘I’g\)' We sometimes write d(A, B) for
de (A, B) if this is unambiguous. Given € > 0, we say that G is e-regular if for all subsets X C A and
Y C B with | X| > ¢|A| and |Y| > ¢|B| we have that |d(X,Y) — d(A, B)| < e. Given d € [0,1], we say
that G is (e, d)-regular if it is e-regular of density at least d. We also say that G is (e, d)-super-regular
if it is e-regular and furthermore dg(a) > d|B| for all a € A and dg(b) > d|A]| for all b € B. Given
partitions VoUViU. ..UV}, and U U...UU, of the vertex set of some graph, we say that VoUViU. ..UV,
refines UyU. .. UUy if for all ¢ with 1 < ¢ < k, there is some 1 < j < £ with V; C U;. Note that this is
weaker than the usual notion of refinement as we do not require Vy to be contained in any U;. We will
use the following degree form of Szemerédi’s Regularity Lemma [28]:

Lemma 19 (Regularity Lemma; Degree form). Given € € (0,1) and integers N’ ¢, there are integers
N = N(e,N',£) and ng = ng(e, N',£) such that if G is any graph on n = ng vertices, d € [0, 1] is any real
number, and Uy, ..., Uy is any partition of the vertex set of G, then there is a partition of the verter set
of G into k+ 1 classes VoUV1U ... UVy, and a spanning subgraph G’ of G with the following properties:
(i) N' <k < N;
(ii) VoUViU. ..UV} refines UrU. .. UUy;
(iii) Vol < em, Vi| =+ = [Vi| = m;
(iv) deger (v) = dege(v) — (d+€)n for every v € V(G) \ Vo;
(v) G'[Vi] is empty for every 0 < i < k, and no edges of G' are incident with Vy;
(vi) all pairs (V;,V;) with 1 <1 < j < k are e-reqular with density either 0 or at least d.

We call V7,...,V, the clusters of the partition, Vy the exceptional set and the vertices of G in Vj
the exceptional vertices. The reduced graph R = Rg of G with respect to the above partition and
the parameters ¢ and d is the graph whose vertices are the clusters Vi ...,V in which V;V; is an edge
precisely when the pair (V;,V;) has density at least d in G'.

Remark 20. It turns out that for the proofs of Theorems 25 and 26 (see below) we need to work with
two threshold densities d; < dy of the reduced graph. The degree form of the Regularity Lemma can
be adapted in order to accommodate this need. In particular we can get a partition VoUViU. ..UV} of
the vertex set of G and spanning subgraphs G1, G2 of G such that properties (i)—(vi) of the Regularity
Lemma hold for both G; and G5 with the corresponding densities d; and dy. (This can be deduced in
the same way as the degree form of the Regularity Lemma is deduced from the standard form.)

For further use, we also recall the following well-known facts. The next lemma says that large sub-pairs
of regular pairs are regular.
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Lemma 21. Let (A4, B) be an (e, d)-regular pair with e < d/2 and let A’ and B’ be subsets of A and B
of sizes |A’| = |A|/3 and |B'| > |B|/3. Then (A', B') is (3e,d/2)-regular.

Given any bounded degree subgraph H of the reduced graph R we can make the pairs corresponding
to its edges super-regular by removing a small fraction of the vertices of each cluster to the exceptional
set. We will only need this fact in the case that H is a matching.

Lemma 22. Suppose 0 < 4e < d <1 and let VoUVLU. ..UV, be a partition of a graph G as given by the
Regularity Lemma. Let R be the reduced graph with respect to this partition and the parameters € and d.
Let M be a matching in R. Then we can move exactly em vertices from each cluster V; into Vy such that
each pair of clusters corresponding to an edge of M is (2e,d/2)-super-reqular while each pair of clusters
corresponding to an edge of R is (2e,d/2)-regular.

Given an (g, d)-super-regular pair (4, B), we will often need to isolate a small sub-pair that maintains
super-regularity in any sub-pair that contains it. For A* C A and B* C B we say that (A*, B*) is an
(e*,d*)-ideal for (A, B) if for any A* C A’ C A and B* C B’ C B the pair (4',B’) is (¢*,d*)-super-
regular. The following lemma shows that ideals exist.

Lemma 23 ([8, Lemma 15]). Suppose 0 < e < 0,d < 1/2, and let (A, B) be an (g, d)-super-reqular pair
with |A| = |B| = m, where m is sufficiently large. Then there exists subsets A* C A and B* C B of sizes
Om such that (A*, B*) is an (¢/0,0d/4)-ideal for (A, B).

The proof of the above lemma given in [8] is probabilistic. (It proves that random subsets of sizes
Om have the required property with high probability.) For finding the Hamilton cycle efficiently in
Theorem 27 below we will also need a ‘constructive’ proof of this lemma. We proceed to give such a
proof.

Proof of Lemma 23. By using a more general version of the Lemma 21, it is enough to construct subsets
A* C A and B* C B of sizes Om such that every vertex a € A has deg(a, B*) > 6dm/4 and every
vertex b € B has deg(b, A*) > 6dm/4. By symmetry, it is enough to show how to construct a subset
A* C A of size §m such that very vertex b € B has deg(b, A*) > 6dm/4. We will construct this set A*
by adding to it one vertex at every step. At each step we will say that a vertex b of B is unhappy if
it has k < 6dm/4 neighbours in A*. If a vertex b is unhappy we will define its unhappiness u(b) to be
u(b) = Zfingfl 27", Otherwise we define its unhappiness u(b) to be equal to 0. We also denote by U
the total unhappiness U = ), 5 u(b) of vertices of B. Observe that if in the next step we add to A*
a neighbour of b then the unhappiness of b is reduced by at least u(b)/2. Note also that if a vertex b
is unhappy, then it has at least dm — 8dm/4 > dm/2 neighbours outside of A*. We now give to every
edge joining b to a vertex of A\ A* a weight equal to u(b)/2. Then the total weight on these edges is
at least ), pu(b)dm/4 = Udm/4. In particular there is a vertex a € A\ A* where the total weight on
its incident edges is at least Ud/4. Adding this vertex to A* we get that the new total unhappiness is at
most (1 —d/4)U. Initially the total unhappiness was at most m. So after §m steps the total unhappiness
is at most (1 — d/4)?™m < me=md/* < 2-04m/4 when m is sufficiently large. But no unhappy vertex
can have unhappiness less than 2-99/4 Tt follows that after #m steps there is no unhappy vertex in B,
as required. O

We will also need the following ‘blow-up’-type statement.

Lemma 24. Suppose 0 < ¢ < d and let (A, B) be an (g, d)-super-reqular pair with |A| = |B|. Leta € A
and b € B. Then AU B contains a Hamilton path with endvertices a and b.

Proof. The lemma follows from the Blow-up Lemma of Komlds, Sérkozy and Szemerédi [15]. We need to
deal with one minor difficulty which does not allow a direct application of the Blow-up Lemma, namely
that we are prescribing exactly the images a and b of the endvertices of the Hamilton path.
Recall that by [15, Remark 13] we can impose additional restriction on a small number of target sets
of vertices of the graph we are trying to embed in the super-regular pair. We thus proceed as follows.
We can assume that |A| is sufficiently large. Otherwise, setting ¢ small, we can force (A, B) to form
a complete bipartite graph, and then the statement is trivial.

Let A’ C A and B’ C B be the neighbourhood of b and a, respectively. We have |A’\ {a}| > %, and

|B"\ {b}| = @. Observe also, that the pair (A \ {a}, B\ {b}) is (2¢, 4)-super-regular. By the Blow-up
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Lemma we can find a Hamilton path P in the pair (4 \ {a}, B\ {b}). Furthermore, by [15, Remark 13]
we can require the endvertices of the path to lie in the sets A’ and B’. The path aPb is a Hamilton path
in (A, B) satisfying the assertions of the lemma. O

7. HAMILTON CYCLES IN TRON CONNECTED VERTEX-TRANSITIVE GRAPHS

In this section, we prove a stronger version of Theorem 2 under the additional assumption of high
iron connectivity of the host graph. This is stated in Theorem 25 in the non-bipartite setting, and in
Theorem 26 in the bipartite setting.

The basic idea is to follow Luczak’s ‘connected matching argument’ [24]. The novel ingredient in
our work is an innocent looking modification of this technique: we observe that we can extend the
argument to work with fractional matchings as well. This allows one to use the LP-duality. We believe
that this observation will find further important applications in the future. (After the first version of
this manuscript was posted on the arXiv, we learned that R6dl and Ruciniski announced a solution of
a certain Dirac-type problem for hypergraphs using Farkas’ Lemma, an approach similar to our linear
programming approach. The corresponding paper was posted later in the arXiv [2].) The use of the
LP-duality in conjunction with the Regularity Lemma originated in discussion of Jan Hladky with Dan
Kral’ and Diana Piguet. (As it was pointed to us by Deryk Osthus, the full strength of the LP-duality
machinery is not needed. In [20] it is shown that every dense almost regular graph has a reduced graph
with an almost perfect matching and this suffices in our setting.)

Theorem 25. For every B,~v > 0 and every C € N, there exists an Ny such that every Pn-iron vertex-
transitive graph of order n > Ny which is B-far from bipartiteness is C-pathitionable with an exceptional
set U C V(G) with |U| < yn.

Theorem 26. For every c € (0, %7), v >0 and C € N there an exists Ny such that for every vertex-
transitive graph G of order n > Ny the following holds. Suppose G is cn-iron and c*-close to bipartiteness.
Let AUB be the bipartition of G given by Lemma 16. Then there exists a set U C V(G) with |U| < yn
such that G is C-bipathitionable with exceptional set U with respect to the partition AUB.

After proving Theorem 25 in detail below, we indicate necessary changes to make an analogous proof
of Theorem 26 work as well.

Proof of Theorem 25. We begin by fixing additional constants ¢, dy, ds, 71, 72 satisfying
I<edi KM <KLy Kd <, p.
Let N’ =1/e. Let N(e, N’',1) and no(e, N’,1) be the numbers given by the Regularity Lemma. Set
N(e,N',1
(677);”0(57]\[,71)} . (16)
!

Let G be any fn-iron connected vertex-transitive graph on n > ng vertices of valency A. Apply the
Regularity Lemma (see also Remark 20) with parameters ¢, N', £ = 1 and d;, d3 to G to obtain a partition
VoUViU. ..UV, of V(G). Let G1, G2 C G be the spanning subgraphs of G given by the Regularity Lemma
corresponding to the densities d; and ds respectively. Let also R; and Ry be the reduced graphs of G with
respect to the above partition, the parameters € and dj,ds and the subgraphs G; and G respectively.
We write m = |V].

We first claim that R; has a large fractional matching.
Claim 25.1. v*(Ry) > (1— L)%,
Proof of Claim 25.1. Observe that by Lemma 5 we have that 7%(G) = n/2. We also have that

e(G1) = e(G) — (dy +e)n? > (1 - %) e(G)

ng = max{

where in the first inequality we used properties (iii)—(v) of the Regularity Lemma and in the second one
we used the fact that e(G) > fn?/2. By Lemma 4 we obtain that 7*(G1) > (1 — Z)%. Observe that
v*(G1) = v*(G1 — Vi) by property (v) of the Regularity Lemma. Therefore, combining Lemma 7 with
Theorem 3(a) we have

(G (G k

m m 2
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The density d; was used to find a large matching in R; (cf. Claim 25.1). On the other hand, it is
more convenient to work with the higher threshold density ds to infer some connectivity properties of
certain graphs that will be derived from Ry (most importantly, to deduce Claim 25.5).

Since G is fn-iron and €,dy < B, properties (iii) and (iv) of the Regularity Lemma (for the density
dy) imply that Go[V'\ Vo] is (#n/2)-iron. We claim that the iron connectivity is inherited by the reduced
graph Ry as well.

Claim 25.2. Ry is (Bk/2)-iron.

Proof of Claim 25.2. Indeed, suppose we could disconnect Ry by removing a set of clusters S of size at
most Sk/2 together with an edge set F C E(Ry) with A(F) < fk/2. Let E' C E(G2[V \ Vj]) be the set
of edges contained in the regular pairs corresponding to F'. Then we could also disconnect Ga[V '\ Vp] by
removing all vertices belonging to the clusters of S together with the edge set E’. However, the clusters
of S contain at most Skm/2 < fn/2 vertices and also A(E’) < fkm/2 < fn/2. This would contradict
the (8n/2)-iron connectivity of Ga[V \ Vo). O

For each 1 < i < k, we arbitrarily partition V; into two parts V' and V;? of equal sizes. In the case
that the V;’s have odd sizes, then before the partitioning we move an arbitrary vertex from each cluster
into Vy. We denote the new exceptional set obtained by V. We also define a new graph R} on vertex
set {Vi1, V2, ..., V.1, V2} where V# is adjacent to Vjt if and only if V; was adjacent to V; in R;. Similarly,
we define a graph R} on the same vertex set as R} to be the 2-blow-up of Ry. By Lemma 21 every edge
of R corresponds to a (3e,d;/2)-regular pair, and every edge of Rj corresponds to a (3¢, da/2)-regular
pair. We have R} = 2x Ry, R, = 2 X Ry, and R, C R). Consider a matching M in R} of weight at least
(1 — &)k, Such a matching exists by Claim 25.1 and by Lemma 6.

Observe that R} is itself a reduced graph of the partition VjUV!UVZU. .. UVUVZ with respect to the
parameters 3¢ and dy /2 and some subgraph G} of G. In particular, we can apply Lemma 22 to R} and
the matching M to remove exactly 3em vertices from each cluster of R} so that every pair of clusters
corresponding to an edge of M is (6¢, dy /4)-super-regular while every pair of clusters corresponding to an
edge of R} is (6¢,dy/4)-regular. It also follows that every pair of these modified clusters corresponding
to an edge of R} is (6e, d2/4)-regular.

We now move all clusters of R} which are not incident to the matching M into the exceptional set.
This modification is also performed in the graph R}. Let k' be the number of clusters of this modified
graph R}, and m’ be the size of each of its clusters, which are denoted by V/,...,V/, (and we write V{
for the exceptional set).

The modified graph R/ is obtained from 2 X Ry by removing a small number of vertices. From
Claim 25.2 and Lemma 13 we get that 2 x Ry is (8k/2)-iron. Therefore

R} is (ﬁkl )-iron. (17)

From now on, all references to R}, R} and the matching M will be to these modified versions.
By the above, there is a partition of the vertices of G into k' + 1 classes VjUV{U...UV/,, and a
spanning subgraph G’ of G with the following properties:

(a) 1/e <k <2N(e,N',1 ) < 2v1n (using the bound (16)).

(b) Vgl < 2m, V]| = - = [Vl = m".

(c) degG,( ) = degg (v ) - 3'yln for every v € V(G) \ V.

(d) G'[V/] is empty for every 0 < i < k.

(e) All pairs (V/,V}) with 1 <14 < j <&’ are 6e-regular with density either 0 or at least dy /4.

(f) There is a Bk’/5-iron graph R5 on vertex set VY, ..., V}/, such that every edge of R4 corresponds
to a (6e, dy/4)-regular pair in G.

(g) There is a perfect matching M on the complete graph formed by the clusters VY, ..., V/,. Further,

every edge of M corresponds to a (6e, dy /4)-super-regular pair in G.

If XY € M, then we call Y the partner of X. Let us denote the edges of M by A;B; for 1 < < k'/2.

Using Lemma 23 with § = d? for each 1 < i < k'/2, we find AF and B} with |A}| = |B}| = d m’, such
that (A}, B}) is an (6¢/d? ,d3/16) ideal for (A;, B;).
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We now define the exceptional set U in the statement of the theorem as follows:
K /2
U=VvyulJ@;uB).
i=1
Observe that
\U| < 2v1n + din < 3y1n < yn.

Suppose now that we are in the setting of the theorem, that is, we are given distinct vertices 1, y1,...,T¢, yr €
V(G)\U (where 1 < £ < C), and our task is to find a system S of ¢ vertex-disjoint of paths that partition
V(G). Furthermore it is required that x; and y; are the endvertices of the j-th path.

Our first aim is to find a system &’ = { P, ..., P} of ¢ vertex-disjoint paths, with the path P; having
endvertices z; and y;. We want &’ to meet the following properties:

(A1) V(S8’) contains all vertices of V{;

(A2) for each i € [k'/2], we have that |V (S') N A;| = |[V(S') N Byl;

(A3) for each i € [k'/2], there is an edge of S’ whose respective endvertices lie in A; and Bj;
(A4) for each i € [k'/2], we have that |V (S") N Af| = |V(S') N B}| = 0.

Having obtained this system &’ we can then find a complete extension S of &’ as follows: For each

1 € [k'/2] let e; = a;b; be an edge of &' with a; € A; and b; € B; as guaranteed by (A3). Let
3

Al = (A;\V(S)U{a;} and B, = (B; \ V(S')) U {b;}. Since (A}, B}) is an (2—%, %)—ideal for (4;, B;)

we have that the pair (A}, B)) is

3

and since by property (A4) the system S’ does not meet A} U B,
(%, %
a2’ 16
deduce that G[A}UB!] contains a Hamilton path P; with endvertices a; and b;. We now replace the edges
e; by the paths P; for each 1 < i < k//2 to obtain a new system S containing all vertices of VU~ --U V.
Since by property (A1) it also contains all vertices of Vj, then S is a complete extension of S’ as asserted
by the theorem.
It therefore remains to prove that we can find a system S’ satisfying the properties (A1)—(A4). In order
to prove that, it will be actually more convenient to demand S’ to satisfy the following strengthening of

property (A2) as well:
(A2') for each i € [k’/2], we have that |V(S") N A;| = |[V(S') N B;| < 2C/yrm/.

Finally we set aside disjoint subsets Dy,,Dy,, ..., Dy,, D, of sizes exactly d?m’ each as follows: For
each vertex v amongst x1,¥1, ...,z ye if v belongs to the cluster X € V(R)), and Y is the partner of
X, then we take any subset D, of Ng(v) N (Y \ Y*) of size exactly d?m’ which is disjoint from any other
D,’s already defined. This is possible as by the super-regularity of the pair (X,Y), vertex v has at least
dim'/4 neighbours in Y with at most d?m’ of them lying in Y* and with at most 2Cd?m’ of them lying
in other D,’s. These sets will enable us to have a choice of at least d3m’ vertices when choosing the
neighbour of v in the path containing v as an endvertex in the system S’. This can be immediately
guaranteed provided that we further demand the following;:

)-super-regular. By property (A2) we also have that |A}| = |B}| so we can apply Lemma 24 to

(A5) for each v € {x1,y1,...,2¢,ys}, only the path with endvertex v from the system S’ is allowed to
meet D,, and furthermore it is only allowed to meet it at the neighbour of v in this path.

Let us write D for the union of all D,, with v € {z1,y1,..., 2z ye} and observe that
|D| = 2¢dim’ < 2CdIm’.
We will satisfy (A1) by insisting that the first path P; of S’ contains all the vertices of V. Let us
write r for the size of Vj and zy,..., 2, for its vertices.

Claim 25.3. There are clusters Uy, W1,...,U,., W, of R, such that:

(i) For each 1 < i < r, the cluster U; is different from W; and from the partner of W;.
(ii) For each 1 < i < r, vertex z; has at least Sm’/2 neighbours in U; \ (DUU).
(iii) For each 1 < i < r, vertex z; has at least Sm’/2 neighbours in W; \ (D UU).
(iv) Each cluster appears at most \/yym’ times in the list Uy, Wh,..., U, W,..
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Proof of Claim 25.3. The clusters Uy, W1, ...,U., W, can be chosen greedily. We proceed sequentially
for i =1,...,r. At any point we will have chosen at most 2r < 4y;n clusters. So at most

4vin
,yl I<5 ,71]{7/

Vrm

clusters are not allowed to be chosen again because of (iv). So each z; has at most 3y;n neighbours in
U, at most 2Cd?m’ neighbours in D, at most 5,/71n neighbours in clusters which are not allowed to be
chosen because of (iv), and at most 2m’ neighbours which are not allowed to be chosen because of (i).
So at the point when we want to choose U; or W;, vertex z; has at least 8n/2 neighbours which belong
to sets of the form V' \ (U U D) for some cluster V. But there are at most k" such clusters so there is a
choice of cluster which does not violate (i)—(iv). O

For each 1 < ¢ < r we will choose neighbours w;, w; of z such that w; € U; \ (DUU) and w; €
W; \ (DUU). These will not be chosen from the beginning but rather during the construction of the
system S’. Suppose that at some point during the construction, we want to choose u; € U; \ (D UU).
By condition (ii) of Claim 25.3 there are Sm'/2 neighbours of z; in U; \ (D U U) which we are allowed
to choose from. By (A2') at most 2C',/yym’ of those vertices have already been used and so there are
at least another Sm’/3 which we can freely choose from. We write Z; for the partner of U;. The pair
(Ui, Z;\ (DUU)) is a subpair of the regular pair (U;, Z;), and hence itself regular. Thus, all but 6em’ of
those vertices of U; that we can still choose from, have at least dym’/8 neighbours in Z; \ (D UU) that
have not yet been used in the construction of §’. We also choose w; similarly.

Also, for each i € [k'/2], we will choose an edge u,1;w,4; € E(G) such that u,4; € 4;\ (DUU) and
Wri € B; \ (DUU). Again these vertices will be not be chosen now but during the construction of
the system S’. When choosing them, we will further demand that u,,; has at least dym’/8 neighbours
in B; \ (D UU) which have not yet been used in the construction of 8" and similarly w,; has at least
dym’/8 neighbours in A; \ (D U U) which have not yet been used in the construction of §’. Again this
is possible since (A;, B;) is (6¢,dy/4)-regular.

Set ' =1+ k’/2. The bounds |Vj| < 2y1n, and k' < 2y;n (which is implied by (a)) give that

r < 3yn . (18)

The system S8’ = {P,..., P;} will be such that the path P; will contain all the 2-paths u;z;w; (for
t=1,...,7) and all edges w;w; (for i = r+1,... 7). Therefore, the path P; alone will guarantee (A1),
i.e. it will absorb all the vertices of V{. Further, the path P; alone will guarantee (A3), i.e., for every
i € [K'/2] there is an edge of P, between A; and B;. We first describe in detail the construction of the
path Pl.

In order to construct the path Py, for each 0 < ¢ < 7/, we aim to find distinct vertices uy, w1, . . ., Uy, Wy
as described above and for each 0 < ¢ < 7’ a path Q; in G with endvertices w; and wu;y1; here wy = 1
and u,»41 = y1. The path P; will be the union of these paths together with the 2-paths u;z;w; (for
i € [r]) and the edges u;w; (for i = r+1,...,r"). To guarantee that S’ satisfies properties (A1)—(Ab5)
and (A2') we will require that the paths @; satisfy the following properties:

B1) the paths Q; are disjoint and do not contain any vertex from V{;

(B2) for each 0 <4 <7’ and each 1 < j < k'/2 we have that [V(Q;) N 4;| = |V(Qi) N Bjl;

(B3) for each 1 < j < k'/2, we have that [V (U;Q;) N A, |V (U;Qi) N Bj| < 2/mm’;

(B4) for each 0 <7 <7’ and each 1 < j < k'/2 we have that [V(Q;) N A%| = [V(Q;) N Bj| = 0;

(B5) the paths @; do not meet any vertices of D with the only possible exceptions being the neighbour
of z1 in Q¢ and the neighbour of y; in Q1.

To achieve these properties we will further demand that the following property is also satisfied:
(B6) for each 0 < i < 7/, the path @; has length at most 7171/3'

Let us now show how this can be done. Suppose we have already chosen the vertices uy, wy, ..., u;—1, w;_1,
and the paths Qq, @1, ...,Q;—1 and we are now at the stage where we require to choose vertices w; to
u;+1 and the path @Q;.

We use (B6) and (18) to infer that the paths Qo,Q1,...,Q;—1 contain at most 2.7171/3 < r’vfl/S <
373/ ®n vertices. In particular, we have the following.
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Claim 25.4. There are at most 375/311/(711/2771’) < 4711/6kr’ indices j € [k’ /2] for which |[V(QoUQ1U---U
Qifl) N AJ| = \/'ﬁm' or |V(QO @] Ql U---uy Qifl) N BJ| > \/ﬂm’.

When constructing @;, we will make sure that no vertex of @; is contained in such clusters except
possibly the first four and the last four vertices of @;. (It might happen that w; or w;1; belong to
such clusters so in this case @; definitely cannot avoid these clusters completely. By using at most four
vertices, and the high minimum degree of R} we will be able to get out of these forbidden clusters and
then we will make sure that we never visit them again.) If we can achieve this then we can guarantee
that for each 1 < j < k'/2, we have that

IV (UiQi) N A |, [V(UiQi) N Byl < yAmm! +~1 2 480 +1) < 20/,

as required by property (B3).

For finding the paths @; we will need to use an auxilary digraph R*, which should be viewed as a
“shifted version” of R5. The vertex set of R* is the same as the vertex set of R} while its edge set is
defined as

E(R*) = {Bin,BiAj : AiAj € E(R/Q)}U{A]B“AzB] : BiBj S E(RIQ)}U{AJA“BzB] : AzBJ S E(Ré),l # j} .

Claim 25.5. The digraph R* is (diggg/)—strongly connected.

Proof of Claim 25.5. Suppose that R* is not (dioﬁégl)—strongly connected. That means that we can

write V (R*) = SoU S7 U Sy, where |Sp| < d232k’ /1000, S, So # 0, and there are no directed edges from
S1 to Sy. We partition further each S; (i = 1,2) into three sets:

S? = {X € S; : partner of X is in Sp},
Sl ={X € 8;\ S?: partner of X is in S3_;},
S? ={X € 8;\ S?: partner of X isin S;} .
(See Figure 2(a).) For the set L1 = So U Sy U SY we have
dy B2k
500
The graph R} can be viewed as an edge-weighted graph, where the weight of each its edge is the
density of the corresponding regular pair. Thus the weights used on the edges of R} are in the interval
[d1/4,1]. In particular, we have the notion of weighted degree which is defined for a cluster X € V(R})
as the sum of weights of edges incident with X, and is denoted deg(X). Observe that the property that
all vertices of G have the same degree gets inherited by the weighted graph R}, that is, the valency A of
the vertices of G corresponds to weighted degrees of approximately A%’ of the clusters V;/. Taking into

account that the relations n ~ k'm’ and deg., (v) = A are only approximate, we get that each cluster
V!, (i € [K']) satisfies

|L1] <

(19)

AK AK

(1 =) - <deg(V)) < (1+12) o

The set Si is independent in R) by the definition of the graph R*. Indeed, suppose that there is an
edge XY € E(R)) inside S3. Then, by the definition of R*, there is a directed edge from the partner of
X (which is in S7) to Y, a contradiction to the assumption that there are no directed edges from S} to
S3i. Further, it can be similarly checked that there are no edges between Si and S7 U S2, or between S?
and S3. This is depicted on Figure 2(b).

At this point, we distinguish three cases. Suppose first that S§ = (. Then the set L; witnesses

(using the bound (19)) that R} is not (d25%zkl>—vertex connected, and therefore not <d25%2k/ )—iron. This

(20)

contradicts (17). It remains to consider
o Case A: ST # () and max{|S?|,|S3|} > %k/, and
e Case B: S] # () and max{|S?|,|S3|} < %k,

Before diving into Case A and Case B separately, we make some calculations which will turn out to be
useful in both cases.
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i

a) Separation of the digraph R*. There are no directed ) The situation in the graph R}. Allowed edges are
edges crossing from left to right. Vertices of SoU SO U SO deplcted in grey.
are omitted from the picture.

FIGURE 2. The digraph R* and the graph Rj. The sets S? are split into two according
to an arbitrary orientation given by the matching M.

We have

(20),(19)
> awmvst) > Y o) - 5 183 (-5

wes] wes)

ALK dzﬂzk’> . (21)

500

Using the facts that Ry C R} and that edges of R) correspond to pairs of density at least d2/4 we have

4
er, (ST US3,81) +er, (S1) < > deg(W)— Y deg(W,S3)

d west west
(20) 4 AE
S T 1SH(1+72) - )
2 west
. (21) 4|54 AK do2K 2L
[hand-shaking lemma] < |d;| (2 9 + 25%0 ) < ﬁlOO . (22)

We now turn to dealing with Case A. In this case it is our aim to show that R} is not (510 )-iron.

First, we show that |S3| > 5’“ . Indeed consider A € S} arbitrary. As |S1| = |S}| > 0, such an A

exists. As degp, (4) > (1 — 2'72) , and as A can send edges (in the graph R}) only to L; and S}, we
get
AK (19) BE'

Si=18t>1-2 —|Li| > =.
1S3 = [51] = ( Vz)n | L1] 5

We now utilize the assumptions of Case A. Without loss of generality, assume that |S7| > %kl Set

0= fﬁ The set Ly = S| satisfies by (22) that ep (L2, V(R5) \ (L1 U Lg)) < o(K')?. Further, we
have two disjoint sets Wi = S3 and Wo = S7 with N(W>) C Ly U Ly, and min{|Wy|, |[Wa|} > 2,/0k’ .
Therefore, Lemma 14 applies, and we get that R is not (2,/ok’)-iron. This contradicts (17).

It remains to consider Case B. In this case we get a contradiction by showing that G is close to a
bipartite graph.

Indeed, consider first a partition WUSL = V(R’), where W = S? U S{ U S5 U L;. The graph R} is
almost bipartite with respect to the partition WSS since S3 is independent and W is very sparse as
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the following calculation shows:

ery (W) < K'|L1| + ery (S7) + ery (S3) + ery (S5, 55) + (ery (STUS3,51) + ery (S1))

d262 k‘/2 62 k/2 62 k/2 62 k‘/2
by C B, (19), (22 < 0
/2
< Bk .
3

The partition WUS3 = V(R}) induces a partition AUB of G (placing the vertices of V] to the sets A
and B arbitrarily) such that

ec(A) +eq(B) < eg,(A) + eq,(B) + 2dan? < eR/Z(W)(m')2 + [Vg|n + 2dan? < Bn?.
This is a contradiction to the fact that G is S-far from bipartiteness. O

Recall that we were looking to choose vertices w; and w;41 as well as a path @; from w; to wu;y1.
Recall that we want w; € W; and u;41 € U;41. We write Z for the partner of U;1;. By Claim 25.4
there were at most 4711 /6%’ clusters which we wanted to make sure that their vertices are avoided by Q;
(except perhaps the first four and last four vertices of @;). Let us write S for the set of these clusters.
1 do B2k’

Since by Claim 25.5 R* is (diggé“/)—strongly connected and since also 471/ op <« 2500-» we have that

2000

from W; to Z avoiding S of length ¢ < 3222 + 1 7;1/3. Suppose @} = X; X5 --- X; where X; = W,
and X; = Z. For i € [t], let Y; be the partner of X;. It follows from the definition of E(R*) that
Q! = X1Y1X2Ys -+ X;Y; is a path in R]. Observe that by our construction, if a cluster belongs to S
then so does its partner. Therefore, since @} avoids S, so does Q7. Observe also that for each j € [t] the
pair X;Y; is (6e, dy /4)-super-regular and for each j € [t — 1] the pair Y; X4 is (6¢,d;/4)-regular.

We will show how to use QY to find a path Q; = p1g17151P2q27282 - - - Prqu7eSe in G, where py = w;, s¢ =
u;41, and for each j € [t], pj,r; € X, and ¢;,s; € Y;. If we can do this automatically (B2),(B3) and
(B6) are satisfied. If we can do it by avoiding all vertices of Q1,...,Q;—1 and all vertices of U then (B1)
and (B4) will also be satisfied. By further avoiding all vertices of D except possibly in the case of the
neighbours of 21 and y; then (B5) will also be satisfied.

We will do this as follows: First we will choose p; = w; € X7 and s; € Y. The only restrictions apart
from the ones mentioned in the previous paragraph are:

the digraph R* — S is (dQsz/)—strongly connected. By Lemma 15 there is a directed path @) in R*

(i) p1 = wo = 21 if i = 0, p; is a neighbour of z; for 1 < i < r, p; is a neighbour of w; (which has

been already chosen) if r +1 <@ <1/

(ii) p; has at least dym//8 neighbours in Y7 \ (UUD) which have not yet been used in the construction
of 8" except possibly in the case ¢ = 0.

(iii) s1 has at least dym//8 neighbours in X; \ (UUD) which have not yet been used in the construction
of &'

(iv) s1 has at least dym’/8 neighbours in X5\ (UUD) which have not yet been used in the construction
of &

We have already seen that (i) can be achieved in such a way that (ii) is also satisfied. By the regularity
of the pairs (X1,Y7) and (Y1, X5) conditions (iii) and (iv) give a total of 12em’ vertices which are not
allowed to be chosen. So we can choose such an s; avoiding also all vertices of U U D and all vertices
which have been already used.

Looking now at all neighbours of p; in Y7 \ (U U D) which have not yet been used and all neighbours
of 51 in X7 \ (U U D) which have not yet been used, by conditions (ii) and (iii) and the regularity of the
pair (X1,Y7) we can find the vertices ¢; and 7 as required except possibly when ¢ = 0. In this case we
can still choose q1, 71 as required because we are allowed to take any ¢; € D,,. Since |D,,| = d3m’ the
regularity of the pair (X7, Y7) still works to let us find ¢; and rq.

An identical argument now works for first finding the vertices ps, so and then the vertices g, r2. Here,
the equivalent of condition (i) for ps is that it is a neighbour of s;. Condition (iv) above is the one that
lets us choose such a ps such that the equivalent of condition (ii) for ps holds.

The only thing that remains to be checked to complete the argument is what happens with the choice
of the last vertex s; = u;4+1 of ;. In the case that 0 < i < r —1 we want u;41 to be a neighbour z;4;.
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We have already seen that the equivalent of condition (iii) for s; can be guaranteed and there is no need
for an equivalent of condition (iv). Finally, if ¢ = r’ then s; = u,»11 = y1 which is already chosen. We
can then pick ¢; and r; by allowing r € D,,,. The argument is analogous to the one we did in the case
i =0 for p1 = wy = 7.

So the paths Qg, @1, - ..,Q, can be constructed as required and hence so can the path P;. Construc-
tion of other paths P; for ¢ > 1 again uses the auxiliary graph R* in the same manner. Recall that for
i > 1 we want a path P; from x; to y;. For its construction, we want to satisfy the following properties:

(C1) P, is disjoint from Py,..., P;_1;

(C2) for each 1 < j < k'/2 we have that |V(P;) N A;| = |V(P;) N Byl

(C3) for each 1 < j < k'/2, we have that |V(F;) N A4;|, |V(F;) N B;| < 2/mm/;

(C4) for each 1 < j < k'/2 we have that [V(P;) N Aj| = [V(P;) N Bj| = 0;

(C5) P; does not meet any vertex of D with the only possible exception being the neighbours of x;

and y;;
(C6) P; has length at most 7171/3.
These properties are completely analogous to properties (B1)—(B6) we demanded for the paths @Q);. (Note
that it is not necessary to demand that P; is disjoint from Vj as Vi C V(P;).) So the construction of P;
is completely analogous to the construction of the paths @); with the only difference being that both the
first vertex x; and the last vertex y; are fixed. By choosing the neighbour of x; in D, in a similar way
as we have chosen the neighbour of z; in @)y, and by choosing the neighbour of y; in D,, in a similar way
as we have chosen the neighbour of y; in @741, we can run the same argument exactly as we did for the
paths @), unless possibly if P; must have length 3. In that case we must achieve that the neighbours of
z; and y; are adjacent in P;. This can be guaranteed as D,, and D,, are subsets of a regular pair and
their sizes are big enough to guarantee the existence of an edge between them. O

Sketch of the proof of Theorem 26. Let AUB be the partition given by Lemma 16. By passing to the
subgraph G[A, B] we can assume that the input graph G is bipartite. Remark 18 guarantees that this
modified graph is still vertex-transitive and Lemma 16 guarantees that it has high iron connectivity.

The proof works very similar to the proof of Theorem 25. We just draw attention to three small
differences:

First, the Regularity Lemma must be applied with prepartition AUB. Let A and B be the clusters
inside A, and B, respectively.

Second, when finding good partners u; and w; for exceptional vertex z;, we require that

u;,v; € Bif z; € Aand u;,v; € Aif z; € B. (23)

Last, Claim 25.5 need not hold in the bipartite setting. Indeed, typically clusters in A form one
component and clusters inside B form another component of the auxiliary digraph R*. It can be proven
(using the same methods) that both graphs R*[A] and R*[B] have high strong connectivity. This is
sufficient in the bipartite case. The key for the entire embedding working is that (1), (23) and the fact
that all edges of M cross between A and B guarantee that all the paths will automatically occupy the
same number of vertices in A as in B. ]

8. PROOF OF THEOREM 2

We first set up constants. Let Org, Rrs, and Ny be given by Theorem 8 for input parameter a. Let
N7 be given by Theorem 25 for input parameters o5 = ﬁ%s, Craos = Rrs, and o5 = m. Let Ny

be given by Theorem 26 for input parameters crog = min{fr2s, %} and C19g = 4RT1g. Let
ng = max{ Ny, 100R3g, 10RTg N1, 10RTg N} .
Suppose now we are in the setting of the theorem.

Consider a partition V1U. ..UV, of V(G) given by Theorem 8. We have r < Rrg. We call the sets
Vi,..., V. continents. If r = 1 then the existence of a Hamilton cycle follows. Indeed, consider first the
case when G is cfog-far from bipartiteness. Let U; C V(G) be the exceptional set given by Theorem 25.
There exist an edge xy € F(G — Uy). Using 1-pathitionability of G there exists a Hamilton path from z

to y. This path together with the edge xy forms a Hamilton cycle. If on the other hand G is C4T26—close
to bipartiteness, then an analogous construction using Theorem 26 instead of Theorem 25 works.
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It remains to consider the case r > 1. Let m = |V;|. The proof now splits into two cases. The first
case deals with the situation when the graphs G[V;] are far from bipartiteness. The second case deals
with the setting when the graphs G[V;] are close to bipartiteness.® In both cases one needs to glue paths
of the graphs G[V;] (these paths are guaranteed by pathitionability and bipathitionability, respectively)
into one Hamilton cycle.

Case I: All the graphs G[V;] are chyg-far from bipartiteness.

We write k = % EISKKT e(V;,V;). By the symmetry of our partition, each vertex sends exactly k edges
outside its own continent. A pair V;V; is fat if there exists a matching of size at least ™ in G[V;, V;]. If
e(V;,V;) > 0 but V;V; is not fat then we say that V;V; is thin. Let &’ be the number of edges any vertex

v sends into thin pairs. By Vertex—transitivity, k' does not depend on the choice of v.
Claim 2.1. We have e(V;,V;) < E™ for each thin pair V;V;.
Proof of Claim 2.1. Suppose that

/
(Vi V) > 21 (24
We claim that V;V; is fat. To this end it suffices by Konig’s Matching Theorem to show that there is
no vertex cover of G[V;,Vj] of size less than ™. This is in turn implied by (24) and by the fact that
Aq(Vi, V) < K. O

Claim 2.2. There does not exist any thin pair.

Proof of Claim 2.2. Let K be the number of edges in thin pairs incident to Vi. We have K = mk’. On
the other hand, using Claim 2.1, we have K < (r — 1)’“77” Therefore, mk’ < %mk’, and consequently
k' =0. O

We construct an auxiliary graph H on the vertex set V = {Vi,...,V,.}. The edges of H are formed
by fat pairs. From the fact that G is connected, and from Claim 2.2 we get that H is connected. Let T
be a spanning tree of H. Rooting T" at its vertex V7 we get the notion of children of a continent V;, and
of a parent Par(V;) of V; (the parent Par(V;) is defined only when i # 1).

Let Uy CV4,...,U,. CV, be the exceptional sets given by Theorem 25. We have |U;| < yr25m. Each
graph G[V;] is Cos-pathitionable with exceptional set U;. For each fat pair V;V; let M, ; C G[V;, V;] be
a matching of size at least .

Claim 2.3. There exists a family M consisting of two matching edges x
ViV, € E(T) and V; = Par(V;) having the following properties:
. J:”, EVandy”7y”€V for any V;V; € E(T),V; = Par(V;),
o Misa matchlng in G, and
« VO UL, Ui = 0.

Proof of Claim 2.3. The statement follows by greedily choosing two edges from each matching M; ;
subject to restrictions above. Since the sets U; and U; each forbids at most yr25m edges of M; ;, and
the already chosen edges x;,j,y;)j,,xzfj,yjj, (where (i',7") # (i,7)) forbid at most 4(r — 1) edges, and

0¥ ”y” from each M; ; with

since we have 2yrasm + 4(r — 1) + 2 < |M; 4|, the choice of x and x is possible. O

wyw ljylj

Given the family M = {x”y”, ; ]yw C M; j}v,v,eE(T),v;=Par(v;) from Claim 2.3 we are now ready
to construct the desired Hamilton cycle. The first step is to decompose each continent V; into a system
of paths S;. To describe S; we need to distinguish three cases based on the position of V; in T'.

e V; is the root of T (i.e.,i=1).
Let Vj,,..., Vi, be the children of V;. As p < 7 < Cros, we have that G[V;] is p-pathitionable
with exceptional set U;. Define V;, , = V;,. Let 8§ be a decomposition of V; into p paths such
that the j-th path begins in yj;l and ends in Yiy i1 Such a system of paths exists thanks to
the p-pathitionability of G[V4].

o Viisaleaf of T, and i # 1.
Let Vir be the parent of V;. Let S; consist of a (single) Hamilton path starting in z; ;, and ending
in :r . Such a path exists thanks to the 1-pathitionability of G[V;].

3Recall that by Theorem 8, all the graphs G[V;] have the same distance from being bipartite.
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(a) An example of a partition of G into continents (b) The final Hamilton cycle. The systems S; are de-
V1U. ..UV} together with tree T' (depicted in grey), and  picted by dotted lines.

edges @ v, o @Y1
FIGURE 3. Gluing together the paths S; and M.

e V; is an internal vertex of T', and i # 1.
Let Vir be the parent of V;. Let Vi,,...,V; be the children of Vi. As ¢ < r < Cras, we have
that G[V;] is (¢ + 1)-pathitionable with exceptional set U;. Then let S; consist of ¢ + 1 paths
Py, Py, ..., P; which decompose V;. We require that Py has endvertices le, and yfl - The
endvertices of the path P; (j € [¢ — 1]) are required to be y,  ; and yZ_H’Z—. Last, the endvertices
of the path P, are required to be Yigi and z; ;. Such a system of path exists thanks to the
(g + 1)-pathitionability of G[V;].
It can be easily checked that M together with the system {S;}7_; forms a Hamilton cycle in G. See
Figure 3 for an example.

Case 1I: All the graphs G[V;] are chyg-close to bipartiteness.

Let A;UB; be the partition of each graph G[V;] given by Lemma 16 with input constant cre¢. Let
W ={A1,B1,A2,Bs,..., A, B;.}. Elements of W are called bicontinents. A pair XY of elements of W

is said to be bifat if G[X,Y] contains a matching of size at least g*. If e(X,Y’) > 0 but XY is not bifat
then we call the pair XY bithin.

Claim 2.4. There does not exist a bithin pair.
Proof of Claim 2.4. The proof translates mutatis mutandis from the proof of Claim 2.2. O

Let H be a graph on the vertex set W, where a pair XY forms an edge of H if XY is bifat. Observe
that A;B; € E(H) for every ¢ € [r]. In particular, since G is connected, H is connected as well.
As in Case I we can find matching Mxy = My x for each XY € E(H) with the following properties:
e Myxy CG[X,Y], |Mxvy| =2,
o M = UXYeE(H) Mxy is a matching in G, and
e V(IM)NU;_, Ui =0.
As it will turn out the role of the edges in matchings M4, p, is somewhat inferior: they are just used to
guarantee connectivity of H, and — unlike other matchings Mxy — they are not guaranteed to lie on the
resulting Hamilton cycle. Therefore, we write M’ = M \ J._; Ma, B,
Let H' be a clone of H with each original edge of H replaced by two parallel edges. Since H' is
connected and all its degrees are even we can find an Eulerian circuit £ in H’. Also, observe that H' is



HAMILTON CYCLES IN DENSE VERTEX-TRANSITIVE GRAPHS 23

vertex-transitive, and in particular, we have
degH/ (AZ) == degH/ (B’L) 5 (25)

for any ¢ € [r].

The aim is to use £ to find a Hamilton cycle in G. To this end we find requirements for systems of
paths §; within each graph G[V;].

We identify (in a natural way) edges of H' with edges in M. Therefore, £ may be viewed as moving
between bicontinents. During each (say, j-th) visit of X € W we remember vertex ax ; € V(M)NX
which was used to enter X, and vertex bx ; € V(M)NX which was used to leave X. We view & cyclically.
In other words, for the starting bicontinent Y of the circuit £ the vertex by,; is the vertex coming from
the first matching edge along £ while ay,; coming from the very last step in £.

Let Cx be the number of times bicontinent X was visited. We have Cx < 2r. Observe also that
by (25) we have Cy, = Cp, for each i € [r]. Therefore, by 4r-bipathitionability of G[V;] there exist for
each i € [r] a system of S; of Cy4, + Cp, paths decomposing V; such that:

o The j-th path (for j € [C4,]) starts in vertex a4, ; and ends in by, ;.
e The (j 4+ Ca,)-th path (for j € [Cp,]) starts in vertex ap, ; and ends in bp, ;.
It can be easily verified that the system {S;} together with the matching M’ forms a Hamilton cycle
in G.

9. ALGORITHMIC ASPECTS

As said in the Introduction, the problem of deciding whether a graph is Hamiltonian is NP-hard.
Even when the hamiltonicity of a graph G is guaranteed, finding a Hamilton cycle in G cannot be done
in polynomial time unless P=NP. Yet in many situation there is an efficient algorithm for finding a
Hamilton cycle in graphs satisfying certain conditions. See for example [7, 26, 9].

In this short section we note that the tools we use to prove Theorem 2 can be turned into an efficient
algorithm for finding a Hamilton cycle in dense vertex-transitive graphs.

Theorem 27. For every o > 0 there is an ng such that every connected vertex-transitive graph on
n = ng vertices and valency at least an contains a Hamilton cycle. Moreover there is a polynomial time
algorithm for finding a Hamilton cycle in such a graph.

Recall the main steps of the proof of Theorem 2:

(A) By Theorem 8, the input graph G is partitioned into the continents ViU...UV,.

(B) Tt is checked whether the graphs G[V;] are close to bipartiteness or not. In the first case, partitions
satisfying the conclusion of Lemma 16 are found.

(C) For each G[V;], an exceptional set U; is found so that the consequence of Theorem 25 or Theorem 26
is satisfied. (Depending on whether G[V;] is far from bipartiteness or not.)

(D) A way to connect certain systems of paths into one Hamilton cycle in G is devised. (In Case I and
Case II in the proof of Theorem 2 in the non-bipartite and the bipartite case, respectively.)

(E) A system of paths (with prescribed end-vertices) is found in the graphs G[V;]. (In Theorem 25 and
Theorem 26 in the non-bipartite and the bipartite case, respectively.)

(F) A Hamilton cycle is found in G. (In the final part of the proof of Theorem 2.)

We now discuss the algorithmic versions of the steps above, thus providing a proof of Theorem 27.

For step (A) observe that in the proof of Theorem 8 it was crucial to be able to tell whether a
graph is robustly connected. However, the obvious algorithm for testing robust connectivity requires
exponentially many steps. We can overcome this obstacle with the help of codeg-graphs. We claim that
there is a partition V,U. ..UV, satisfying the conclusion of Theorem 8 and moreover each V; is a union of
components of the (19a2n/20)-codeg graph F of G. To see this consider the construction of the partition
V1U...UV, as given by Lemma 11. Using the notation of the proof of Lemma 11, at step i, if G; is not
(afni/40)-robust, then we partition G; into its (a}n;/40)-islands. By Lemma 9(b), every vertex has at
most ria?ni /40 < afni /20 neighbours outside its island. Therefore, every vertex will have at most

, 20 20 =\ 9 20 9 20

=0 =0
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neighbours outside its continent. In particular, any two vertices which are neighbours in the (19a2n/20)-
codeg graph F must belong to the same continent. There is an efficient way to construct F' and moreover
by Lemma 9(d) every component of F' has minimum degree at least a?n /20 and so F has at most 20/a?
components. In particular, we can construct a bounded number of partitions (depending only on « and
not on n) of the vertex set of G by grouping the components of F' in all possible ways. At least one
of these partitions satisfies the conclusion of Theorem 8. From now on the algorithm will work on all
these possible partitions concurrently. We will show that for the partition that satisfies the conclusion
of Theorem 8 it will only take polynomially many steps to construct a Hamilton cycle. Note that it
might happen that some of the partitions do not satisfy the conclusion of Theorem 8; the algorithm is
not required to produce a Hamilton cycle for these partitions as we only have to produce one Hamilton
cycle.

For step (B), given a cn-iron vertex-transitive graph G we would like to decide in polynomial time
whether it is c*-close to bipartiteness or not and in the first case exhibit a partition satisfying the
conclusion of Lemma 16. Unfortunately we cannot do this in polynomial time but not all is lost. Instead,
we will show that there is a 0 < ¢ < ¢* and a polynomial time algorithm that either proves that
G[V;] is ¢/-far from bipartiteness or proves that G[V;] is c-close to bipartiteness and exhibits a partition
which satisfies the conclusion of Lemma 16. If it so happens that G is both ¢/-far from and ¢*-close to
bipartiteness then there is no control as to which of the two possible outcomes will appear. To see how
this can be done we apply the Regularity Lemma to G[V;] for some appropriate parameters. It is well
known that the partition guaranteed by the Regularity Lemma can be found in polynomial time [1]. If
the reduced graph is not bipartite (this can be checked in constant time) then the counting lemma shows
that G[V;] is far from bipartite. If on the other hand the reduced graph is bipartite then it is immediate
that G[V;] must be close to bipartite. It remains to show how to exhibit a bipartition satisfying the
conclusions of Lemma 16. From the reduced graph we can exhibit a partition A'UB’ of G[V;] that
satisfies (9). If every vertex has at least as many neighbours in the opposite part rather than its own
part then by Remark 17 the partition has the required properties. If this was not the case then we move
one such vertex to the opposite part and repeat the process. This process has to end (in polynomially
many steps) as after each move the number of edges between the two parts strictly increases.

For step (C) we have already noted that there is an algorithmic version of the Regularity Lemma [1].
There are however two issues that need to be addressed. The first one is that for our proof of Theorem 26
it was important that the partition given by the Regularity Lemma was a refinement of the partition
AUB of the vertex set. The statement of the algorithmic version of the Regularity Lemma in [1] does
not deal with this issue. From the proof of the statement however it is immediate that we can start with
any such prepartition. The second issue is that the algorithmic version of the Regularity Lemma in [1]
is not stated in the degree form. The usual argument used to deduce the degree form from the standard
form is algorithmic provided one knows which pairs are e-regular. In principle, it is not easy to check
algorithmically whether a pair is e-regular or not and in fact the algorithmic proof of the Regularity
Lemma does not say which pair are e-regular and which are not. It does however produce a big enough
(but possibly) incomplete list of e-regular pairs and this is enough for our purpose of constructing a graph
of regular pairs G'. The graphs Ry, Ra, R}, R} in the proof of Theorem 25 can now be easily constructed
algorithmically. It is also well-known that there is a polynomial-time algorithm for finding a maximum
matching and so the matching M of R} can be constructed. The next step in our proof of Theorem 25 is
an application of Lemma 22 in order to make the pairs corresponding to the matching M super-regular.
We only stated Lemma 22 as an existence result but in the proof of the result one removes from each
cluster the em vertices which have the smallest degree inside its neighbouring cluster in M. Thus this
can also be done algorithmically. Finally, we have already given an algorithmic proof of Lemma 23 and
so the exceptional sets U; can be constructed in polynomial time.

For step (D) we observe that the fat or bifat pairs can be easily recognized and so the auxiliary graph
H can be constructed efficiently. The global connections in this step are based either on a spanning tree
(in the non-bipartite case), or on an Eulerian circuit (in the bipartite case) in H. Since H is bounded
these can be found in a bounded number of steps. The large matchings between the fat or bifat pairs
can also be found in polynomial time and the matching M of Claim 2.3 (or the corresponding matching
in the bipartite case) is constructed from these matchings greedily.
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For step (E), the system of paths is constructed from the paths Py, ..., P; using the Blow-up Lemma.
An algorithmic version of the Blow-up Lemma appears in [16]. For the construction of P; first note that
the clusters Uy, Wy, ..., U,., W, were chosen greedily according to some restrictions. At each step it is
easy to verify which clusters are not allowed to be chosen. To complete the construction of P; we need
to construct some auxiliary paths Q;. Each such path was arising from a path Q) which was the shortest
path in a subdigraph of R*. The digraph R* and also the set of vertices of R* which @} is not allowed to
pass can be constructed efficiently and hence so can the path Q. It is now immediate how to construct
the path QY in R. In the construction Q; = p1q17181 - - - PrqereS; whenever we were choosing p; either the
choice was already predetermined or we could efficiently obtain a list of allowed vertices to choose as p;.
So we can choose p; greedily from this list and we can also do the same with the choice of s;. Finally, for
the choices of g; and r; we can again efficiently construct lists of available vertices for ¢; and for r;. We
want the choice to be such that ¢;r; is an edge and this can be done greedily. The other paths Ps, ..., Py
are constructed in a similar way.

Finally, step (F) is just putting steps (D) and (E) together.
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