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Abstract The explosive number of smartphones with ever growing sensing and
computing capabilities have brought a paradigm shift to many traditional do-
mains of the computing field. Re-programming smartphones and instrumenting
them for application testing and data gathering at scale is currently a tedious and
time-consuming process that poses significant logistical challenges. Next genera-
tion smartphone applications are expected to be much larger-scale and complex,
demanding that these undergo evaluation and testing under different real-world
datasets, devices and conditions. In this paper, we present an architecture for
managing such large-scale data management experiments on real smartphones.
We particularly present the building blocks of our architecture that encompassed
smartphone sensor data collected by the crowd and organized in our big data
repository. The given datasets can then be replayed on our testbed comprising
of real and simulated smartphones accessible to developers through a web-based
interface. We present the applicability of our architecture through a case study
that involves the evaluation of individual components that are part of a complex
Indoor Positioning System for smartphones, coined Anyplace, which we have de-
veloped over the years. The given study shows how our architecture allows us to
derive novel insights into the performance of our algorithms and applications, by
simplifying the management of large-scale data on smartphones.
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1 Introduction

The continuous improvements of smartphone devices and embedded sensor sys-
tems during the past decade have enabled researchers to explore complex inter-
disciplinary areas (e.g., behavioral sciences, social sciences) from the big data per-
spective. This facilitates understanding of the physical world at an extremely high
fidelity and interpretation of real-life problems by analyzing individual behavior
through mobility, communication and interaction patterns. The latter patterns
can be obtained from modern smartphone devices that continuously provide new
and more efficient means for big data generation through their enhanced com-
puting and multi-sensing capabilities (e.g., geo-location, proximity, ambient light,
accelerometer, camera, microphone, etc.).

Smartphone users are constantly moving and sensing thus generating large
amounts of data contributing to the evolution of new services and applications [1],
also known as crowdsourcing, which is gradually becoming the prevalent mean of
data gathering but also processing such vast amounts of information from large
groups of people. Typical examples of crowdsourcing applications include com-
mercial services such as Gwap.net’s ESP image tagging game, reCAPTCHA .net’s
book correction service, and specialized marketplaces for assigning crowdsourcing
tasks (e.g., Amazon’s Mechanical Turk) and academic techniques in data manage-
ment [2,3], network management [4, 5], source-code development [6], computational
linguistics [7] and active learning [8]. These applications often tend to share infor-
mation acquired from onboard sensor devices (e.g., camera, GPS, etc.) resulting in
an explosion of geo-tagged temporal data that is communicated over the internet.

Re-programming smartphones and instrumenting them for application testing
and data gathering at scale is currently a tedious, time-consuming process that
poses significant logistical challenges. Moreover, allowing seamless experimental
repeatability and standardization is a challenging task for smartphone-oriented
research. Looking at other research areas, somebody will realize that open bench-
marking datasets and associated ground truth datasets have played an impor-
tant role in academic and industrial research over the last decades. For instance,
the TREC Conference series co-sponsored by National Institute of Standards and
Technology (NIST) of the U.S. Commerce Department is heavily embarked by
the information retrieval community. Similarly, the TPC (Transaction Processing
Performance Council) non-profit corporation, founded to define transaction pro-
cessing and database benchmarks, is heavily embarked by the data management
community.

To this end, we have implemented and demonstrated SmartLab* [9], a compre-
hensive architecture for managing a cluster of both Android Real Devices (ARDs)
and Android Virtual Devices (AVDs), which are managed via an intuitive web-
based interface. Amongst others, our current architecture is ideal for conducting
fine-grained and low-level control and experimentation of various algorithms over
real heterogeneous smartphone devices, gathering and managing large-scale data
contributed by the crowd (e.g., WiFi RSS data [10]) and storing them in big data
infrastructures, as well as performing experiments that require the engagement of
physical and mock-up sensors [11] (Figure 1).

L Available at http://smartlab.cs.ucy.ac.cy/



Managing Big Data Experiments on Smartphones 3

/‘ \ SmartLab

yr— T —

Recording Area x | @ suomerovoss x| [ swoaeioniin x| [ swomveionzor x| [ swomeeonm  x

1P:

PORT:

Start Recording |
Select Recording:

10/02/2014 00:10:45

§ swoaeeiosarr x| [ swommossi x| [ swoseeoro  x

Fig. 1 An example mockup experiment in SmartLab [11], where a user feeds real
smartphones with sensor readings from a big data store and overviews the results
through a Web 2.0 User Interface.

SmartLab’s current hardware consists of over 40 Android devices that are
connected through a variety of means (i.e., wired, wireless and wvirtual) to our
private cloud (datacenter). Through an intuitive web-based interface, users can
upload and install Android executables on a number of devices concurrently, cap-
ture their screen, transfer files, issue UNIX shell commands, “feed” the devices
with GPS/sensor mockups and many other exciting features.

Looking at the latest trends, we observe that open smartphone OSs, like An-
droid, are the foundation of emerging Personal Gadgets (PGs): eReaders (e.g.,
Barnes & Noble), Smartwatches (e.g., Motorola MOTOACTYV), Rasberry Pls,
SmartTVs and SmartHome appliances in general. SmartLab can be used to allow
users manage all of their PGs at a fine-grain granularity (e.g., screen-capture, in-
teractivity, filesystem). Additionally, we anticipate that the overtake of PC sales by
Smartphone sales will soon also introduce the notion of Beowulf-like or Hadoop-like
smartphone clusters for power-efficient computations and data analytics. More-
over, one might easily build powerful computing testbeds out of deprecated smart-
phones, like Micro-cellstores [12], as users tend to change their smartphones more
frequently than their PC. Consequently, providing a readily available PG manage-
ment middleware like SmartLab will be instrumental in facilitating these direc-
tions. Finally, SmartLab is a powerful tool for Internet service providers and other
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authorities that require to provide remote support for their customers as it can be
used to remotely control and maintain these devices.

In this paper, we present the major components of the SmartLab architec-
ture and how these can facilitate management of large-scale data experiments on
real smartphones. We particularly present the building blocks of our architecture
that encompass smartphone sensor data collected by the crowd and organized in
our big data repository. The given datasets can then be replayed on our testbed
comprising of real and simulated smartphones accessible to developers through a
web-based interface. We demonstrate the applicability of our architecture through
experiments on a complex Indoor Positioning System, coined Anyplace?[13], which
we have developed over the years that highlights how SmartLab can process con-
siderable amount of geospatial data and transparently manage the complexity of
the aforementioned experimental issues. The performance of the proposed sys-
tem is also evaluated with respect to Samsung’s Remote Test Lab, PerfectoMobile
testbed and the OpenIntents Sensor Simulator.

The contributions of this work are summarized as follows:

— We present the architecture behind SmartLab, an innovative smartphone pro-
gramming cloud that enables fine-grained control over both ARDs and AVDs
via an intuitive web-based interface.

— We present a detailed description of the SmartLab components that facilitate
management of big data experiments; the big data and algorithms repositories
and the Remote Mockup Library.

— We demonstrate how SmartLab is used to manage and process considerable
amounts of geospatial data and consequently has facilitated the development
and testing of Anyplace.

— We experimentally demonstrate the applicability of SmartLab focusing on
three dimensions: i) Deployment; ii) Management/Monitoring; and iii) Exper-
imentation using sensor mockup data. Additionally, we conduct an experiment
that shows how SmartLab facilitates new research directions.

The rest of the paper is organized as follows: Section 2 overviews related work.
Section 3 presents the SmartLab testbed including its architecture and major
components, followed by Section 4 that provides background information related to
indoor positioning systems and describes the Anyplace application. Next, Section 5
describes our experimental methodology and Section 6 presents our experimental
evaluation. Finally, Section 7 concludes the paper and provides future directions.

2 Related Work

This section provides a concise overview of the related work. SmartLab has been
inspired by PlanetLab [14] and Emulab [15], both of which have pioneered global
research networks; MoteLab [16], which has pioneered sensor network research and
Amazon Elastic Compute Cloud (EC2). None of the aforementioned efforts focused
on smartphones and thus those testbeds had fundamentally different architectures
and desiderata. In the following subsections, we will overview testbeds that are
related to SmartLab as well as big data and localization technologies.

2 Anyplace, http://anyplace.cs.ucy.ac.cy/
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2.1 Smartphone Testbeds

There are currently several commercial platforms providing remote access to real
smartphones, including Samsung’s Remote Test Lab [17], PerfectoMobile [18], De-
vice Anyware [19] and AT&T ARO [20]. These platforms differ from SmartLab in
the following ways: i) they are mainly geared towards application testing scenar-
ios on individual smartphones; and ii) they are closed and thus, neither provide
any insights into how to efficiently build and run smartphone applications at scale
nor support the wide range of functionality provided by SmartLab like sensors,
mockups and automation.

Sandia National Laboratories has recently presented MegaDroid [21], a 520-
node PC cluster worth $500K that deploys 300,000 AVD simulators. MegaDroid’s
main objective is to allow researchers to massively simulate real users. Megadroid
only focuses on AVDs while SmartLab focuses on both ARDs and AVDs as well as
the entire management ecosystem, providing means for fine-grained and low-level
interactions with real devices of the testbed as opposed to virtual ones.

2.2 People-centric Testbeds

There is another large category of systems that focuses on opportunistic and par-
ticipatory smartphone sensing testbeds with real custodians, e.g., PRISM [22],
CrowdLab [23] and PhoneLab [24], but those are generally complementary as they
have different desiderata than SmartLab.

Let us for instance focus on PhoneLab, which is a participatory smartphone
sensing testbed that comprises of students and faculty at the University of Buffalo.
PhoneLab does not allow application developers to obtain screen access, transfer
files or debug applications, but only enables programmers to initiate data logging
tasks in an offline manner. PhoneLab is targeted towards data collection scenar-
ios as opposed to fine-grained and low-level access scenarios we support in this
work, like deployment and debugging. Additionally, PhoneLab is more restrictive
as submitted jobs need to undergo an Institutional Review Board process, since
deployed programs are executed on the devices of real custodians.

Finally, UC Berkeley’s Carat project [25] provides collaborative energy diag-
nosis and recommendations for improving the smartphone battery life from more
than half a million crowd-powered devices. SmartLab is complementary to the
above studies as we provide insights and experimental results for a variety of mod-
ules that could be exploited by these systems.

2.3 Big Data

Big data refers to data sets whose size and structure strain the ability of com-
monly used relational DBMSs to capture, manage, and process the data within
a tolerable elapsed time [26]. The Volume-Velocity- Variety of information in this
kind of datasets give rise to the big data challenge, which is also known as the 3V
challenge.

The volume of such datasets is in the order of few terabytes (TB) to petabytes
(PB). Examples of such volumes are the U.S. Library of Congress that in April
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2011 had more than 235 TB of data stored and the World of Warcraft online game
using 1.3 PB of storage to maintain its game, the German Climate Computing
Center (DKRZ) storing 60 PB of climate data. The velocity of information in so-
cial media applications (such as photovoltaic, traffic and other monitoring apps)
can grow exponentially as users join the community. Such growth can produce
unprecedented volumes of data streams. For example, Ontario’s Meter Data Man-
agement and Repository (MDM/R) [27] stores, processes and manages data from
4.6 million smart meters in Ontario, Canada and provides hourly billing quan-
tity and extensive reports counting 110 million meter reads per day on an annual
basis that exceeds the number of debit card transactions processed in Canada.
Furthermore, the variety of data can be anything from structured (relational or
tabular) to semi-structured (XML or JSON) or even unstructured (Web text and
log files) data and combination thereof. For example, Google’s experimental robot
cars [28], which have navigated thousands of miles of California roads, use an
artificial-intelligence technique tackling big data challenges, parsing vast quanti-
ties of data and making decisions instantaneously.

Due to the high demand for big data management, the literature witnessed an
emergence of new techniques and tools for taming big data. Currently, there are
disk-resident approaches [29-31] founded on the popular Hadoop Map-Reduce[32]
programming paradigm, as well as main-memory and stream-oriented processing
approaches of big data, founded on frameworks such as Apache Storm, Apache
Spark and Stratosphere.

2.4 Localization Technologies

Indoor positioning systems have recently received considerable attention, both be-
cause GPS is unavailable in indoor spaces and consumes considerable energy. In
particular, Assisted GPS (A-GPS) is obviously ubiquitously available but has an
expensive energy tag and is also negatively affected from the environment (e.g.,
cloudy days, forests, downtown areas, etc.) Besides GPS, the localization commu-
nity [33] proposed numerous proprietary solutions including: Infrared, Bluetooth,
visual or acoustic analysis, RFID, Inertial Measurement Units, Ultra- Wide-Band,
Sensor Networks, Wireless LANs, etc.; including their combinations into hybrid
systems [34]. Most of these technologies deliver a high level of positioning ac-
curacy, however they often require the deployment and calibration of expensive
equipment, such as custom transmitters and antennas, which are dedicated to po-
sitioning. This is time consuming and implies high installation costs, while the
approaches we discuss operate off-the-shelf with conventional smartphones.

Moreover other well known indoor localization approaches (such as Airplace [10])
exploit Received Signal Strength (RSS) values extracted through passive scanning
of the beacon packets transmitted by neighboring APs as part of the standard
network functionality. A vector of RSS values from APs within a user’s vicinity
(a.k.a. RSS fingerprint) is collected a priori, associated with a pre-defined location
and stored in a so-called Radiomap, which in turn is utilized by interested users
to localize themselves.
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Fig. 2 The major components of the extended SmartLab Architecture involved in carrying
out big data experiments.

2.5 Discussion

Smartlab provides an efficient and scalable way for managing and processing “Big
Data” with mobile devices via a NoSQL infrastructure for facilitating the develop-
ment and testing of mobile applications, which rely in high volume, high velocity
and high variety of data. Note that to the best of our knowledge there are no other
known approaches/platforms that allow smartphone applications to deal with such
large amount of data.

In this paper, we demonstrate how SmartLab is used to manage and process
considerable amounts of geospatial data and consequently has facilitated the devel-
opment, testing and demonstration of Airplace and its successor project Anyplace,
as explained later in Section 4. Firstly, we used SmartLab to collect Received Signal
Strength (RSS) indicators from different WiFi chip-sets, which are important for
RSS measurements, and smartphone sensor readings (from accelerometer, gyro-
scope and compass). Secondly, we utilized wirelessly connected smartphone devices
in order to move around in a building localizing ourselves using Anyplace while
exposing the smartphone screen on a remote web browser through SmartLab. The
particular setting has proved considerably useful for demonstrations [35] at confer-
ences as the bulk of existing AndroidScreenCapture software are both USB-based,
which hinders mobility, but are also inefficient as they provide no compression or
other optimizations. Thirdly, SmartLab allowed us to compare different indoor lo-
calization techniques over Anyplace on a variety of devices. Finally, SmartLab was
used as a verification platform of data (e.g., RSS values) contributed by arbitrary
users (i.e., the crowd).
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Fig. 3 The SmartLab User Interface provides a set of tools that facilitates efficient and effec-
tive experimentation on smartphone devices.

3 SmartLab Architecture

SmartLab is an innovative Smartphone testbed that enables experimentation us-
ing both ARDs and AVDs via an intuitive web-based interface. In this section,
we summarize the main architectural components of the SmartLab testbed and
show how these can facilitate efficient and effective experiments that utilize dif-
ferent algorithms, big data repositories and heterogeneous devices. We start out
by presenting a high level view of SmartLab’s infrastructure (user interface, de-
vice server and hardware) and then move on to the specialized components that
facilitate big data experiments; the Algorithms repository, the Remote File Man-
agement (RFM) subsystem, the Big Data Repository and the Remote Mockup
Library. SmartLab’s architecture is illustrated in Figure 2.

3.1 User Interface Layer

SmartLab utilizes a clear, concise and usable interface (UI) that enables several
modes of interaction with connected smartphone devices as illustrated in Figure 3.
In particular, the Ul supports: i) Remote File Management (RFM), a terminal that
allows users manage device files; ii) Remote Control Terminals (RCT), a remote
screen terminal that mimics smartphone touchscreen clicks and gestures but also
enables users recording automation scripts for repetitive tasks; iii) Remote Debug
Tools (RDT), a debugging extension to the information available through the An-
droid Debug Bridge (ADB); iv) Remote Shells (RS), a shell enabling a wide variety
of UNIX commands issued to the Android Linux kernels of allocated devices; v)
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Fig. 4 Connection Modalities supported by SmartLab. ARD-Local: Android Real
Device (ARD) mounted locally to the Device Server (DS) through USB; ARD-Remote: ARD
mounted through a USB port on a gateway PC to DS through a wired network; ARD-WiFi:
ARD connected to DS through a WiFi AP; and AVD: Android Virtual Device running on
DS.

Remote Mockups (RM), a mockup subsystem for feeding ARDs and AVDs with
GPS or sensor data traces encoded in XML for trace-driven experimentation.

The UI interactions are enabled either through Websockets for high-rate utili-
ties or AJAX-based communication for low-rate utilities. In order to support web-
sockets on as many browsers as possible, we have modified the open kanaka web-
sockify plugin®. The given plugin takes care of the initial Websocket handshake
from within the browser but also shifts over to an SWF implementation (i.e.,
Adobe Flash), in cases where a browser is not HTML5-compliant, enabling truly-
compliant cross-browser compatibility.

3.2 Device Server Layer

The Device Server (DS) layer enables the interaction of the Ul with the smartphone
devices. It allows administrator users to physically connect/disconnect smartphone
devices so that they are available for usage via the UL In order to support a larger
number of connected devices with the current ADB release, we utilize multiple-
DSs on each physical host of our datacenter each connecting 16 devices (ARDs or
AVDs). This design choice is inspired from cloud environments and shared-nothing
architectures deployed by big-data testbeds providing linear scalability by linearly
engaging more resources. Additionally, the DS supports a number of tools required
for maintenance purposes similarly to routers and printers.

3.3 Hardware Layer

SmartLab’s hardware comprises of over 40 Android Smartphones and our Datacen-
ter. Smartphones communicate with the DS via different communication modal-
ities as illustrated in Figure 4. Most of the smartphone devices are connected to

3 Kanaka, https://github.com/kanaka/websockify/
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Fig. 5 Subset of the SmartLab smartphone fleet connected locally to our data-
center. More devices are connected over the wireless and wired network.

the server in ARD-Local mode, utilizing USB hubs. Similarly, a number of smart-
phones are also connected from within our research lab, in the same building,
using the ARD-Remote mode. Additionally, a number of devices are also available
in ARD-WiFi mode, utilizing the Departmental WiFi infrastructure, and others
in ARD-Internet mode, utilizing 3G cards provided by a local Telecom operator.
In the context of this work, ARD-Local and ARD-WiFi is extensively used. A
connectivity experiment was conducted in order to evaluate the time-efficiency of
the various connection modalities and is presented in Section 6.

Figure 5 presents a subset of the Smartlab smartphone fleet connected locally
to our datacenter. The latter encompasses over 16TB of RAID-5 / SSD storage
on an IBM X3550 as well as 320GB of main memory on 5 IBM / HP multiproces-
sor rackables. The majority of our smartphones came with pre-installed Android
2.1-2.3 (Eclair, Froyo, Gingerbread). Most of these devices were “rooted” (i.e.,
the process of obtaining root access) and upgraded to Android 4.0.4 (Ice Cream
Sandwich) or later, using a custom XDA-Developers ROM, when their warranty
expired. Notice that warranty and rooting are claimed to be irrelevant in Europe®.
In SmartLab, rooted devices feature more functionality than non-rooted devices.
Particularly, rooted devices in SmartLab can: i) mount remote filesystems over
ssh; ii) provide a richer set of UNIX shell commands; and iii) support a higher
performance to the screen capturing system by incorporating compression. Never-
theless, SmartLab has been designed from ground up for non-rooted devices, thus
even without applying the rooting process will support all features other than
those enumerated above.

4 Free Software Foundation Europe, http://goo.gl/fZZQe
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Fig. 6 Remote File Management (RFM) UI. A share folder enables to push/pull files
to devices concurrently. FUSE-enabled devices can feature sshfs shares.

3.4 Remote File Management (RFM) subsystem

In order to conduct experiments on smartphone devices, SmartLab utilizes the
Remote File Management (RFM) subsystem that enables the deployment of ap-
plications and/or related files on a number of devices simultaneously. Additionally,
the RFM subsystem has been extensively used in the collection of experimental
results stored as files on each device. In this subsection, we briefly describe the
RFM UI and finally present some performance experiments for pushing a file and
installing an application on a device using ADB pipelining.

We have constructed an intuitive HTML5/AJAX-based web interface for RFM,
which enables the management of the local filesystems on smartphones individually
but also concurrently (see Figure 6). In particular, our interface allows users to
perform all common file management operations in a streamlined manner. The
RFM interface starts by launching a separate window for each AVD or ARD
that is selected by the user and displays a tree-based representation of its files
and directories under the device’s /sdcard directory. Similarly, it launches two
additional frames (i.e., JQuery dialogs): i) one frame displays the users’ “Home”
directory (top-left); and ii) another frame displays a /share directory, which is
illustrated in Figure 6 (top-center). The user is then able to move a single file or
multiple files to multiple target devices. The Remote File Management subsystem
is also responsible for replicating any files moved to the /share directory to each
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target device’s /sdcard/share directory. Furthermore, an Update All button and a
Push All button have been placed below the /share directory in order to support
simultaneous updating or merging the /share directory on existing and newly
reserved devices. In order to accomplish these operations, the RFM UI issues
separate web requests, which include: i) the target device id (or multiple devices
ids); ii) the absolute location of a single file (or multiple files); and iii) the type
of operation. Requests are transmitted using AJAX, to the device server, which
is responsible to execute the appropriate adb push and adb pull commands to
transfer files to or from a device, respectively, all over the ATP protocol discussed
earlier.

3.5 Algorithms Repository

The Algorithms Repository stores a variety of open source and in-house developed
algorithms (e.g., localization, crowdsourcing, p2p) for smartphone devices. The
majority of these algorithms are packaged as stand-alone libraries (i.e., jar files)
and can be used in the context of any experiment conducted using SmartLab.
Documentation for each library is provided by its developer and located within
the library file.

In the context of this paper, the Algorithms Repository provided the Indoor Po-
sitioning algorithms® utilized during the experimentation phase in Section 6. Since
all indoor positioning algorithms evaluated during the experimentation phase re-
quired the same input (i.e., a vector of WiFi MAC addresses and the corresponding
RSS measurements) and returned the same output (i.e., a geo-coordinate (lon-
gitude, latitude)), SmartLab facilitated easy integration of the data in a time-
conserving deployment manner.

3.6 Big Data Repository

SmartLab employs a unified big data repository infrastructure in order to maintain
multiple databases or files that can be utilized in experiments on smartphone
devices. The repository employs mechanisms that promote easier experimentation
both at the cluster-level as well as the smartphone-level. The big data repository
architecture is illustrated in Figure 7.

Managing Big Data on the cluster: The data repository is currently located
for distribution over a closed departmental network and has been used for storing
data collected from research experiments (e.g., collecting own WiFi RSS data on
campus [10], sensor data utilized by the Remote Mockup Library described next
in Subsection 3.7).

Generally, the given store can be utilized to store billions of sensor readings
stored in a document-oriented format that allow a researcher to test an algorithm
or application using tens or hundreds of smartphone devices using automated
scripts, similarly to [21] but with more extensive data traces. Since each sensor

5 Available under “Code” tab at http://dmsl.cs.ucy.ac.cy
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recording, depending on its duration, can store millions of modeled entries with-
out any relations we had to consider using a NoSQL database, which provides
simplicity of design, horizontal scaling and finer control over availability. We de-
cided to use Couchbase 2.1.1 Community edition as our NoSQL database since it
provides all aforementioned advantages over a relational database and it is able
to accommodate semi-structured JSON objects. Another advantage of Couchbase
is the already built-in object-level cache, coined Memcache, which provides the
ability to store and serve most frequent and recent queries immediately from the
main memory (RAM) without the need of retrieving the results from the disk.

Our Couchbase setup utilizes a Couchbase bucket hosted by two Couchbase
servers with 512MB of Memcache each (i.e., 1GB in total). The two servers can
accommodate up to 6TBs of data on top of our infrastructure that encompasses
over 16TB of RAID-5 / SSD storage. Additionally, if necessary, the experimental
bucket could horizontally scale to tenths of virtual machines in order to provide
enhanced availability. The data store uses 1206 bytes for storing one instance of
8 sensors readings in JSON format along with a Unix timestamp and a username
associated to the SmartLab account of the user who initiated the recording.

Finally, Couchbase uses Views for processing the information stored in our
database, allowing us to index and query our data. More specifically, a view creates
an index on the stored information according to the format and structure defined
in Javascript using a Map-Reduce paradigm. Moreover, Views can encapsulate
specific key lookups, range queries, and aggregate lookups.

During the experimentation phase, we created two Views for retrieving sensor
data sorted in our big data repository: coined getBlock and userRecording. The
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first one is used for retrieving sensor data for a specific recording of a specific user
sorted based on unix timestamps stored in each JSON document. The latter is used
for retrieving the sum of the available sensor data for a given recording, stored
as JSON documents, which is used for calculating the size of the data that we
should retrieve from the datastore for satisfying the calculated size of the “sliding
window” that we are going to describe later.

Managing Big Data on Smartphones: Smartphones are not able to accommo-
date large amounts of data because of hardware/software limitations. For example,
an Android application limits the amount of main memory an application can use
between 16MB (e.g., HTC Desire) to 48 MB (e.g., Nexus 7). This is very limit-
ing as nowadays smartphones can produce enormous amount of data each day; if
a developer desires to log the measurements of 8 sensors for a single day every
100ms, this will produce approximately 993 MB of data (i.e., 10 readings/sec x
1206 Bytes x 60 sec x 60 min x 24 hours). However, the real problem lies in
the ability to replay an existing log trace to another smartphone for experimental
purposes.

Assume that we would like to perform an experiment that stores a sensor
reading every millisecond and our Android device can only store 16 MB of data.
This means that we can replay only about 14 seconds (13911ms) of the initial
recording at once. Even if the experiments allow to sacrifice accuracy (e.g., record
an instance every 100ms instead of every 1ms), this would again limit our playback
time to 1400s (i.e., 23 minutes).

Furthermore, the authors in [36] show that by utilizing flash storage severely
hampers application performance between 100% to 300% and in some extreme
cases even by 2000%. More specifically, slower flash cards affect applications that
are traditionally considered as CPU or network bound (e.g., web browser). Con-
sequently, utilizing local storage for storing the aforementioned sensor readings
and then retrieving them for application usage should be avoided, as it can lower
overall application performance and consume more energy.

In order to overcome the aforementioned limitation and enable the repeatabil-
ity of ideally “unlimited” sizes of recordings, we have developed a “sliding window”
mechanism over the sensor data stream. This mechanism enables requesting only
chunks of data from the datastore using the aforementioned getBlock view. Dur-
ing the experiments in Section 6, the server adjusted the window size for retrieving
data according to the latency of the network between the Couchbase bucket and
the device. The pre-calculated size (100MB) was used for requesting chunks of
data from the datastore using the aforementioned getBlock view. Afterwards, the
data was transferred to each pre-selected device for processing. When a device
recognized that it reached processing of half the data (i.e., 50MB), then it auto-
matically requested the next chunk of data from the server. This process repeated
until the end of our recording.

3.7 Remote Mockup (RM) Library

A mockup provides part of a system’s functionality enabling testing of a design.
In the context of Android, Mockup refers to the process of extending an AVD’s or
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{
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v i 0 ]
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]
¥

Fig. 8 Remote Mockup (RM): (left, center) A data trace of various sensor measurements
encoded in JSON. The given file can be loaded to ARDs and AVDs through this subsystem;
(right) An application built with SLSensorManager using the measurements.

ARD’s particular sensor or GPS with custom values. Additionally, one important
benefit of Mockups is that these can support the addition of sensors that may not
exist in the hardware of a particular ARD (e.g., NFC, WiFi Direct, etc).

In order to support both GPS and other sensor mockups in SmartLab, (e.g.,
accelerometer, compass, orientation, temperature, light, proximity, pressure, grav-
ity, linear acceleration, rotation vector and gyroscope sensors) on both ARDs and
AVDs, we opted for a custom module, coined the Remote Mockup (RM) Library.

Our RM Library establishes a socket server on DS feeding devices with sensor
or GPS readings encoded in JSON format and stores them in a big data repository
(see Fig. 8). As this functionality is completely outside the ADB interaction stream,
we were required to provide each application developer with a custom library,
coined SLSensorManager. jar.

With Android Tools r18 and Android 4.0, developers have the opportunity to
redirect real sensor measurements, produced by the ARDs, to the AVDs for further
processing. It is important to mention that this functionality is the reverse of what
we are offering. In our case, we want to be able to redirect data from a text file to
an ARD, such that a given experiment on ARDs or AVDs uses a data file to drive
its sensors. Recording sensor readings to text files can be carried out very easily
with a variety of tools.

4 SmartLab Application

In this section, we provide some background information and definitions with re-
spect to Radiomap-based indoor positioning systems in general, followed by a de-
tailed description of our Anyplace indoor positioning system that has been utilized
in our experiments to evaluate the different layers of SmartLab.
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4.1 Background on Indoor Positioning

Radiomap-based indoor positioning systems carry out fine-grained localization
with WiFi-based RadioMaps (i.e., 2-4 meters accuracy). To address the challenging
signal propagation conditions that occur in indoor environments due to multi-path,
reflections and diffractions, RSS fingerprints (i.e., vectors of RSS measurements
recorded from APs in the vicinity of the user) are collected a priori at predefined
reference locations. Each RSS fingerprint is associated with the respective refer-
ence location and is stored in the so called Radiomap that covers the whole area of
interest. Essentially, the Radiomap is a mapping from the multi-dimensional RSS
space to the physical coordinates.
For example, assume an area A covered by a set of WiFi APs (C' = APy, APs, ..., APy).

A is not necessarily continuous and there is not a specific distribution of APs in
the C set. Each Access Point AP; of set C' has one unique ID (i.e., BSSID/MAC
address) that is publicly available and broadcasted. In the real world, A can be the
joined areas of all indoor buildings at any requested resolution (e.g., campus, town,
city, country or globe.) A smartphone user u inside A can use its smartphone’s
WiFi antenna to measure the Received Signal Strength (RSS) of any AP € C
in its vicinity and to receive its ID. Each user u can also communicate with the
server s over WiFi or 3G to forward its current RSS vector and receive its current
location. For the localization to take place, s needs to have the Radiomap of A.
A Radiomap is a matrix that expresses the relation between a location (z,y) and
the RSS values of each AP; € C' measured at that particular (z,y). Let s main-
tain a 2-D matrix MATRIX[N][M], which records the RSS value of M APs at N
geo-locations (z,y). For example, the radiomap MATRIX can be of the following
format:

Radiomap (MATRIX)

AP_1, AP_2, ... AP_M => xi,y1
AP_1, AP_2, ... AP_M => x2,y2
AP_1, AP_2, ... AP_M => x3,y3
AP_1, AP_2, ... AP_M => xN,yN

MATRIX is typically constructed by centrally overlaying several RSS vectors:
AP_1, AP_2, ... AP_1 => xi,yi

with (I << M), which are recorded by users in motion (i.e., mobile crowd) that
search for Wi-Fi wireless networks using a portable computer or smartphone. Ad-
ditionally, MATRIX is extremely large with respect to N, as the M dimension
is usually smaller and can be represented efficiently with adjacency-matrix struc-
tures. In our case, the areas are structured in a massively distributed NoSQL
database. For ease of exposition, let MATRIX be denoted as a 2-D matrix where
most points are null, e.g., NaN (i.e., a sparse matrix).

4.2 Anyplace Indoor Information System

Anyplace (see Figure 9) is a Radiomap-based indoor positioning and navigation
platform that operates on top of Google Maps with a big data management Web
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Fig. 9 Anyplace: The user interface of the Anyplace Viewer.

2.0 back-end service. Anyplace allows entities (i.e., users, companies, organiza-
tions, etc.) to realize indoor information management systems, including product
search and point of interest (POI) navigation, on top of existing wireless network
infrastructure by leveraging rich multi-sensory data available on smartphones. It
consists of three major components: the Server, the Architect website and the
Client application on Android smartphones. The Anyplace Server follows a power-
ful big data architecture and provides a Web2.0 API that connects to the back-end
database in order to efficiently store meta data regarding indoor POIs and pro-
vide navigation instructions to the end-user. The Anyplace Architect website offers
a user-friendly interface for placing the blueprint of a building on top of Google
Maps with multi-floor support. The user can later add, annotate and geo-tag POIs
inside the building and also connect them to indicate feasible paths among POIs
and then see the results through the Anyplace Viewer.

The Anyplace Client for Android smartphones has two modes and operates
either as a Logger or as a Nawvigator. In Logger mode, the users may record sig-
nal strength information from nearby WiFi access points and contribute the col-
lected data in a crowdsourcing fashion, by uploading them to the Anyplace Server
through the API. These data are stored in the database and comprise the so-called
Radiomap, which is later used for the provision of WiF'i location information in
GPS-deprived indoor environments. The Nawvigator is the main mode of opera-
tion that allows users to see their current location on top of the floorplan map
and navigate between POIs inside the building. The onboard smartphone sensors
(i.e., accelerometer, gyroscope and digital compass) are seamlessly integrated in
our tracking module to smooth the WiFi locations and enhance the navigation
experience.

Anyplace is chosen as the base application for our experimentations that follow
since, as previously described in Section 4, it has the possibility to provide access
to massive amounts of data (e.g., about 10 GBs of raw RSS fingerprint measure-
ments per mapped building and sensory readings.) Additionally, debugging and
testing an application similar to Anyplace is a time-consuming process and re-
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quires a lot of resources in terms of personnel and budget. Similarly, evaluating
different algorithms and approaches / architectures requires a lot of time and the
ability to repeatedly execute the same procedure while isolating and allowing fine-
grained control for all other variables (e.g., mobile device WiFi card, number of
surrounding WiFi APs, etc).

5 Experimental Methodology

In this section, we describe our experimental methodology, which allows us to test
many of the exciting features of SmartLab mentioned in the previous sections. We
start-out by presenting the experimental testbed, the algorithms and datasets, and
the hardware infrastructure utilized in the experiments.

5.1 Experimental Testbed

In this subsection, we describe the different scenarios and benchmark systems used
in our experimental study to evaluate the performance of SmartLab testbed as a
whole or particular SmartLab components.

Experimental Scenarios: Our experiments focus on several quantitative and
qualitative dimensions: i) Experimental Series 1 - Deploying experiments with
SmartLab, focuses on aspects of deploying and installing applications. Firstly, we
evaluate the time efficiency of various smartphone connection modalities and then
we compare SmartLab against two well-known and commercially available sys-
tems, namely the Remote TestLab and PerfectoMobile testbeds; ii) Experimental
Series 2 - Experiments repeatability with SmartLab, focuses on re-programming
and repeatability aspects of experiments on smartphones. We evaluate the time
efficiency of three indoor positioning algorithms (i.e., KNN, MAP, MMSE) on
SmartLab (with different number of devices) and compare it with the Openln-
tents Sensor Simulator using the Anyplace indoor positioning engine; iii) Experi-
mental Series 3 - Managing/Monitoring big data experiments, demonstrates how
SmartLab collaborates with the big data and the algorithms repositories for the
execution of various indoor positioning algorithms on a number of different de-
vices. We also demonstrate how log traces from a completed experiment can be
pushed back to the big data repository for further research; iv) Experimental Series
4 - Interacting with the Remote Mockup Library, demonstrates the advantages of
utilizing the Remote Mockup Library compared to real sensor devices using the
Dead Reckoning (DR) indoor positioning algorithm and the Anyplace tracker; and
v) Experimental Series 5 - Facilitating new research directions, demonstrates how
SmartLab facilitates a new research direction through an experiment that utilizes
crowd-sourced data to verify/filter data before storing them in SmartLab’s big
data repository.

Benchmark Systems: For assessing the performance of SmartLab we utilized
Samsung’s Remote Test Lab and PerfectoMobile testbed as well as the Openln-
tents Sensor Simulator, using the same experimental settings. Samsung’s Remote
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Test Lab and PerfectoMobile testbed are two of the most well-known commer-
cially available smartphone testbeds. Both of them support functionalities similar
to what SmartLab offers, thus it is advantageous to compare some of the key
elements, such as file upload and application installations, used during the ex-
perimental series 1. Similarly, the open source Openlntents Sensor Simulator was
selected in experimental series 2 because it supports similar functionality to Smart-
Lab’s Remote Mockup library. In summary, we use the following systems in our
benchmarks:

Samsung’s Remote Test Lab [17]: allows users to install and test applications over
the web. It requires a Javascript enabled browser and a Java Runtime Environ-
ment. Users are able to reserve Samsung Android or Tizen devices over the web
using a Java applet. Unfortunately, Samsung’s Remote Test Lab does not offer
interaction with multiple devices at once thus the repeatability of experiments is
almost impossible. Furthermore, it does not allow any fine grained control over
the reserved devices and it does not offer any sensor related functionalities.

PerfectoMobile Testbed [18]: allows users to install and test applications over the
web on Android, iOS and Windows devices. Users are able to record and replay
their sessions to heterogenous devices, but unfortunately it does not allow the
interaction with multiple devices at once. On the other hand repeatability can
be achieved by recording interactions with the reserved devices and using these
recordings to perform the same interactions on other devices.

The Openlntents Sensor Simulator: lets you simulate sensor data, similarly to
SmartLab’s Remote Mockup library, in an offline manner. Moreover, you can sim-
ulate your battery level and your GPS position using a telnet connection. It also
provides features like editing, saving, loading and re-playing the scenario. It cur-
rently supports accelerometer, compass, orientation, temperature, light, proximity,
pressure, gravity, linear acceleration, rotation vector and gyroscope sensors.

For ease of experimentation, we extended the functionality of OpenlIntents
Sensor Simulator to support the simulation of WiFi APs Receive Signal Strength
(RSS). The major difference between the two applications / libraries is that the
Openlntents Sensor Simulator operates offline, records sensor data in XML and
can only replay the pre-recorder scenario to only one device at a time as opposed
to SmartLab’s Remote Mockup library that stores recorded sensor data in JSON
format online in a NoSQL database and replays the pre-recorded scenario to mul-
tiple devices at once. In addition, Openlntents Sensor Simulators has to transfer
the whole XML document created during the recording phase to the device prior
simulation. On the other hand, SmartLab’s Remote Mockup library uses a “sliding
window” technique for transferring data between the devices and the server thus
it does not require the whole JSON document to be transferred to the devices a
priori.

5.2 Algorithms and Datasets
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Algorithms: We have implemented several Radiomap-based indoor positioning
algorithms, including the deterministic K-Nearest Neighbor (KNN) [37,38], as well
as the probabilistic Maximum A Posteriori (MAP) and Minimum Mean Square
Error (MMSE) [39,40]. These algorithms have been re-packaged in stand-alone,
plug-and-play Android libraries with related documentation and have been con-
tributed to the SmartLab’s Algorithms Repository. Similarly, the Dead Reckoning
(DR) algorithm utilized in subsection 6.4 was also contributed in the Algorithms
Repository in a similar fashion.

Datasets: In this work, we utilized the following datasets for our experiments.

UCY RadioMap: This radiomap is designed by data collected in a typical building
at the Computer Science (CS) department of the University of Cyprus. We used a
variety of Android smartphone devices (HTC Hero, HT'C Desire, Samsung Nexus
S, Motorola Xoom, HTC One X, etc) to collect 30 RSS fingerprints (i.e., RSS
values of APs at a reference location) at 1500 distinct locations for a total of 45,000
reference fingerprints. There are 120 WLAN APs installed in the four (4) floors
of this building including the APs of neighboring buildings that can be partially
detected in different sections of the CS building. On average, 10.6 APs are detected
per location. We collected our data by walking over a path that consists of 2900
locations. This dataset is utilized in Experimental Series 2, 3 and 5 of Section 6.

UCY Sensory Readings: The sensory readings contributed to the big data repos-
itory is designed by trajectories collected in the CS Department building at the
University of Cyprus. Similarly, to the UCY RadioMap, we used variety of An-
droid smartphone devices and over the years we have collected more than 20 km
of trajectories of students walking in different section of the CS building. This
dataset is utilized in Experimental Series 3 and 4 of Section 6.

5.3 Hardware Infrastructure

Back-end: Our evaluation is carried out on the DMSL VCenter® TaaS datacenter
(i.e., private cloud), which encompasses 5 IBM System x3550 M3 and HP Proliant
DL 360 GT rackables featuring single socket (8 cores) or dual socket (16 cores)
Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, respectively. These hosts have collec-
tively 300GB of main memory, 16TB of RAID-5 storage on an IBM 3512 and are
interconnected through a Gigabit network. The datacenter is managed through a
VMWare vCenter Server 5.1 that connects to the respective VMWare ESXi 5.1
hosts. The computation cluster, deployed over our VCenter IaaS, comprises of 4
Ubuntu 12.04 (2 as SmartLab’s Device Server and 2 for Couchbase NoSQL docu-
ment store) server images, each featuring 8GB of RAM with 2 virtual CPUs (@
2.40GHz). The images are equiped with fast local 10K RPM RAID-5 LSILogic
SCSI disks, formatted with VMFS 5.54 (1MB block size).

Big Data Repository: Our repository, outlined in subsection 3.6, is configured
in a demilitarized network zone that features a HAProxy” HTTP load balancer

6 DMSL VCenter @ UCY. http://goo.gl/dZfTES
7 HAProxy. http://haproxy.1wt.eu/
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to distribute the load to respective SmartLab’s Device Servers. Each SmartLab’s
Device Server features an Apache HT'TP server and can access the two Couchbase
NoSQL document store® servers for storing the sensor data collected by our users.
As mentioned before, Couchbase, stores data across the cloud in JSON format,
which can be indexed, queried and directly exposed to the SmartLab’s smartphones
devices through our custom API hosted in each SmartLab Device Server.

Smartphone Devices: Table 1 presents a comprehensive list and a categoriza-
tion, according the number of cores, of all devices used during the experimentation
phase. A variety of other diverse models is available for reservation and experi-
mentation through SmartLab.

Table 1 Device Specification used for the experiments

Category Target Device | CPU Android
Model OS version
Single-core HTC Desire Qualcomm QSD8250 Snapdragon Jelly Bean
(1GHz) (v 4.2.2)
Dual-core Motorola Xoom Nvidia Tegra 2 T20 Ice Cream
(1GHz) (v.4.0.4)
Quad-core HTC One X Nvidia Tegra 3 Jelly Bean
(1.5GHz) (v4.2.2)
Google Nexus 7 Qualcomm Snapdragon S4Pro Kit Kat
(v4.4.2)

6 Experiments

In this section, we present an experimental study that demonstrates how Smart-
Lab facilitates big data experiments on smartphones in an efficient and effective
manner.

6.1 Experimental Series 1: Deploying Experiments with SmartLab

In the first experimental series, we focus on aspects of the deployment phase.
More specifically, we measure the time of various connection modalities and the
time required for an algorithm (deployed in an application) and its related files to
be deployed and installed on a number of target devices.

Connectivity Experiment: In order to evaluate the time-efficiency of various
connection modalities (i.e., wired or wireless) to our DS, we have performed an
experiment using wired ARDs (i.e., ARD-Local and ARD-Remote) and wireless
ARDs (i.e., ARD-WiFi). The wireless connectivity is handled by a 802.11b/g/n
wireless router (max. 300 Mbps) deployed in the same room as the ARDs and
connected directly to the DS.

These experiments were conducted for calculating the time needed for transfer-
ring 2.5MBs (i.e., the size of a medium Android application and the applications

8 Couchbase. http://www.couchbase.com/
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used in the experimentation phase) to up to 16 devices. In our experimentation,
we observed that ARD-WiFi features the worst time compared to the other two al-
ternatives. For example, in the case of 16 ARDs, the time required for sending the
file reaches 12 seconds as opposed to 4.8 seconds and 1.4 seconds for ARD-Remote
and ARD-Local, respectively, as this is summarized in Table 1. One reason for
this is because the cascading USB 2.0 hubs offer much higher transfer rate (max.
480Mbps) than the wireless router, which never reached over 130Mbps.

Table 2 Transferring a 2.5MB file to 16 Devices

[ Connectivity Mode | Average Time (10 trials) |

ARD-Local 1.4 seconds
ARD-Remote 4.8 seconds
ARD-WiFi 12 seconds

Another observation is that ARD-Local devices outperform ARD-Remote de-
vices, as the former are locally mounted to DS, thus avoid the overhead of trans-
ferring data via a network.

Deployment Experiment: The time required to deploy files/applications from
and to target devices differs significantly according to the type of device. In or-
der to investigate this, we have conducted an experiment that measures the time
overhead for transferring files to/from the aforementioned different types of tar-
get devices. More specifically, we have utilized a 10MB file and distributed this
file to up to 16 AVDs, 16 ARD-WiFi, 16 ARD-Remote and 16 ARD-Local, in-
dividually. The ARD-WiFi devices were assigned to students that were moving
around our department premises in order to provide a realistic mobility scenario.
Each experiment was executed 10 times and we recorded the average at each at-
tempt. Moreover, we are benchmarking the performance of our proposed SmartLab
testbed against two commercially available testbeds, namely Samsung’s Remote
Test Lab and PerfectoMobile, by measuring the required amount of time for (i)
transferring a 10 MB file to multiple remotely managed Android devices and (ii)
installing a 1MB application.

Firstly, the results on the left side of Figure 10 clearly illustrate the advantage
of using ARD-Local devices in experiments requiring large amounts of data to
be transferred to devices (e.g., large trajectory datasets). Additionally, the results
show that the disk I/O overhead introduced by the usage of the emulated devices
(i.e., AVDs) justifies the linearly increasing amount of time for transferring files on
those devices. In the case of remotely connected ARDs (ARD-Remote) the large
time delays are attributed to communicating over the network. Finally, the ARD-
WiF1i devices feature the worst time overhead because the file transfer is hampered
by the wireless network’s low bandwidth in mobility scenarios.

Installation Experiment: In order to examine the cost of installing applica-
tions, which includes transferring the application file (.apk) and its installation,
we have conducted another experiment that calculates the required time. Similarly
to the previous experimental setting, we measure the time for transferring and in-
stalling a sample application of typical 1MB size, to each type of target devices.
The results are shown on the right side of Figure 10. We observe that transfer-
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Fig. 10 Deployment Experiment. Evaluating the average time for deploying files and
installing applications on different types of target devices on SmartLab as well as on Samsung’s
Remote Test Lab and PerfectoMobile testbed.

ring and installing the selected sample application introduces an additional time
overhead. For example, in the 1x target device scenario, the sample application
requires a total of ~2.2s from which 0.7s accounts for file transfer and 1.5s for
installing the application. The results provide a clear indication that emulated de-
vices are not the appropriate type of Android devices for performing I/O intensive
experiments such as evaluating network performance and database benchmarking.
Additionally, the sample application utilized in the experiments did not perform
any specialized deployment functions during setup (e.g., extracting other files, in-
stalling database), thus its installation overhead is minimal. The time required for
installing more complex applications varies greatly according to the requirements
of the application.

Finally, Figure 10 clearly demonstrates the superiority of SmartLab with re-
spect to Samsung’s Remote Test Lab and PerfectoMobile testbed in terms of the
required time for transferring files and remotely installing applications to multi-
ple devices. The reason behind this is the functionality provided by SmartLab to
upload single files to multiple devices at once. Similarly, SmartLab provides the
ability of installing applications to multiple devices at once while the aforemen-
tioned commercial testbeds allow the user to manually install applications only to
a single device at a time. Additionally, we were limited to a 10 MB file upload for
the experimentation series since the PerfectoMobile testbed limits the size of the
upload file to 10 MBs while SmartLab allows files upto the size of the user’s home
directory.
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Fig. 11 Re-programming / Repeatability Experiment. Evaluating the average time for
retrieving 450 times the position of the user on different types of target devices using different
indoor positioning algorithms on SmartLab and the Openlntents Sensor simulator.

6.2 Experimental Series 2: Experiments Re-programming/Repeatability

In order to examine how SmartLab can facilitate re-programming and repeata-
bility of experiments on a large number of target devices (heterogeneous or not),
we have conducted an experiment that calculates the required time for executing
a variety of indoor positioning algorithms on single or multiple devices through
SmartLab and compare it with the Openlntents Sensor Simulator. Here it is im-
portant to notice that we updated the Openlntents Sensor Simulator and added
the capability of recording WiFi Receive Signal Strength (RSS) for comparison
purposes. Similarly to the previous experimental settings, we measure the time, in
seconds, required for executing an indoor positioning algorithm (i.e., retrieving the
geo-location of the user) on a varying number of target devices. Each experiment
was executed 5 times consisting of bunches of 450 iterations on a single-core target
device (i.e., HTC Desire) and we recorded the average of each bunch.

The results are illustrated in Figure 11, which clearly illustrates the advantage
of utilizing SmartLab in the context of these type of experiments since it allows the
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massive parallelization of the indoor positioning algorithm execution on multiple
target devices, resulting in a significant reduction of the amount of time required
for experimentation. Additionally, another observation was the ability to feed the
exact WiF1i fingerprints from the big data repository to the target devices in order
to guarantee the identical execution of the experiments and reduce any possible
side-effects.

Finally, another important observation was that the simulators require different
amount of time, as opposed of what might be expected. The difference in the
time needed for executing an algorithm is due to the fact that Openlntents Sensor
Simulator requests the whole amount of data before the beginning of an experiment
repetition (and thus it requires more time), while SmartLab requests only a small
chunk at the beginning of the experiment and then requests more data while the
repetition is in progress.

6.3 Experimental Series 3: Managing/Monitoring Big Data Experiments

In this experimental series, we focus on the qualitative features of SmartLab and
show how these enable researchers to manage and monitor their experiments more
efficiently. We first show an experiment that demonstrates how SmartLab can
collaborate with the big data and the algorithms repositories for the execution of
various indoor positioning algorithms on a number of different devices. Secondly,
we demonstrate how log traces from a completed experiment can be pushed back
to the big data repository for further investigation.

Monitoring big data Experiments: In the first experiment, we utilize a dataset
of WiF1i fingerprints collected over the years from the crowd in the context of the
Anyplace project. This data is stored in our big data repository in a structured
manner so that querying of results can be facilitated in an easy manner for on-
going research activities. Additionally, we deploy the KNN, MAP and MMSE
algorithms in the Anyplace indoor positioning engine and configure SmartLab for
parallel monitoring of CPU utilization, Power consumption, RAM usage and Disk
I/0. Moreover, we port all experiments on a number of heterogeneous smartphone
devices simultaneously. More specifically, we utilize smartphone devices with dif-
ferent CPU cores in order to investigate how the clock speed of the CPU core might
affect the execution time. Each experiment was executed 10 times on a single-core
target device (i.e., HTC Desire), a dual-core target device (i.e., Motorola XOOM)
and two quad-core devices (i.e., Nexus 7 and HTC One X). The results for the
average execution time for each iteration are shown in Figure 12. We omit the
results for the other parameters as similar observations apply.

The results clearly illustrate that the available number of cores affect the exe-
cution time of each algorithm. For instance, the dual-core target device was 16.7%
faster than the single core device, the first-quad core device (i.e., Nexus 7) was 15%
faster than the dual-core device and the second quad-core device (i.e., HT'C One
X) was about 35% faster than the dual-core device. Surprisingly, even though both
quad-core target devices run at the same clock speed (i.e., 1.5 GHz), they have
a different chipset (i.e., HTC One X - Nvidia Tegra 3 and Nexus 7 - Qualcomm
Snapdragon S4Pro) the results shown that the first one is significantly faster than
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Execution time for different indoor positioning algorithms
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Fig. 12 Execution Time. Evaluating the average time for executing a variety of indoor
positioning algorithms on different types of target devices.

the second one (about 20%). Consequently, these findings illustrate how the CPU
chipset negatively or positively affects the execution time.

Fine-grained Logging and Repository Updating: We also show how Smart-
Lab provides fine-grained logging by measuring the CPU utilization and power
consumption required during positioning on heterogeneous devices. Similar to
the previous setup, we repeat each experiment 10 times and we show how the
CPU /power logs are analyzed and visualized through SmartLab.

The results are presented in Figure 13. For presentation reasons, we only show
the results for the KNN algorithm on each type of device as similar results apply for
the other settings. Additionally, please keep in mind that a certain amount of time
is presented (i.e., 300 seconds), thus it is not correct to derive the conclusion that
the quad-core device (i.e., HT'C One X) requires more CPU and power resources in
comparison to the other target devices since someone has to consider the fact that
in the same amount of time the quad-core device will provide almost two times
(2x) the amount of algorithm execution iterations in comparison to a single-core
device and about 35 % more in comparison to a dual-core device.
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CPU Utilization of KNN Indoor Positioning Algorithm Power Consumption of KNN Indoor Positioning Algorithm
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Fig. 13 SmartLab Fine-Grained Logging. Logging the CPU utilization (Sub-Figure F1)
and Power consumption (Sub-figure F2) for the KNN Algorithm on different types of target
devices

The above findings illustrate the significance of mobile testbeds, similar to
SmartLab, which provide fine-grained control and logging over heterogeneous de-
vices and could facilitate further research and experiments. Finally, SmartLab
contributes the results (i.e., CPU utilization traces, power consumption traces)
from the above experiments, back to big data repository since they could facilitate
further research in related areas.

6.4 Experimental Series 4: Interacting with the Remote Mockup Library

In this experimental series, we demonstrate utilization of the in-house developed
Remote Mockup Library by seamlessly integrating GPS readings in the Anyplace
Tracker application. The main objective is to illustrate how the Remote Mockup
Library feeds the Anyplace Tracker with previously collected sensor readings in
order to evaluate the efficiency of the Dead Reckoning (DR) algorithm used for
indoor positioning using sensory readings.

Similarly to the experimental setting of section 6.2, we examine the CPU uti-
lization and power consumption of the DR algorithm on a quad-core device (i.e.,
HTC One X). Each experiment was executed 10 times using three different modes:
i) DR algorithm in collaboration with SmartLab’s Remote Mockup Library, ii) DR
algorithm as available in the Anyplace Tracker (DR-Recording Off); and iii) DR
algorithm while recording and contributing the sensory readings to the big data
repository (DR-Recording On). Finally, we analyzed the resulted PowerTutor log
files through SmartLab.

The results are presented in Figure 14 and illustrate the CPU utilization and
power consumption of each mode. The results indicate that the usage of sensors
instead of retrieving sensory data from a remote big data repository is more CPU
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CPU Utilization of Dead Reckoning (DR) Positioning Algorithm Power Consumption of Dead Reckoning (DR) Positioning Algorithm
(Target Device: HTC ONE X) (Target Device: HTC ONE X)
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Fig. 14 SmartLab Fine-Grained Logging. Logging the CPU utilization (sub-figure F1)
and Power consumption (sub-figure F2) for the Dead Reckoning Algorithm using different
modes.

and power intensive (= 55%). Finally, similarly to the previous experiment, all re-
sults (i.e., CPU utilization traces and Power consumption traces) were contributed
to the big data repository.

6.5 Experimental Series 5: Facilitating New Research Directions

In this experimental series, we demonstrate a new research direction that attempts
to verify crowd-sourced indoor positioning data before storing them into the big
data repository. To accomplish this, we have conducted an experiment consisting
of two phases: i) The calculation of the Average Positioning Error (APE) and its
standard deviation for each available indoor positioning algorithm. ii) Use of the
previously calculated APE in order to filter possible malicious contributions (e.g.,
intentionally or accidentally malicious contributions).

Phase 1 - Calculating Average Positioning Error: In order to calculate
the APE for each available indoor localization algorithm, we evaluated the error
resulted by the calculation of the Euclidean distance on the position returned by
the algorithm and the pre-verified position of the user (ground truth). For instance
a vector of WiFi MAC addresses and RSS fingerprints were provided as input in
each algorithm from a pre-verified known location (e.g., x1, y1) and the APE
error was the Euclidean distance of the verified position and the resulted by the
algorithm position (e.g., x2, y2).

The results are presented in Table 4 and illustrate the APE and the standard
deviation calculated for each available positioning algorithm.



Managing Big Data Experiments on Smartphones 29

Table 3 Calculated Average Position Error for Available Indoor Positioning Algorithms

[ Algorithms [ Average Positioning Error | Standard Deviation |
KNN Algorithm 10.12 meters 5.50 meters
MAP Algorithm 25.73 meters 25.57 meters
MMSE Algorithm 9.94 meters 9.71 meters

Phase 2 - Filtering malicious contributions: In order to examine the effi-
ciency of the above proposed technique we decided to “feed” every contributed
vector of the user’s geo-location, MAC addresses and RSS fingerprints to Smart-
Lab. Subsequently, SmartLab was responsible to provide the aforementioned vector
as input to a number of heterogeneous devices available for running the indoor po-
sitioning algorithms. Finally, SmartLab was responsible for collecting the results
and by utilizing a majority vote algorithm, it concluded if the contributed data
was malicious or not before contributing them to the big data repository. In order
to prepare the experiment, we collected a sample of 90 fingerprints and we manu-
ally classified them in two categories. Half of the fingerprints were labeled as our
“verified” test dataset and contained only valid information, while the other half
fingerprints were manipulated and labeled as the “malicious” contributions. As a
final step, we streamed the two datasets to SmartLab and observed the validation
process.

Table 4 Calculated Average Position Error for Available Indoor Positioning Algorithms

| Dataset | # of Fingerprints Contributed [ Correctness |
Verified dataset 41 out of 45 91 %
Malicious dataset 6 out of 45 86 %

The results illustrated in Table 4, indicate that SmartLab, can play a key role
for crowd-sourced data verification. More specifically, the results show that only 41
out of the 45 fingerprints from the “verified” dataset (about 91%) were correctly
contributed to the big data repository while only 4 out of 45 (9%) were mistakenly
rejected. Similar observations are derived from the results for the “malicious”
dataset since only 6 out of 45 (14%) of the fingerprints were mistakenly contributed
to the big data repository while 39 out of 45 (86%) of the fingerprints were correctly
rejected.

Further research should be conducted to investigate and reduce the amount
of false positives. We assume that with the contribution of more open source
positioning algorithms to the Algorithms repository by other research groups, we
will be able to decrease the false positives and increase the accuracy of the proposed
technique.

7 Conclusions and Future Work

In this paper, we have presented the SmartLab testbed and demonstrated how
it can transparently manage the complexity of large-scale data management ex-
periments on real smartphones. We have presented and validated the qualitative
features of the SmartLab architecture through experiments on a complex Indoor
Positioning System for smartphones that we have developed in-house and have
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shown how researchers can perform their experiments in a more effective and effi-
cient manner. We have also shown that the proposed SmartLab testbed performs
better than the well-known and commercially available Samsung’s Remote Test
Lab, PerfectoMobile testbed and the Openlntents Sensor Simulator with respect
to several quantitative and qualitative metrics.

In the future, we plan to facilitate testing of algorithms, protocols and ap-
plications in mobile urban environments, providing an open mobile programming
cloud to the community. Additionally, we plan to enhance SmartLab with support
for federated experiments by allowing groups around the globe to interface with
SmartLab, enabling a truly global smartphone programming cloud infrastructure.
Moreover, SmartLab can be utilized in the context of projects using replicated exe-
cution [41] for validation and verification purposes. Finally, it would be interesting
to extend SmartLab to perform more dynamic deployment and re-configuration
similarly to (or through) the OSGI and/or Kalimucho platforms.
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