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1. Introduction

The study of henselian fields in the language of rings started with a work by Prestel and Ziegler
([21]) where they introduced and discussed t-henselian fields. We say that a field is ¢-henselian if it is
Lying-elementarily equivalent to some henselian field, i.e., a field admitting a nontrivial henselian valuation.
Although this does not coincide with the definition given in [21], our definition and theirs are equivalent,
using the L,ing-definition of the henselian topology in [19, p. 203]. Real closed fields and algebraically closed
fields of positive characteristic are t-henselian but may not be henselian, e.g. R and Fp are t-henselian
but not henselian. In particular, Prestel and Ziegler showed that these are not the only examples of t-
henselian fields which are not henselian. These results are strongly linked to the question of which fields
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(0-def) =——=> (eh)

|

(def) ——> (h)

Fig. 1. The obvious implications.

admit a nontrivial definable henselian valuation. Here, we say that a valuation v is definable on a field K
if its valuation ring O, is an L,ing-definable subset of K (possibly with parameters from K) and that v is
(-definable if it is definable and no parameters were needed in the defining formula. Henselianity is an ele-
mentary property of valued fields, in particular, it is preserved under elementary equivalence in the language
Lyval = Lying U {O} where the unary relation symbol O is interpreted as the valuation ring. Thus, if some
nontrivial henselian valuation ring is a (-definable subring of K, then any L which is Ling-elementarily
equivalent to K also admits a nontrivial henselian valuation. In particular, if K is henselian and some
Ly ing-elementarily equivalent L is non-henselian, then K cannot admit a (-definable nontrivial henselian
valuation. Under which conditions fields admit definable nontrivial henselian valuations (with or with-
out parameters) has been investigated in a number of (mostly) recent papers [7-9,12,20] and some of
these results have been applied in connection with the Shelah-Hasson conjecture on NIP fields (see [10]
and [13]).

The aim of this paper is to clarify the implications and relationships between these properties of a field
K, more precisely:

(h) K is henselian (i.e., K admits a nontrivial henselian valuation),
(eh) any L which is L,ing-elementarily equivalent to K is henselian,
(p-def) K admits a (-definable nontrivial henselian valuation, and
(def) K admits a definable nontrivial henselian valuation.

We call a field elementarily henselian if it satisfies (eh). There are some immediate implications between
these properties, as summarised in the diagram in Fig. 1.

Our aim is to work out the full picture, i.e., to describe which other implications hold, including which ar-
rows can be reversed. It turns out that in the class of all fields (or even in the class Ky of all non-algebraically
closed fields of characteristic zero), no implications hold that are not already included in Fig. 1 (see part (C)
of Theorem 1.1).

In order to show this, we use the canonical henselian valuation vk to partition Ky into subclasses,
depending on the residue characteristic of v:

Ko,0 = {K field | char(K) = char(Kvgk) = 0, K not algebraically closed}
and for any prime p
Ko,p = {K field | char(K) = 0 and char(Kvg) = p}.

See section 2 for the definition of the canonical henselian valuation and a proof that these classes are closed
under Lying-elementary equivalence. We then investigate the corresponding pictures with respect to these
subclasses which surprisingly turn out to look rather different in mixed characteristic and equicharacteris-
tic 0. As our main result, we obtain the following

1 Our convention is that such diagrams implicitly include concatenations of arrows, although we do not draw them. For example,
Fig. 1 implicitly includes the implication (0-def) = (h).
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Theorem 1.1.

(A) In the class Ko, the complete picture is

()-def) <= (eh)

.

(def) —— (h)

(B) For each prime p, in the class Ko, the complete picture is

(0-def) —— (eh)

|

(def) —— (h)
(C) Consequently, in the class Ko the complete picture is given by Fig. 1.

On an algebraically closed field, any valuation is henselian. Thus, any algebraically closed fields of charac-
teristic zero admits many nontrivial henselian valuations (for example, consider any extension of the p-adic
valuation, for a prime p). Since any algebraically closed field is strongly minimal, every definable subset
is either finite or cofinite. In particular, no such field can admit a definable nontrivial henselian valuation.
Therefore, algebraically closed fields of characteristic zero satisfy both (h) and (eh), and neither (def) nor
(0-def).

The paper is organized as follows. In the next subsection (subsection 1.1), we introduce the basic ter-
minology which we use throughout the paper and discuss the implications and non-implications in our
diagrams which are already known.

In section 2, we recall the definition of the canonical henselian valuation vg and show that certain
properties of the valued field (K, v ) are preserved under elementary equivalence in Lying (Proposition 2.1).
In particular, we obtain that the classes Ko o and Ko, (for a fixed prime p) are closed under L£,ing-elementary
equivalence.

In section 3, we show part (A) of Theorem 1.1. In order to do this, we first show the implication which
occurs in the picture in (A) but not in Fig. 1 (see Proposition 3.5). We then combine this with the examples
discussed in subsection 1.1 to complete the proof of Theorem 1.1 (A) (see subsection 3.2).

The proof of part (B) of Theorem 1.1 takes some more work. Section 4 treats the constructions which
we use to show the non-implications in the diagram: The main result of this section is the existence of
non-henselian ¢-henselian fields K (which are neither real closed nor separably closed) of any characteristic
such that there is some tame L = K with divisible value group (see subsection 4.2 for the definition of
‘tame’, and Proposition 4.13 for the statement).

In subsection 5.2, we use the fields constructed in section 4 and the machinery developed in subsection 5.1
to show that for every prime p, there are fields in Kp, which do not admit (-definable nontrivial henselian
valuations (see Example 5.5). We then go on to show that for every prime p and every K € Ky ,, the
properties (def) and ((-def) are equivalent (see Theorem 5.7). Finally, we assemble the facts we have shown
about fields in Ky, to prove Theorem 1.1 (B) in subsection 5.4.

1.1. Preliminaries and known results

For basic definitions and notions regarding valuation theory, we refer the reader to [3]. We use the
following notation: If (K, v) is a valued field, we let O, denote the valuation ring, m, denote the maximal



S. Anscombe, F. Jahnke / Annals of Pure and Applied Logic 169 (2018) 872-895 875

ideal, Kv denote the residue field, and vK denote the value group. For a € O,, let @ denote the residue
of a.

The properties (eh) and ((-def) are obviously preserved under L,ing-elementary equivalence. Some real
closed fields are henselian, for example R((2?)); and others are not, for example R. Here R((z?)) denotes
the field of generalized power series with coefficients from R and exponents in Q, see [2, 4.2]. This field
admits a unique nontrivial henselian valuation v,, namely the power series valuation with residue field R
and value group Q. In fact, v, is the canonical henselian valuation on this field, see section 2 for details.
The completeness of the theory of real closed fields shows that

(1) (h) is not preserved under L,ing-elementary equivalence and
(2) (h) does not imply (eh) for fields in o o.

Since real closed fields are o-minimal, no real closed field admits a definable nontrivial henselian valuation.
Thus

(3) (h) does not imply (def) for fields in Ko g.

Consequently, (h) implies neither (eh) nor (def), for all fields in KCy. However, even if we exclude real closed
fields, these implications do not hold: for (2) this is shown by an example of Prestel and Ziegler in [21,
p. 338], and for (3) this is shown by an example of Jahnke and Koenigsmann in [8, Example 6.2].

Furthermore, Jahnke and Koenigsmann give an example of a henselian field which does admit a non-
trivial definable henselian valuation but does not admit a nontrivial (-definable henselian valuation [8,
Example 6.3]. In fact, the field K constructed is again in the class Koo and L,ing-elementarily equivalent to
some non-henselian field L. Thus, we get

(4) (def) is not preserved under L,ing-elementary equivalence,
(5) (def) does not imply (0-def) in Koo (and hence in Ky).

However, even in the equicharacteristic zero setting there are unanswered questions. Perhaps the most
obvious is the following, which is labelled ‘Question 5.6’ in [8].

Question 1.2. Does (eh) imply (@-def) for non-separably closed fields?

We answer this question negatively for the class Ky, however, we show that it does hold when we restrict
our attention to o ¢ (see Proposition 3.5).

2. The canonical henselian valuation
Recall that any henselian field K may admit many non-trivial henselian valuations. However, unless K is
separably closed, these all induce the same topology on K. This fact ensures that there is always a canonical
one among the henselian valuations on a field. The canonical henselian valuation vk on K is defined as
follows: We divide the class of henselian valuations on K into subclasses, namely
H;(K) = {v henselian on K | Kv not separably closed}

and

Hy(K) = {v henselian on K | Kv separably closed}
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If Ho(K) # 0, i.e., if K admits a henselian valuation with separably closed residue field, then vy is the
(unique) coarsest such. In particular, we have vxg € Hy(K). In this case, any henselian valuation with
non-separably closed residue field is a proper coarsening of vx and any henselian valuation with separably
closed residue field is a refinement of vg.

If Hy(K) =0, i.e., if K admits no henselian valuations with separably closed residue field, then v is the
(unique) finest henselian valuation on K and any two henselian valuations on K are comparable. In this
case, we have vg € Hi(K).

In any case, we denote by Ok the valuation ring of vg. Note that whenever K is not separably closed
and admits some nontrivial henselian valuation then vk is nontrivial, i.e., we have O C K. In case K is
separably closed, we let vg € Hy(K) be the trivial valuation. See [3, §4.4] for more details and proofs.

We now show that certain key properties of the canonical henselian valuation vg on K are preserved
under L,ing-elementary equivalence.

Proposition 2.1. Let p be any prime. The following properties of a field K are preserved under
Lying-elementary equivalence:

(1) v € Hy(K)',

(2) ‘wk has residue characteristic p’,

(3) i has residue characteristic zero’, and

(4) ‘K admits a henselian valuation of mized characteristic (0,p)’

Proof. Let L = K be a pair of elementarily equivalent fields. In each case we suppose that the relevant
property holds in K and show that it also holds in L.

(1) Assume that vg € Ha(K). By compactness, there exists an elementary extension (K,vg) =< (K*,vy)
such that L elementarily embeds into K*; we identify L with its image under this elementary embedding.
Let w denote the restriction of v}, to L. Since L is relatively algebraically closed in K*, (L,w) is
henselian. By Hensel’s Lemma, Lw is relatively separably algebraically closed in K*v}, and the latter
is separably closed. Thus Lw is separably closed. Therefore we get w € Hy(L) and hence Ho(L) # ().
We conclude vy, € Hy(L).

Both parts (2) and (3) follow from the following claim.
Claim 2.1.1. If K = L, then the residue characteristics of vg and vy, are equal.

Proof of claim. We will distinguish two cases, based on whether or not Hy(K) is empty. By part (1), Ha(K)
is empty if and only if Hy(L) is empty. In each case we will use again the construction from part (1) in which
we identify L with an elementary subfield of K*, where (K*,v},) is an elementary extension of (K, vg). We
let w denote the restriction of v} to L. Since L is relatively algebraically closed in K*, w is henselian; and
thus Lw is relatively separably closed in K*v¥.

(i) First we suppose that Ho(K) = (). It suffices to show that if one of (K,vk) and (L,vr) has residue
characteristic p, then so has the other. Without loss of generality, we suppose that char(Kvg) = p.
Then char(K*vj ) = p; and since w is a restriction of v}, we have that char(Lw) = p. As Ho(L) = 0)
holds, vy, is a (possibly improper) refinement of w. Thus char(Lvy) = p, as required.

(ii) Next we suppose that Ho(K) # (). We first show that if one of (K, vg) and (L, vy) has residue charac-
teristic zero, then so has the other. Without loss of generality, we suppose that char(Kvg) = 0. Then
char(Lw) = 0. Since vg € H(K), Kvg and K*vj}; are separably closed fields. Since Lw is relatively
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separably closed in K*v},, Lw is also separably closed. Thus w is a (possibly improper) refinement of
vr. Thus char(Lvr) = 0, as required.

Now, assume char(Kvg) = p > 0. In particular, for any w henselian on K we have char(Kw) € {0,p}.
Take any elementary extension M of K. Then, we have char(Mwvy;) > 0 by the above, and the restriction
of vpr to K is a henselian valuation of mixed characteristic. We conclude char(Kvg) = char(Mwvyy).
For any L = K there is some M such that both K and L embed elementarily into M. Thus, we get
char(Kvg) = char(Lvp).

This completes the proof of the claim. O

(4) Suppose that K admits a henselian valuation v of mixed characteristic (0, p), for a prime p. If vg is
of mixed characteristic (0,p) then we simply apply part (2). Otherwise vg is of residue characteristic
zero and v is a proper refinement of vg. Thus vk € Ho(K), and both Kvg and Kv are separably
closed fields. By parts (1) and (3), Lvy, is also a separably closed field of characteristic zero. Such fields
always carry nontrivial henselian valuations of mixed-characteristic (0, p). Since the composition of two
henselian valuations is henselian (see [3, Corollary 4.1.4]), the composition of vy, with any of these gives
a nontrivial henselian valuation of mixed-characteristic (0,p) on L. O

Corollary 2.2. Let K be a field. The property

(mc) ‘K admits some mized characteristic henselian valuation’

implies that K is elementarily henselian.

Proof. Assume that K admits a mixed characteristic henselian valuation. By part (4) of Proposition 2.1,
all fields L elementarily equivalent to K admit mixed characteristic henselian valuations. Such valuations
are necessarily nontrivial. Thus L is henselian. O

As a consequence we obtain the following.

Corollary 2.3. If K is a non-separably closed non-elementarily henselian field then all henselian valuations
on fields L = K are equicharacteristic and Ha(L) = (.

Proof. Let L = K. If K is a non-separably closed non-elementarily henselian field, then so is L. By the
contrapositive of Corollary 2.2, any henselian valuation on L is equicharacteristic.

Finally, if Hy(L) # 0, then vy, € Hy(L). By Proposition 2.1 part 1, we get vy € Ho(M), for any M = L.
In particular, L is elementarily henselian. O

3. Fields of equicharacteristic zero

In this section, we show part (A) of Theorem 1.1. Note that we only need to show one further arrow to
complete the picture, namely (eh) = ((-def). This is done in subection 3.1. Afterwards, in subsection 3.2,
we explain why combined with the results in subsection 1.1, this indeed proves Theorem 1.1 part (A).

3.1. ‘Elementarily henselian’ implies 1)-definable’

In this subsection, we show why in the class Ky ¢ of non-algebraically closed fields K with char(Kvg) = 0,
the implication (eh) = ({-def) holds. We will apply the following theorem from [8].
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Theorem 3.1. [8, Theorem B (version given in section 6)] Let K be a non-separably closed henselian field.
Then K admits a definable nontrivial henselian valuation (using at most 1 parameter) unless

(1) Kvg # Kvi®, and
(2) Kvg = L for some henselian L with vy, L divisible, and
(3) vk K is divisible.

Lemma 3.2. If K € Ky is elementarily henselian then K admits a nontrivial henselian valuation which is
definable using at most 1 parameter. In particular, for non-algebraically closed fields of equicharacteristic
zero, (eh) implies (def).

Proof. We show the contrapositive. Let K € Ky o and suppose that K does not admit a nontrivial henselian
valuation which is definable using at most 1 parameter. If K is not henselian then we are done; otherwise
K is henselian and we may apply Theorem 3.1, since K is not separably closed. Therefore:

(1) Kvg # Kvy®, and
(2) Kvg = L for some henselian L with vy L divisible, and
(3) vk K is divisible.

Both (K,vk) and (L,vy) are henselian valued fields with divisible value groups. By the definition of the
canonical henselian valuation, Kvg is either separably closed or not henselian. By (1), Kvk is not separably
closed; thus Kvg is not henselian and L is non-elementarily henselian. Applying Corollary 2.3 to L, we get
that char(Lvr) = 0 holds. By applying the Ax-Kochen/Ersov principle [18, Theorem 4.6.4] several times,
we conclude:

K = Ko ((2%)
= L((?))
= Lo ((y®))((=9))
=1L,

where = is always meant as elementary equivalence in L,ing. Therefore, K = L = Kvg holds. Thus, K is
not elementarily henselian. O

Definition 3.3. We say that a valuation ring O on a field K is n<-henselian if for any separable monic
polynomial f € O[X] of degree < n, and any a € O with f(a) = 0 and T(E) # 0, there exists an o € O
with f(«a) =0 and @ =a.

We now want to use Lemma 3.2 to show our missing arrow. The argument works via the Omitting Types
Theorem. Thus, we first start by giving names to the relevant (partial) types.

Definition 3.4. Let ¢(x; y) be an L,ing-formula, where = and y are single variables, and let n € N. Let 64, ()
be the L;ing-formula that defines the set of elements b such that ¢(x;b) defines a nontrivial n<-henselian
valuation ring. We let Dy (y) denote the partial type

{0sn(y) [0 <wi.

Note that Dy(y) is realised in K if and only if there exists some b € K such that ¢(K;b) is a nontrivial
henselian valuation ring of K.
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Proposition 3.5. If K € Ko is elementarily henselian then K admits a nontrivial O-definable henselian
valuation. Equivalently, for non-algebraically closed fields of equicharacteristic zero, we have

(eh) = (0-def).

Proof. First we show that there is a single formula which defines (with parameters) a nontrivial henselian
valuation ring in every L = K.
Consider the following countable set of partial types (with respect to the theory of K):

D :={Dy(y) | ¢ € Lring, Dy(y) is consistent with Th(K)}.

We suppose, seeking a contradiction, that none of these types is principal. By the Omitting Types Theorem
(see [22, Corollary 4.1.3]), there exists some L = K in which none of these types is realised. That is: L does
not admit a nontrivial definable henselian valuation, defined using at most 1 parameter. Now Lemma 3.2
implies that L is not elementarily henselian, which contradicts our assumption that K = L is elementarily
henselian.

Thus there exists an L,ing-formula ¢(z;y) such that Dg(y) is principal. Let ¢(y) be a formula which is
consistent and isolates Dy (y), i.e.

K ': Yy (1/1(y) — 5¢,n(y))a

for all n < w. Then 9 (y) defines a nonempty set of realisations of Dy(y) in any L = K. Each element a
in this definable set, together with the formula ¢(z,y), defines a nontrivial henselian valuation; that is, we
have a (-definable family of nontrivial henselian valuations. It remains to show that we can (-define one
such.

If Hy(K) # 0 then there exists a nontrivial (-definable henselian valuation, by [8, Theorem A]. On the
other hand, if Ho(K) = (), then all henselian valuations on K are pairwise comparable. Let ®(z) be the
formula

Vy (W(y) — ¢(x39)) -

This formula (-defines the intersection of the #-definable chain of nontrivial henselian valuation rings shown
to exist above; and this intersection is also a nontrivial henselian valuation ring. O

8.2. The full picture in equicharacteristic zero

We are now in a position to give the following:

Proof of part (A) of Theorem 1.1. Our aim is to establish that the complete picture of implications in the
class Ko o is given by the following diagram.

()-def) <= (eh)

.

(def) =—— (h)

The implication (eh) = ((-def) was shown in Proposition 3.5. The other implications in the above diagram
already hold in the class of all fields (see Fig. 1). Finally, the discussion in subsection 1.1 shows that any
implication not contained in the above diagram does not hold in the class Ky o. O
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4. Fields of divisible-tame type

The aim of this section is to construct a t-henselian but non-henselian field of divisible-tame type (see
Definition 4.4), in any given characteristic. Later, specifically in Example 5.5, we will rely on the existence
of such fields.

Our construction is a slight modification of that found in the recent paper [4]. It has three main stages. In
Lemma 4.8 we construct a valuation with prescribed residue field and satisfying various properties. Then in
Lemma 4.11 we study ‘infinite compositions’ of such valuations. In the final step, which is Proposition 4.13,
we combine these lemmas to construct the t-henselian and non-henselian field of divisible-tame type, as
required.

4.1. Defectless and n<-defectless valued fields

We begin by defining and studying ‘n<-defectless’ valued fields. This notion is a weakening of the usual
notion of ‘defectless’, and it is central to our construction.

Definition 4.1. A valued field (K, v) is n<-defectless if the fundamental equality
[L: K] =[Lw: Kv]-(wL :vK)

holds for each extension (L,w)/(K,v) of degree < n. A valued field (K, v) is defectless if it is n<-defectless
for all n € N.

Lemma 4.2. If (K, v) is (n!)<-defectless then it is n<-henselian.

Proof. By the fundamental inequality (see [3, Theorem 3.3.4]), v must extend uniquely to every Galois
extension of degree < n!l. By [4, Lemma 6.3(2)], it follows that (K, v) is n<-henselian. 0O

4.2. ‘Divisible-tame’ type, and q-henselianity
We recall the following definition.

Definition 4.3. A valued field (K, v) of residue characteristic p is tame if v is henselian, the residue field Kv
is perfect, the value group vK is p-divisible, and (K, v) is defectless.

For more detail on tame valued fields we refer the reader to [16].

Definition 4.4. We say that a t-henselian field k is of divisible-tame type if there exists some K = k and a
nontrivial valuation v on K such that (K,v) is tame and vK is divisible.

One variant of henselianity is n<-henselianity, as defined in Definition 3.3. Another is ‘g-henselianity’,
which we recall in the next definition.

Definition 4.5. Let (K, v) be a valued field and ¢ a prime. We say that (K, v) is g-henselian if v extends
uniquely to every Galois extension of K of g-power degree.

See [4] for some further details on n<-henselian valuations and [9] for more on g-henselian valuations.
We will encounter g-henselian valuations again in subsection 5.3. Note that if (K, v) is henselian, then it is
n<-henselian for all n € N and g-henselian for all primes g.
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4.8. The construction, stage I

Now we come to the construction, which aims to build a t-henselian field of divisible-tame type which is
not henselian. We begin by recalling the following fact, which is sometimes known as ‘Galois’ Translation
Theorem’. For a field K, we denote its absolute Galois group by Gk.

Fact 4.6. (cf. [17, Theorem 4.5]) Let K/F be a Galois extension with group G. Let E be an arbitrary extension
field of F. Assume that K, E are both contained in some field, and let KE be the composite field. Then KE
is Galois over E. The map

Gre/p — Gg/r given by o — resi(0),
i.e. the restriction of an element of Gxp/p to K, gives an isomorphism of Gxp/p with Gk /(knE)-

The following lemma, from [4], is a key step in the construction in that paper. Let P be the set of prime
numbers.

Lemma 4.7. [4, Lemma 6.4] Let Ky be a field of characteristic zero that contains all roots of unity. Let
n € N,n < qg€P, and P C P. Then there exists a valued field (Ky,v) with the following proper-
ties:

(1) Khv= Ky and vK; :Z[% :p €P\ P]

(2) v is n<-henselian but not g-henselian

(3) Gk, = (Hi,Hs), where Hi = Z, and there is N < Hy closed with N = []
Gk, -

pep Lp and Hy/N =

The first stage of our construction, Lemma 4.8, is to give a new version of this lemma which is suitable for
arbitrary characteristic. Although parts of our argument vary only slightly from the proof of [4, Lemma 6.4],
we nevertheless give the proof in full for the convenience of the reader.

Lemma 4.8. Let p be a prime or zero and let K be a perfect field of characteristic p that contains all roots of

unity. Let n € N with p < n, and let q be a prime such that (n!?!) < q. Then there exists an equicharacteristic
valued field (K',v) such that

(1) K'v=K

(2) vK'=Q,

(3) K’ is perfect,

(4) (K',v) is not q-henselian,

(5) (K',v) is (n!*!)<-henselian, and
(6) (K’ ,v) is n<-defectless.

Proof. We work inside the field K ((2?)) of generalized power series with exponents in Q, together with the
z-adic valuation, which we denote by v,. In fact, v, will also denote the restriction of the z-adic valuation
to any subfield of K((2?)). Let F := K(29) = K(27 | v € Q). The valued field (F,v,) has residue field
Fv, = K and value group v, F = Q.

By [1, Proposition 4.6], the valued field (K((z9)),v,) is tame. Let F™ := F*8 N K((2?)) denote the
relative algebraic closure of F'in K ((22)) and consider the extension

(F,05) C (K ((29)), va).
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The corresponding extension of residue fields is trivial, since both residue fields are equal to K. In particular
the extension of the residue field is algebraic. Thus we may apply [16, Lemma 3.7] to find that (F*, v,) is
tame.

Exactly as in the proof of [4, Lemma 6.4], we argue that there exists a subgroup G, < G with G, = Z,
as follows. Let f be the polynomial 77 — (x + 1) € K (x)[T]. Since K contains ¢-th roots of unity and p # ¢,
by Hensel’s Lemma there is a root v € F*® of f, and the Galois group of F(«)/F is isomorphic to Cy, the
cyclic group of order ¢. If () denotes a ¢g-Sylow subgroup of G, then the image of @ under the restriction
map res : Gp — Gal(F(«)/F) is the entirety of Gal(F(«)/F). We choose o € @ such that res(o) generates
Gal(F(«)/F), and let G, denote the procyclic subgroup of G generated by o. Since G is procyclic, pro-g,
and torsion-free, we have that G, = Z,.

Let E denote the fixed field of G, and let K’ be the intersection E N F™. The valued field (XK', v,) has
residue field K'v, = K and value group v, K’ = Q. Note also that K’ is perfect, since it is the intersection
of two perfect fields.

It remains to show that (K’,v,) is not ¢g-henselian, is (n!?!)<-henselian, and is n<-defectless.

Claim 4.8.1. (K',v,) is not g-henselian.

Proof of claim. Assume that (K’,v,) is g-henselian. Note that the splitting field of f over K’ is a Galois
extension of degree ¢. By the g-henselian version of Hensel’s Lemma (see [3, Theorem 4.2.3(2)]), f has a
root in K’. This is a contradiction because f has no roots in E. O

Claim 4.8.2. (K',v,) is (n!?!)<-henselian.

Proof of claim. Denote by O the valuation ring of v, in F*®. Let ¢ € (O N K')[X] be of degree < n!?!, let
a € ONK', and suppose that v,(g(a)) = 0 and v,(¢'(a)) > 0. Since (F',v,) is henselian, g must have a
root a € F™. Clearly [K'(a) : K'] < n!?\. Since n!?! < ¢, we have a € E. Thus o € K’. This shows that
(K',vy) is (n!?*!)<-henselian. 0O

Claim 4.8.3. (K’,v;) is n<-defectless.

Proof of claim. Let (L,u)/(K’,v,) be an extension of degree < n. Consider the normal hull LY /K’ of L/ K’,
and let w denote any extension of u to LY. It suffices to show that (LY, w)/(K’,v,) is defectless.

If k denotes the degree [LY : K'], then k < n! < q. Therefore LY is a subfield of E and so K’ =
LN N Fra, Since LY /K’ is Galois, we apply Fact 4.6 to find that L /K’ is linearly disjoint from Fr2.
Therefore k = [LY F'® : F*?] where L™ F*® denotes the compositum of LY and F*®. Let v, also denote the
unique extension of v, to LN F™, and its restriction from L F*™ to L. Since (F*®,v,) is henselian, so is
(LNFT v,).

Although the rest of this argument is standard, we include it for the convenience of the reader. The value
group v, F" = v, K’ = Q is divisible, and so any finite extension is trivial. Since (F*®,v,) is defectless, we
have the equality:

k=[LNF™y, : K].

By the primitive element theorem and the henselianity of (LY F™ v,), there exists b € L F*® of degree k
over K such that LN Fry, = K(bv,).

Finally, we argue that b € L. Since b is of degree k over K', we have [L™ (b) : K] < k2. Therefore the
normal hull of LY (b) /K’ is an extension of degree at most k%! < n!?! < ¢. Consequently LY (b) is a subfield
of E, and so L™ (b)/K’ is linearly disjoint from F*®. Therefore the degree [LY(b) : K'] is equal to the
degree k = [F**L" : F*®]. This shows that b is already an element of LY. Thus the residue field extension
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LNv,/K'v, is of degree k, and so (L™, v, /(K’,v,) is defectless. In particular, v, extends uniquely from K’
to LY. Thus w = v,, and so in fact we have shown that (LY, w)/(K’,v,) is defectless. This completes the
proof of the claim. 0O

The theorem now follows. O
4.4. Compositions of n<-defectless valuations

Our next step is to prove the following lemma about compositions of n<-defectless valuations. First we
deal with finite compositions, and then certain infinite compositions.

Lemma 4.9. The composition of two n<-defectless valuations is n<-defectless. More precisely: let u,v be two
valuations on K such that u is a coarsening of v let v denote the valuation induced on Ku by v, and suppose
that (K, u) and (Ku,v) are both n<-defectless; then (K,v) is n<-defectless.

Proof. Let (L,v")/(K,v) be an extension of degree | < n. We aim to show that this extension satisfies the
fundamental equality [L : K] = [Lv' : Kv] - (v'L : vK).

Let A be the convex subgroup of vK corresponding to the coarsening u; then uK = vK/A and
v(Ku) = A. If A’ denotes the convex hull of A in v'L, then A’ corresponds to the unique extension of
u to L, which we denote by v/, so that /'L =v'L/A’ and v/'(Lu') = A.

Claim 4.9.1. We have the equality (V'L : vK) = ('L : uK) - (A" : A).
In the absence of a convenient reference, we give a proof of the claim.
Proof of claim. The extensions (L,v")/(K,v) and (L,u')/(K,u) induce embeddings of value groups, by

which we identify uK with the subgroup (vK + A’)/A’ of vL/A’ = «' L. Thus the index (uv'L : uK) really

means the index
(V'L/A": (vK + A")JA).
By the Isomorphism Theorems, there is an isomorphism
V'L / (0K + A") — (V'L/A) / (WK + A')/A").

This establishes the equality (v'L : uK) = (V'L : vK + A’). Secondly, by another application of the
Isomorphism Theorems, we have the equality (vK+A’": vK) = (A’ : A), since A is the intersection v K NA’.
Putting these conclusions together and using the usual multiplicativity of indices, we have established the
following

(WL:vK)=@L:vK+A"):(vK+A":vK)
= ('L :uK)-(A":A).

This finishes the proof of the claim. O
Since (K, u) is n<-defectless we have

[L:K]|=[Lu:Ku]-(L:uK).
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In particular, the degree [Lu’ : Ku] is bounded above by [L : K] =1 < n. Thus (Lu/,v")/(Ku,v) is an
extension of degree < n. Since (Ku,?) is n<-defectless we have

[Lu': Ku] = [(Lu")v" : (Ku)v] - (v (Lu') : v(Ku))
= [Lv": Kv]- (A" : A).

Combining these observations together with the claim, we deduce the following equality, as required:

[L:K]=[Lu:Ku]-(uL:uK)
=[Lv' : Kv]- (A" : A)- (WL : uK)
= [Lv": Kv]- (V'L : vK). O

Definition 4.10. An extension (L,w)/(K,v) of valued fields is immediate if both the value group extension
and the residue field extension are trivial, i.e. vK = wL and Kv = Lw. A valued field that admits no proper
algebraic immediate extensions is said to be algebraically maximal.

Lemma 4.11. Let K be a field equipped with a family of valuations (vyp)n<y such that the corresponding

valuation rings (On)n<w form an increasing chain with K = O,,. Suppose there is k < w such that

n<w
for all n < w we have

(1) (K,vn) is k<-henselian, and
(2) (Kvpg1,0n) is k<-defectless;

where U, denotes the valuation induced on Kv,4+1 by vy,.
Then, for each n < w, the valued field (K, vg) does not admit any non-trivial immediate extension of
degree < k.

Proof. For brevity, we write v = vg. Let (L, w)/(K,v) be an immediate extension of degree < k. This means
that the extension Lw/Kwv of residue fields and the extension wL/vK of value groups are trivial. Qur aim is
to show that [L: K| =1, i.e. L = K. For each n < w, there is a unique valuation w,, on L that extends v,
and coarsens w. Let O,,, (respectively, m,,, ) be the valuation ring (resp., maximal ideal) of w,. Since L/K
is algebraic, there is no nontrivial valuation on L which is coarser than all of the valuations w,,, n < w. Thus
we have L = {J,,,, Ow,, and equivalently {0} =
on Lwy41 by wy,.

n<w M, - Also, we denote by w,, the valuation induced
We may assume that L = K(a), for some o« € O,,. Let f € K[X] be the minimal polynomial of «
over K. Since K is perfect, f is separable. Thus f(a) = 0 and D f(«) # 0, where Df denotes the formal
derivative of f.
We choose N < w large enough such that f € O, [X]. and Df(a) ¢ m,,, . Applying the residue maps of
vy and wy, we have

(Dfvn)(awn) = Df(a)wy # 0,

and trivially (fuy)(awn) = f(a)wy = 0. Thus awy € Lwy is a simple root of fuy.

Consider the compositions ¥ := Uy_10...079 and @ := Wy_1 ©...0 Wy. By Lemma 4.9, the compo-
sition of finitely many k<-defectless valuations is k<-defectless. Thus (Kvy,?) is k<-defectless, and so the
fundamental equality

[L’LUN : K’UN] = [(LU}N)’LD : (K’UN)’&] . (@(LU}N) Z@(K’UN))
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holds for the extension (Lwy,w)/(Kvn,?). The value groups w(Lwy) and 9(Kvy) are in fact the same
convex subgroup of wL = vK, and thus the extension of value groups is trivial. Therefore, we have

[Lwy : Kuy] = [(Lwn)® : (Koy)?] = [Lw : Kv] =1,

by our assumption that (L, w)/(K,v) is immediate. Therefore Lwy = Kuy.

Putting all of this together, awy € Kuvy is a simple root of fuy. Since (K,vy) is k<-henselian by
assumption, there exists a € O C K such that avy = awy and f(a) = 0. This shows that [L: K| =1, as
required. 0O

4.5. The construction, stage II

Lemma 4.12. For each n < w, there exists a sentence m, in the language of valued fields such that for all
(n!)<-henselian valued fields (K, v) the following are equivalent:

(1) (K,v) =m0

(2) (K,v) admits no proper immediate extensions of degree < n.

Proof. We follow closely the idea of [15, Proposition 6.3], and we assume some familiarity with Kaplansky’s
theory of pseudo-Cauchy sequences (also called ‘pseudo-convergent’ sequences) from [11]. Tt is clear that
the property ‘for all f € K[X] of degree < n the set vimg(f) = {v(f(a)) | @ € K} has a maximum’ is
expressible by a sentence in the language of valued fields. Choose 7,, to be any such sentence.

Let (K,v) be an (n!)<-henselian valued field. From [4, Lemma 6.3] it follows that v extends uniquely to
every Galois extension of degree < nl. Therefore v extends uniquely to every extension of degree < n.

(1 = 2) Suppose that (L, w)/(K,v) is a proper immediate extension of degree < n. Let a € L\ K.
By [11, Theorem 1], there is a pseudo-Cauchy sequence (¢,),<x in K without a limit in K of which a is a
limit. Let f € K[X] be the minimal polynomial of a over K. Of course deg(f) < n. As argued above, the
extension of v to L is unique. Thus we may apply [15, Lemma 2.11] to find that vimg(f) has no maximum.

(1 <= 2) Let f € K[X] be of degree < n, and suppose that vimg(f) has no maximum. In particular
f is of degree > 2. By [15, Lemma 6.1], there is a pseudo-Cauchy sequence (c,),<x in K which is of
algebraic type, is without a limit in K, and is such that (f(c,)),<x is a strictly increasing cofinal sequence
in vimg (f). In particular, the polynomial f witnesses that (c¢,),<» is of algebraic type. Let g be the
polynomial of minimum degree that witnesses that (¢, ), <) is of algebraic type. Then g is irreducible and
we have 2 < deg(g) < deg(f). By [11, Theorem 3], (K,v) admits a proper immediate extension generated
by a root of g.

This proves the stated equivalence. 0O

Finally we are ready for the final stage of the construction.

Proposition 4.13. Let p be a prime or zero. There exists a non-henselian t-henselian field of characteristic
p of divisible-tame type which is not separably closed.

This proposition is our version of [4, Construction 6.5], which uses our Lemma 4.8 instead of [4,
Lemma 6.4]. As such, our proof is very similar to that of [4, Construction 6.5]. Nevertheless, we go into
some detail in order to be able to highlight the points of difference.

Proof. Let Ky be any field of characteristic p which is perfect and contains all roots of unity. For each
n < w, write k, :=n + p + 1 and choose a prime ¢, such that k,!?! < ¢,.
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Fig. 2. The projective system.

We apply Lemma 4.8 to obtain a valued field (K7,70) which is not go-henselian, but is (k!?!)<-henselian,
and is (ko)<-defectless. Also K is of characteristic p and is perfect and contains all roots of unity. Finally,
the residue field K79 is Ky, and the value group voK; is Q.

We continue to apply Lemma 4.8 recursively. In this way we obtain a sequence (K41, Upn)n<w of valued
fields with the corresponding places forming a chain:

Up—1

Vo
-y Ky - Ky -3 Ky --3 K,

such that each (K, 11,7y,) is not g,-henselian, but is (k,!?!)<-henselian, and is (k,)<-defectless. Moreover
(Kpn+1, p) has residue field K,,+1v,, = K,, and value group v, K,11 = Q.

For n > m, there is the composition v, n, := Uy © ... 0 Up—1. This is a nontrivial valuation on K,
with residue field K, vy ., = K, and value group v, K, = Q. We denote by O,, ,, the valuation ring
corresponding to v, ,,, and we write Oy g = Ko. Then for n > m the residue map O, ,,, — K, restricts
to a ring epimorphism 7, ,, : On.0 — Op0. Thus the rings (O, 0)n<w together with the maps (7, m)m<n
form a projective system (Fig. 2).

Let O together with the natural projections 7, : O — Oy, o be the projective limit of this system, and
let K be the quotient field of O. By [5, Lemma 3.5], O is a valuation ring. For each n < w, let p,, denote
the kernel of 7 », and let Oy, denote the localisation of O at p,,. Since p, D pp11, we have Op, C Oy, .-
Since {0} = (,,<,, Pn, we have K =, ., Op,..

Let v,, denote the valuation on K with valuation ring Oy, . Then (v,)n<. is a strictly increasing (i.e.
increasingly coarse) chain of valuations on K; and the finest common coarsening of this chain is the trivial
valuation. Moreover, each v,, induces the valuation v,, on the residue field Kv, 11 = K,,41. For each n < w,
the value group v, K is the directed union of the convex subgroups vy, »nKp,, for m > n; and each of these
subgroups is nontrivial and divisible. Thus v, K is also nontrivial and divisible.

By the argument in the first paragraph of the proof of [4, Proposition 6.7], (K, v,) is (k,!?)<-henselian.
Trivially this implies that (K, v,) is (k,!)<-henselian and (k,)<-henselian.

Now, for each n < w, we have shown that the hypotheses of Lemma 4.11 are satisfied by K together with
the family (vpm4n)m<w, for k = k,. Therefore (K, v,) does not admit any non-trivial immediate extensions
of degree < k,. By Lemma 4.12, we have (K,v,) E g, -

Let (K*,v*) be the ultraproduct of the family (K, vy)n<, with respect to a non-principal ultrafilter.
By Yo§’s Theorem [6, Theorem 8.5.3], (K*,v*) is a perfect equicharacteristic nontrivially valued field with
divisible value group. Since ‘n<-henselianity’ is an elementary property of valued fields, again by f.os’s
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Theorem, we have that (K*,v*) is n<-henselian, for all n < w. Thus (K*,v*) is henselian. By yet another
application of Lo§’s Theorem, (K* v*) |E m,, for each n < w. Since (K* v*) is also henselian, we have
that (K*,v*) is algebraically maximal, by Lemma 4.12. In [16, Corollary 3.4a] it is shown that a perfect
equicharacteristic valued field which is algebraically maximal is in fact henselian and defectless. In particular
(K™, v*) is tame. Therefore K is a t-henselian field of divisible-tame type.

The field K is non-henselian by exactly the same arguments as in [4, Proposition 6.7]: if w were an
henselian valuation on K then w would be a coarsening of v, for each n < w, but their least common
coarsening is trivial. Note that since K admits nontrivial non-henselian valuations, K is not separably
closed. Therefore K is a non-henselian t-henselian field of characteristic p of divisible-tame type which is
not separably closed, as required. O

5. Fields of mixed-characteristic

The goal of this section is to prove part (B) of Theorem 1.1. We've already seen in Corollary 2.2 that
(mc) implies (eh). This leaves us with showing for mixed characteristic fields that

(1) (h) does not imply (0-def), and
(2) (def) implies (()-def).

5.1. Self-similarity

As a preliminary to deducing (1) in Example 5.5, we first adapt the Ax-Kochen/Ershov argument from
the proof of Lemma 3.2 to the slightly more general setting of ¢-henselian fields of divisible-tame type.

Lemma 5.1. Let k be a t-henselian field of divisible-tame type. Then k < k((t2)).

Proof. By definition of ‘divisible-tame type’ there exists a field K = k and a nontrivial valuation v on K
such that (K,v) is tame and vK is divisible. Using the compactness theorem, we may assume that v is
equicharacteristic and that K is an elementary extension of k. Moreover, both K and k are perfect.

Consider the field K ((t?)) together with the valuation u, which we define to be the composition v o v; of
v with the t-adic valuation v;. Then (K ((t9)),u)/(K,v) is an extension of equicharacteristic tame valued
fields. The extension of residue fields is the identity map Kv — Kwv, which is elementary. Moreover the
extension of value groups is elementary since the theory of nontrivial divisible ordered abelian groups is
model-complete. By the AKE=-principle for the theory of tame valued fields (see [16, Theorem 1.4]), we
have that (K,v) < (K((t9)),u) is an elementary extension of valued fields.

Since k is perfect, (k((t9)),v;) is tame. By another application of the AKE=-principle for tame valued
fields, (k((t9)),v;) < (K((t?)),v) is also an elementary extension of valued fields. In particular, both
K = K((t9)) and k((t?)) = K((t?)) are elementary extensions of fields. Finally we consider the following
diagram of field extensions.

K((t9))

k((t9)) K
I /

Since each solid line represents an elementary extension of fields, the dotted line is also elementary. Thus
k < k((t9)) is elementary, as required. O

\
\
k
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Of course, in mixed-characteristic, a field cannot be elementarily equivalent to its residue field, simply
for reasons of characteristic. Instead, we give the following definition.

Definition 5.2. We say a valued field (L, w) is self-similar if there is an elementary extension (L*, w*) = (L, w)
and a valuation u on L* which is not equivalent to w* such that (L*, w*) = (L*, u).

It is clear that if (L, w) is self-similar then w cannot be (-definable.

Proposition 5.3. Let p be any prime, let k be a t-henselian field of characteristic p of divisible-tame type, and
let (L, w) be a mized-characteristic tame valued field with wL = Q and Lw = k. Then (L, w) is self-similar.

Proof. Let (L', w’) be any extension of (L,w) such that w'L’ is divisible, and the residue field extension
L'w'/Lw is k((t®))/k. For example, to find such (L', w’) we can apply [14, Theorem 2.14].

Let (L,) be a maximal immediate extension of (L', w’). Then L is henselian and defectless, with nontriv-
ial divisible value group, and perfect residue field k((t?)). Thus (ﬂ ) is a mixed-characteristic tame valued
field. Consider the extension (L,)/(L,w). By the model completeness of the theory of nontrivial divisible
ordered abelian groups, the extension of value groups is elementary. By an application of Lemma 5.1, the
extension of residue fields is also elementary. Therefore, by the AKE=-principle for tame valued fields (see
[16, Theorem 1.4]), (L, w) = (L, ) is an elementary extension.

Next we let u be the composition v; 0. Then (L, u) is henselian and defectless. The value group ul is an
extension of Q by a nontrivial divisible ordered abelian group, thus ul is divisible. By another application
of the model completeness of the theory of nontrivial divisible ordered abelian groups, the extension of value
groups is elementary. The residue field Lu is k, and the extensions of residue fields is simply the identity map
k — k. In particular, the extension of residue fields is elementary. Therefore, by another application of the
AKE=-principle for tame valued fields (see [16, Theorem 1.4]), (L, w) < (L, ) is an elementary extension.

L—— -2 k((@Q)- -2 - - =k
L-——-Y— >k

We have shown that both (L,®) and (L,u) are elementary extensions of (L,w). Since @ is a proper
coarsening of u, we conclude that (L,w) is self-similar. 0O

5.2. ‘Henselian’ does not imply ‘definable’

One of the remaining questions in mixed characteristic (short of giving a characterisation of fields with
(def)) is whether or not all fields in Ko admit definable nontrivial henselian valuations. The answer is
‘not’. For any prime p, we exhibit in Example 5.5 a field in Ky, which does not admit a (-definable non-
trivial henselian valuation. By Theorem 5.7, these fields do not even admit a definable nontrivial henselian
valuation.

Proposition 5.4. Let (L,w) be a tame valued field of mized characteristic such that wL = Q and Lw is a
non-henselian t-henselian field of divisible-tame type which is not separably closed. Then L does not admit
a O-definable nontrivial henselian valuation.

Proof. The residue field Lw is not separably closed by assumption, therefore all henselian valuations on L
are comparable to w. Moreover, we have assumed that Lw is non-henselian, thus no proper refinement of w
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is henselian. Also, the value group wlL is archimedean, so there are no nontrivial proper coarsenings of w.
Putting these three facts together we deduce that w is the only nontrivial henselian valuation on L.

Next we note that (L, w) satisfies the hypotheses of Proposition 5.3, from which we conclude that (L, w)
is self-similar. This means that there exists an elementary extension (L,w) =< (L*,w*) and a valuation u
on L*, which is different from w*, such that (L*, w*) = (L*,u). Consequently, w* is not (-definable in L*,
and w is not (-definable in L. Since L admits no other nontrivial henselian valuation, as argued above, we
conclude that L admits no (-definable nontrivial henselian valuation. O

Example 5.5. We are now able to exhibit the promised example to demonstrate that ‘henselian’ does not
imply ‘definable’ for fields in Ky ,. Let p be any prime and let £ be a non-henselian t-henselian field of
characteristic p of divisible-tame type which is not separably closed. For example we may choose k to be
any field constructed by Proposition 4.13. By [16, Lemma 3.1], tame valued fields are perfect. Since k is
elementarily equivalent to a field that admits a nontrivial tame valuation, k is also perfect. Let (L,w) be
a mixed-characteristic tame valued field with wL = Q and Lw = k. For example, we start with the valued
field of p-adic numbers (Q,, v,). Then, by [14, Theorem 2.14], there exists an extension (K, v)/(Qy, vp) such
that vK = Q and Kv = k. In particular (K,v) is of mixed characteristic. Now let (L,w) be a maximal
immediate extension of (K, v). Since (L,w)/(K,v) is immediate, wL = Q and Lw = k. By [16, Theorem
3.2], (L,w) is tame. Applying Proposition 5.4 to L, we conclude that L does not admit any (-definable
nontrivial henselian valuation.

Since Lw = k is not separably closed, vy, is a refinement of w. Consequently, the characteristic of Lvy, is
also p. Since also the characteristic of L is zero, we conclude that L € Ky ;, as required.

5.8. ‘Definable’ implies ‘D-definable’
The aim of this subsection is to show that for any prime p and any K € Kq, we have
(def) = (0-def)

The proof uses the machinery of g-henselian valuations as developed in [9]. Let ¢ be any prime. Recall
that a valuation v on a field L is called g-henselian if v extends uniquely to every Galois extension of L of
g-power degree. Let L be a field admitting nontrivial Galois extensions of g-power degree; we denote this
by L # L(q). Then, there is always a canonical g-henselian valuation v{, and the definition is similar to
that of the canonical henselian valuation. Again, we divide the class of ¢-henselian valuations on L into two
subclasses, namely

H](L) = {v g-henselian on L | Lv admits a Galois extension of degree ¢}
and
HI(L) = {v g-henselian on L | Lv does not admit a Galois extension of degree ¢}.

One can deduce that any valuation v € HJ(L) is strictly finer than any v; € H{(L), i.e. O,, € O,,, and
that any two valuations in H{(L) are comparable. Furthermore, if Hj(L) is non-empty, then there exists a
unique coarsest valuation v} in H(L); otherwise there exists a unique finest valuation v{ € H{(L). In either
case, v} is called the canonical g-henselian valuation. Note that any henselian valuation on L is ¢g-henselian
and thus comparable to v1. We denote by O} the valuation ring of v, and continue to denote by Op, the
valuation ring of the canonical henselian valuation vy, on L.

Our proof uses a special case of the uniform definability of canonical g-henselian valuation as proven in
[9, Main Theorem]: Let F; be the (elementary) class of fields L such that L # L(g), and that L contains a
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primitive gth root of unity ¢, in case char(L) # ¢. In case ¢ = 2, assume further that L is non-orderable.
There is a parameter-free Lying-formula ¢, (z) such that we have

LeF, = ¢q4L)=0j.
Furthermore, we will make repeated use of the following

Fact 5.6. [3, p. 43 and Corollary 4.1.4] Let O C K be a valuation ring. The overrings of O in K form a
chain under inclusion and each overring is a valuation ring. If O is henselian, then all overrings of O in
K are henselian.

We can now prove the main result of this subsection:
Theorem 5.7. If (K, vk) has mized-characteristic then
(def) = ((-def).

Proof. Fix a prime p. Let K be a field with char(K) = 0 and char(Kvg) = p > 0 which admits a definable
nontrivial henselian valuation. Then v is also nontrivial, since (K, vx) has mixed characteristic. Since K
admits a definable nontrivial henselian valuation, it is not separably closed. Furthermore, by [8, Theorem
A], we may assume that Kvg # Kv}. Since K is not separably closed, there exists a prime ¢ and a finite
extension Lo/K such that Ly # Lo(q) and ¢, € Lg. Let n := [Lo : K] and define

L:={L|[L:K]=n,L+# L(g),{, € L}.

Observe that for any field L, L # L(q) implies that L admits a Galois extension of degree ¢, by Sylow’s
Theorems. Therefore the family £ is uniformly interpretable in K: we quantify over those n-tuples from K
which are the coefficients of irreducible polynomials over K, such polynomials are the minimal polynomials
of generators of extensions L/K, and we can define those tuples corresponding to extensions L € £, using
the observation.

Next we explain a few basic facts about the canonical g-henselian valuations v¢ that we will repeatedly
use. Let L € L. Since L/K is a finite extension and Kvg is not separably closed, vy, is the unique extension
of vk to L. Since v} is comparable to vy, v] |k is also comparable to vk. Again, since v} is comparable to
vr, the residue characteristic of v] is either 0 or p. Finally, since vy, is a nontrivial g-henselian valuation
and L # L(q), we have that v{ and thus v} |k are nontrivial.

We define

Ly :={L € L | char(Lv) = p}
and
Ly :={L € L | char(Lv]) #p} = {L € L | char(Lv}) = 0}.

Just as for £ above, both £; and L5 are uniformly interpretable in K. To see that £; is uniformly
interpretable: given a uniform interpretation of £, we then need to define which n-tuples correspond to
extensions L/K such that char(Lv}) = p, and this follows from the fact that v is uniformly (-definable in
L, using the formula ¢,(x), by [9, Main Theorem]. Let A1(y) and Ax(y) be the formulas that define those
n-tuples corresponding to extensions L/K in £ and Lo, respectively.

Furthermore, using the uniform interpretation of £, we may find a formula ¢,(x,y) such that if b €
A (K)UA3(K) defines a field L € £, U Ly then ¢q4(x, b) defines in K the intersection ¢,(L)NK = O N K.
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We proceed by a case distinction. In each case our goal is of course to find an @-definable nontrivial
henselian valuation on K.

Case 1: Suppose first that £o # 0 and let L € L. As noted above, O is comparable to O, Since L € L5,
char(Lv}) = 0. Thus O, C 01 and O = O, N K C 0% N K. We have the following diagram.

gl
e

O%QK O,

e

Ok

We let

O, = ﬂ O%QK
LeLls

It is immediate that Ok C Oy. By Fact 5.6, Oy is an henselian valuation ring. As noted above, each O N K
is nontrivial. Since O7 C Of N K, for each L € L5, O is also nontrivial.
Finally, O; is (-defined in K by the formula

vy (A2(y) — ¢4, y))-

Case 2: Now suppose that Lo = (). Let ¢(z,t) be an Ling-formula with parameters t € K", for some
n € w, that defines in K a nontrivial henselian valuation ring Oy, i.e. ¢(K,t) = Ox.

For L € L, let Og 1 denote the unique extension of O¢ to L. Then Oy 1, is henselian, thus g-henselian.
Therefore Oy 1, is comparable to Of, and so their restrictions to K (which are Oy and O N K) are compa-
rable. Therefore

L‘lz{L€£1|OqLﬂKg(9t}l_l{L€£1|(’)tCO%ﬁK}.

This allows us to distinguish two subcases: in Case 2a, for some L € £, the ring Of NK is a strict coarsening
of Og; whereas in Case 2b, for every L € £; the ring Of N K is a refinement of Oy.
In the meantime, we let S := UL€£1 0% N K, and note that S is §-defined in K by the formula

Ty (A1(y) A ¢q(,y))-

As S is a union of valuation rings each of which is comparable to Oy, S is also comparable to Oy. In fact,
in Case 2a, we have Oy C S; and in Case 2b, we have S C O.

From now on we separate the subcases.

Case 2a: We suppose that for some L' € £; the ring O%, N K is a strict coarsening of O;. If we let

" :={L € L] O COlNK} then our assumption may be rephrased as £ # (. We will show that S is

a mixed characteristic nontrivial henselian valuation ring, and we already know that S is #-definable in K.
Note that, as discussed above, in this subcase we have Oy C S, although we do not make direct use of this
fact.
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For each L € £4 \ £, we have
OINKCO;CcO], NKCS.
Consequently

S=|Joink= ] 0inkK,

LeLl, LeL)

and therefore S is a union of valuation rings each of which is a strict coarsening of O.

K

S = ULeL’1 OqL NK

O

By Fact 5.6, the coarsenings of O form a chain under inclusion, and so S is a union of a chain of valuation
rings. Therefore S is a valuation ring. Since S coarsens Oy, S is henselian. Finally, since S is a union of
mixed characteristic valuation rings, S has mixed characteristic. In particular, S is nontrivial.

Case 2b: We suppose that for every L € £y the ring Of N K is a refinement of Og. As noted above, we
have S C Oy.

Since S contains a valuation ring (e.g. O N K, for any L € L1), the set of subrings of K which contain
S is totally ordered, by Fact 5.6. Therefore, any (nonempty) union or intersection of rings containing S is
also a valuation ring.

Let uy denote the valuation on K corresponding to Oy. We now consider a final distinction into (sub-
sub)cases depending on the characteristic of Kug. Note that since uy is henselian, it is a coarsening of vy
which has mixed characteristic. Thus char(Kuy) € {0, p}.

If, for s € K™, ¢(K,s) is a valuation ring then it will be denoted Oy and its corresponding valuation will
be denoted wus.

Case 2b(i): Suppose that char(Kug) = p. Let

Oy = J{o(K,s) | Os = ¢(K,s) is a val. ring, S C O, char(Kus) = p}.

We have the following picture.
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As noted above, Qs is a union of a chain of rings containing S, thus Qs is a valuation ring in K. In fact, since
O is a union of mixed characteristic valuation rings, Oy has mixed characteristic. Thus O is nontrivial.
By Fact 5.6, since Oy = ¢(K,t) C Os, we have that O is henselian.

Finally, note that Os is (-defined in K by the following formula.

35 (Vals) AV (3 € S — 0(y,8) A ~6(p~",9) A 6(2.9)),

where Vy(s) is a formula defining those s such that ¢(kK,s) is a valuation ring. This finishes Case 2b(i).
Case 2b(ii): Suppose that char(Kug) = 0. Let

O3 := [ {6(K.s) | Os = ¢(K,s) is a val. ring, § C O, char(Kus) = 0}.

We have the following picture.

S

As noted above, as an intersection of a chain of rings containing S, O3 is a valuation ring in K. In fact, since
Os is an intersection of equal characteristic valuation rings, O3 has equal characteristic. Since O3 C O, O3
is nontrivial.

We claim that O3 is a coarsening of Ok, i.e. Og C O3. To see this: let L € L. As noted above, OqL NnK
is comparable to O . Either

Ok COINK CSCOs,
as required; or
01 NK C O.

In the latter case, O and O3 are both coarsenings of O N K; and so they are comparable, by Fact 5.6.
Since O3 has residue characteristic zero, O C Os. In either case, we have shown that O3 is a coarsening
of Ok. Consequently, O3 is henselian.

Since S is a union of valuation rings of residue characteristic p, if ¢(K,s) = Og is a valuation ring that
contains S, then Og has residue characteristic 0 or p. Therefore O3 is (-defined in K by the following
formula.

vs ((W(S) Ay (y €S — ¢(y,8)) No(p~'.s)) — ¢(xvs)),

where, as above, Vy(s) is a formula defining those s such that ¢(K,s) is a valuation ring. This fin-
ishes Case 2b(ii), and hence the proof of the theorem. O



894 S. Anscombe, F. Jahnke / Annals of Pure and Applied Logic 169 (2018) 872-895

5.4. The full picture in mized-characteristic

We can now collect the facts we have proven for fields in Ky, and assemble them to a proof of Theo-
rem 1.1 (B):

Proof of part (B) of Theorem 1.1. We want to show that for each prime p, in the class Ky, the complete
picture is

(0-def) ——> (eh)

| ]

(def) —— (h)
Apart from the trivial implications as given in Fig. 1, we have shown in Corollary 2.2 that for any K € Ko
(h) < (eh)
and furthermore in Theorem 5.7 that also
(def) <= (0-def)
holds. Finally, Example 5.5 shows that we have
(h) 7= (0-def)
in ICo . This completes the proof. O
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