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Abstract: Chronic allograft nephropathy (CAN) is the leading cause of late allograft loss after 

renal transplantation (RT), which continues to remain an unresolved problem. A rat model of 

CAN was first described in 1969 by White et al. Although the rat model of RT can be techni-

cally challenging, it is attractive because the pathogenesis of CAN is similar to that following 

human RT and the pathological features of CAN develop within months as compared with years 

in human RT. The rat model of RT is considered as a useful investigational tool in the field of 

experimental transplantation research. We have reviewed the literature on studies of rat RT 

reporting the donor and recipient strain combinations that have investigated resultant survival 

and histological outcomes. Several different combinations of inbred and outbred rat combina-

tions have been reported to investigate the multiple aspects of transplantation, including acute 

rejection, cellular and humoral rejection mechanisms and their treatments, CAN, and potential 

targets for its prevention.
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Introduction
Despite the advances in immunosuppressive agents, chronic allograft nephropathy 

(CAN) remains the leading cause of late allograft loss following renal transplantation 

(RT).1 Experimental research has been undertaken in animal models to understand 

the pathogenesis and molecular biology of CAN and to identify potential therapeutic 

targets for its prevention and treatment.2,3

In humans, CAN develops slowly over months and years before being fully 

established. In rat models of CAN, impairment of renal function and histopathol-

ogy similar to that described in humans can be produced in a few months, allowing 

investigators to study its pathology within a reasonable period of time. The factors 

implicated in the pathogenesis of CAN in the rat mimic the pathogenesis of CAN in 

human clinical RT; particularly to RT from a live kidney donor source, since the cold-

ischemia time is short in both situations. Thus, the rat provides an important model of 

RT in which to study the pathology and potential treatment of CAN.4 The aim of this 

paper is to review the published literature on the models of CAN and to explore their 

advantages and disadvantages and the interventions undertaken.

Literature search
The literature search was carried out in PubMed and relevant websites using the 

words “renal transplantation”, “chronic allograft nephropathy”, “rat”, “animals”, 

“transplant fibrosis”, and “prevention”. Relevant references were compiled in the 
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EndNote (X6.0.1, Bld 6599; Thomson Reuters, New York, 

NY, USA) software.

Advantages of rat models
RT techniques have been described in pigs, dogs, rab-

bits, rats, and mice.5–9 Compared with larger animals, the 

advantages of using the rat include 1) improved long-

term survival of renal transplants due to the use of inbred 

strains, 2) lower cost of experimental animals, 3) simple 

animal maintenance which does not require sophisticated 

facilities, 4) less critical requirement for aseptic surgery, 

and 5) well established techniques of vascular and ureteric 

anastomoses for RT.10,11

Strains of rats
The first description of RT in rats was presented by Bernard 

Fisher and Sun Lee at the American College of Surgeons 

Meeting in Chicago in 1961 and subsequently published in 

1965.8,12 RT was performed using inbred Lewis (LEW) rats, 

and therefore no immunosuppressive regimens were required. 

In subsequent studies, the following rat strains were used as 

either donor or recipient: Fisher 344 (inbred (In)), Sprague 

Dawley (SD) (outbred (Ou)), Wistar Furth (WF) (outbred 

(Ou)), LEW (inbred (In)), brown Norway (BN) (inbred (In)), 

and Dark Agouti (DA) (inbred (In)). Either inbred or outbred 

strains may be used depending upon the aim of the individual 

study.10,13–23

The following combinations such as Fisher 344-to-

LEW, DA-to-BN, DA-to-WF, DA-to-LEW, SD-to-WF, and 

LEW to-BN have been used to induce CAN, with both advan-

tages and disadvantages to each model.23–33 However, since 

the Fisher 344-to-LEW model of RT is the most commonly 

employed in experimental studies, the establishment and 

application of this combination is described in detail.

Fisher 344-to-LEW model of CAN
Establishment of the model
White and Mullen34 described in 1969 for the first time RT 

using the Fisher 344 (F344) rat as donor and the LEW rat as 

recipient to produce a model of chronic rejection. Although 

the LEW-to-LEW isograft maintains relatively well preserved 

renal function, F344 allografts develop clinical and histo-

pathological features of CAN within a few weeks to months 

after RT.35 Paul et al39 demonstrated that RT between F344-

to-LEW rats survives spontaneously, without the use of 

immunosuppressive drugs. The F344-to-LEW model is useful 

because the rat strains differ partially at major histocompat-

ibility complex (MHC) (class I and class II) and various 

non-MHC loci, thereby making a weakly histocompatible 

combination that allows RT without immunosuppression, 

which cannot be done in humans. LEW rats receiving an 

F344 graft develop raised glomerular pressure and protei-

nuria after 1 week post-RT, which gradually evolves into 

CAN.36 The histological changes occur predominantly in the 

glomeruli showing mesangial expansion, glomerular fibrosis, 

intimal thickening of blood vessels, dilatation of capillar-

ies, splitting of capillary basement membrane, and deposi-

tion of eosinophilic materials in capillary loops. Classical 

changes of CAN in the vascular and tubulointerstitium 

occur simultaneously or later, but similar to lesions seen in 

human RT.12 Vass et  al37 observed marked increase in the 

number of perivascular and interstitial lymphatic vessels in 

the allografts, which correlated with the extent of interstitial 

fibrosis.

The same investigators also demonstrated that LEW 

rats with long-standing F344 RT produce antibodies against 

both glomerular and tubular basement membranes.38 

Subsequently, antibodies directed against mesangial and 

endothelial cells have been detected in the sera of the 

allografts with long-standing RTs. Western blot analysis, 

followed by immunoprecipitation, has identified the anti-

body-binding sites on mesangial cells to be biglycan and 

decorin.39 It is recognized that both biglycan and decorin 

appear to play roles in the tissue repair process and bind 

transforming growth factor (TGF)-b, a profibrotic cytokine 

which may play a major role in CAN. Antibodies binding 

to biglycan and decorin appear to have the effect of gener-

ating more “free” TGF-b to interact with its receptors and 

interfere with the stimulation of matrix metalloproteases. 

TGF-b inhibits the proliferation of mesangial cells and may 

play a role in renal fibrosis by stimulating mesangial cells 

to produce matrix proteins. Fibroblasts are also stimulated 

by TGF-b to produce matrix protein.40

In CAN, the alteration of the extracellular matrix com-

partment and proliferation of various cell types are regulated 

by the metzincin superfamily of metallo-endopeptidases, 

including matrix metalloproteinases (MMPs), a disintegrin 

and metalloproteinase (ADAM) and meprin. Berthier et al41 

observed that members of metzincin families (MMP, ADAM, 

and meprin) and of tissue inhibitors of metalloproteinase 

(TIMPs) are differentially regulated in CAN in the F344-to-

LEW model. Messenger ribonucleic acid (mRNA) levels of 

MMPs (MMP-2/-11/-12/-14), their inhibitors (TIMP-1/-2), 

ADAM-17, and TGF-β1 significantly increase in CAN. 

In contrast, mRNA levels of MMP-9/-24 and meprin α/β 

downregulate significantly.41,42
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Cyclosporin
Diamond et  al24 from Boston, USA, used cyclosporin 

(5 mg/kg/day) for the first 10 days post-RT to prevent acute 

rejection and studied the changes in renal function, morphology, 

and immunohistology between F344-to-LEW allografts and 

LEW-to-LEW isografts over the course of 24 weeks. A higher 

urine albumin excretion was demonstrated in the allografts as 

early as 4 weeks after RT, which rose dramatically by 20 weeks. 

Serum creatinine was elevated in allografts after 16 weeks, while 

renal blood flow and glomerular filtration rate (GFR) measured 

by p-aminohippurate and inulin clearances, respectively, were 

significantly lower in the allografts at 24 weeks. The frequency 

of glomerulosclerotic lesions was significantly increased in 

allografts and correlated with albumin excretion. There was 

significantly greater infiltration of the glomeruli with cluster 

of differentiation (CD)8+ and pan-T-cells in the allografts.24 

Grenz et al43 demonstrated significant improvement in GFR 

in the same model when theophylline was given (10 mg/kg, 

subcutaneously) (GFR of allografts 0.23±0.05 mL/min/g kid-

ney weight [n=10] compared with 0.50±0.09 mL/min/g in rats 

receiving theophylline [n=9, P,0.01]) without affecting the 

interstitial infiltration of the graft by monocytes/macrophages 

and T-cells. Likewise, serum cytokines interleukin (IL)-2, 

IL-6, IL-10, tumor necrosis factor (TNF)-α, and erythro-

poietin plasma levels were not different among the allograft 

groups.43 In both studies, cyclosporin given for the first  

10 days prevented acute rejection and allowed development 

of CAN in the allografts.

Alloantibodies, cytokines,  
and adhesion molecules
Hancock et  al44 from Boston examined the host immune 

mechanisms responsible for the initiation and progression of 

chronic rejection in the same model. Peak levels of immu-

noglobulin (Ig)M and IgG alloantibodies were demonstrated 

at 2–4 weeks by flow cytometry, with a gradual decline to 

baseline thereafter. Immunohistology showed early and 

progressive deposition of IgM, IgG, C3, and fibrin in the 

vessel walls and glomeruli. In addition, by 12 weeks, exten-

sive infiltration by activated IL-2 receptor positive (IL-2R+) 

macrophages and CD4+ T-cells could be demonstrated in the 

glomeruli and blood vessels, in conjunction with staining 

for cytokines such as TNF-α, IL-1, and IL-6. The persistent 

and dense intraglomerular expression of IL-6 indicated 

its potent mitogenic effect on mesangial cells leading to 

glomerulosclerosis.

There was also increased expression of intercellular adhe-

sion molecule-1 (ICAM-1) in the graft vascular endothelium, 

which peaked at 16 weeks and showed increased binding 

in vitro to naïve host lymphocytes.44 The authors concluded 

that an antibody-mediated host response followed by a 

cellular response was responsible for the release of cytokine 

production and upregulation of adhesion molecules which 

induced the scarring process leading to graft loss.

Prevention of chronic rejection
Manipulation of the cellular immune response
Several experiments have been carried out in the F344–LEW 

model to abrogate the alloantigen-driven histological and 

immunological events in order to delay or prevent alloantigen 

recognition. T-cell activation requires two steps: namely, bind-

ing of T-cell receptor to the antigen presented by the antigen-

presenting cells (APCs) (signal 1) followed by co-stimulation 

(signal 2) through binding of CD28 molecule of the T-cell 

to CD80 (B7-1) and CD86 (B7-2) on the APC. Blockade of 

the co-stimulation pathway (CD28–B7) produces a state of 

anergy, a failure of T-cell activation, which is also produced 

by CD152 (cytotoxic T-lymphocyte antigen-4; CTLA-4) 

combined with CD28 and CD86. Alternatively, CD40 ligand 

on T-cells can combine with CD40 on the APC to initiate the 

co-stimulation signal leading to activation of these cells.

Blockade of the co-stimulation pathway by the infusion 

of CTLA-4-immunoglobulin, which binds to B7 molecules 

on the surface of the APC, leads to significant reduction of 

proteinuria, glomerulosclerosis, intimal hyperplasia, and 

mononuclear cellular infiltration.45 Similarly, administration 

of an anti-CD28 monoclonal antibody significantly preserves 

graft morphology and recipient survival in this model by 

blocking the T-cell co-stimulation pathway.46

Blockade of chemokines
Chemokines are a family of small-size (8–10 kDa) chemotactic 

cytokines which, in transplantation, induce the recruitment 

and activation of T-cells and monocytes or macrophages. So 

far, more than 50 chemokines and 20 chemokine receptors 

have been identified. Members of the chemokine family are 

divided into four groups (C, CC, CXC, and CX3C) based 

upon the position of their first two cysteine residues. They are 

further classified as inflammatory or hemostatic.

In F344-to-LEW rat allografts, BX-471, a chemokine 

receptor type 1 (CCR1) antagonist, prevents the infiltration 

of T-cells and macrophages, decreases cell proliferation 

(ED1, CD8, and Ki67), and reduces expression of acute 

phase reactive proinflammatory genes (heme oxygenase-1, 

osteopontin) and molecules associated with f ibrosis 

(plasminogen activator inhibitor-1, TGF-b, and biglycan). 
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There is a significantly lower number of smooth muscle 

actin-positive interstitial myofibroblasts and a reduction in 

the deposition of collagen.47

Similarly, Met-RANTES (Regulated on Activation, 

Normal T-cell Expressed), a chemokine receptor antagonist 

(CCR5), blocks the effects of RANTES in F344-to-LEW 

allografts, reducing the infiltration of lymphocytes and 

macrophages, accompanied by decreased mRNA expres-

sion of IL-2, IL-1β, TNF-α, and RANTES resulting in 

reduced glomerulosclerosis, tubulointerstitial fibrosis, and 

proteinuria.48

Immunosuppressive agents
Immunosuppressive drugs have reduced the incidence 

of acute rejection and improved graft survival. However, 

the majority are associated with side effects such as the 

nephrotoxicity of calcineurin inhibitors (CNIs), which 

are known to contribute to the development of CAN.49 

Mycophenolate mofetil (MMF), in contrast, acts by inhibiting 

de novo DNA synthesis, cell surface molecule expression, 

and antibody production. MMF reduces CAN and improves 

allograft survival when given immediately or 8 weeks after 

RT.50 In the same model, Luo et al51 examined the effects of 

tacrolimus with MMF on renal fibrosis and observed progres-

sive deterioration of renal function and CAN morphology 

in the vehicle and tacrolimus groups, while serum creati-

nine and inflammatory infiltration (Banff score) showed a 

significant decrease in the MMF group after 8 weeks post-

transplantation compared with those in the other groups. 

Furthermore, expression levels of connective tissue growth 

factor and α-smooth muscle actin in the MMF group were 

significantly reduced, and the downregulated expression of 

E-cadherin was abated.51

Sirolimus and its derivative, everolimus, significantly 

reduce infiltration of the allograft with macrophages and 

lymphocytes and reduce expression of TGF-b, ICAM-1, 

and VCAM (vascular cell adhesion molecule)-1, reducing 

interstitial fibrosis and tubular atrophy (TA) and prolonging 

allograft survival.52–54

Ko et  al,55 in the same model, observed greater 

protection against vasculopathy in the sirolimus-treated 

group, but sirolimus induced proteinuria. The effects were 

likely to be related to inhibition of vascular endothelial 

growth factor signaling.55 In the same model, Luo et al51 

concluded that sirolimus ameliorated fibrogenesis in kid-

ney allografts by inhibiting the epithelial mesenchymal 

transition (EMT) process, whereas cyclosporine did not 

have this effect.

Oxidative stress
Oxidative stress is increased in the F344–LEW rat trans-

plant model and is associated with EMT and chronic 

interstitial fibrosis. Nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase (Nox) is an important source of 

reactive oxygen species generation in the kidney. Inhibition 

of NADPH-2 (Nox-2) by diphenyleneiodonium or apocynin 

reduces fibronectin and phosphor-Smad2 and increases 

E-cadherin levels, thereby inhibiting EMT and fibrogenesis.56 

In the same model, L-arginine decreases proteinuria and 

glomerulosclerosis.57 However, vitamin E supplementation 

alone does not prevent CAN.58 Both in human RT recipients 

and in F344-to-LEW allografts, MMF significantly down-

regulates Nox-2 activation and EMT through the nuclear 

factor-κB pathway in tubular epithelial cells.59

Angiotensin antagonists
Angiotensin II increases the expression of cytokines and 

adhesion molecules thereby stimulating the synthesis of extra-

cellular matrix and increasing glomerular capillary pressure. 

Administration of an angiotensin converting enzyme inhibitor 

(trandolapril) or angiotensin II receptor blocker (losartan) 

in this model leads to diminished expression of chemokine 

MCP-1 (monocyte chemoattractant protein-1), preserva-

tion of glomerular and tubulointerstitial structures, reduced 

proteinuria, and improved graft survival.60,61 Combination of 

losartan and MMF completely prevents the development of 

proteinuria, largely reduces glomerular and tubulointerstitial 

injury, and suppresses intragraft cell infiltration, thereby 

producing a better outcome in comparison with transplants 

receiving a single agent.50

Lipid lowering agents
In the F344-to-LEW renal allograft model, pravastatin 

reduces macrophage and T-cell graft infiltration and decreases 

intragraft expression of TGF-b, causing an attenuation of the 

recipient anti-donor IgG alloantibodies and upregulation of 

the anti-apoptotic gene Bag-1.62

Mineralocorticoid receptor antagonist agent
The mineralocorticoid hormone aldosterone is involved 

in development and/or progression of renal diseases via 

interaction with a non-epithelial mineralocorticoid receptor 

(eg, reducing neointima formation). Lahmer et al63 examined 

the effects of the aldosterone synthase inhibitor fadrozole 

and the mineralocorticoid receptor antagonist spironolactone 

compared with vehicle in the F344-to-LEW rat model 

of CAN. Fadrozole- and spironolactone-treated animals 
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demonstrated a higher degree of proteinuria, pathologically 

elevated potassium values, higher tubulointerstitial damage 

and glomerulosclerosis, and markedly increased heart 

weight/bodyweight as compared with vehicle. The positive 

effects of inhibition of aldosterone as described in cardiac 

models could not be detected in kidney recipients.63

DA-to-BN model of CAN
DA-to-BN rat model, which requires triple immunosuppression 

with cyclosporin (5 mg/kg/day), azathioprine (2 mg/kg/day), 

and methylprednisolone (2 mg/kg/day), has been extensively 

studied by Soots et al.23 This model developed an early acute 

rejection 5–7 days after RT and chronic rejection within 

40–60 days after RT, with chronic allograft damage index 

(CADI) score of 7.9±3.1 compared with syngenic transplants, 

which showed no evidence of acute or chronic rejection 

(CADI: 1.7±2.0). In the same study, combinations of other 

strains of rats such as DA-to-albino Oxford and piebald-

viral-Glaxo (PVG)-to-BN were examined. The DA-to-albino 

Oxford combination demonstrated a prolonged acute rejec-

tion, but no characteristic chronic changes. The PVG-to-BN 

combination did not show changes of either acute or chronic 

rejection. The grafts were monitored with ultrasound-guided 

fine-needle aspiration cytology. This study concluded that the 

experimental model of DA-to-BN of RT resembles the CAN 

seen in human clinical RT.23

The same authors have used the DA-to-BN model to 

demonstrate a significant rise in the collagen/DNA ratio 

in cytomegalovirus (CMV)-infected grafts compared with 

uninfected animals, correlating with the development of 

fibrosis. The expression of type I and III collagen mRNA and 

presence of myofibroblasts was associated with interstitial 

fibrosis in CMV-infected grafts. It was concluded that CMV 

accelerated both atherosclerosis and the development of CAN 

in rat allograft kidneys.64,65 Soots et al66 examined the effect 

of flushing the donor kidney with Euro-Collins® solution 

(Fresenius Aktiengesellschaft, Oberursel, Germany) contain-

ing sodium nitroprusside solution in this model and observed 

significant reduction in CADI score of TA and interstitial 

fibrosis with the use of sodium nitroprusside.66

DA-to-WF model of CAN
Yilmaz et  al67 studied chronic rejection in the DA-to-WF 

where the allografts, given cyclosporin (5 mg/kg/day, 

subcutaneously) for 1 week, developed chronic rejec-

tion 3 months post-transplantation. Allografts receiving 

cyclosporin (5 mg/kg/day, subcutaneously) for 12 weeks 

did not show changes of chronic rejection. In this model, 

prolonged use of cyclosporin prevented the development of 

acute rejection. Syngenic DA-to-DA RTs did not show any 

evidence of chronic rejection.67,68 Savikko et al69 investigated 

the role of platelet-derived growth factor (PDGF) in  

the same model and demonstrated that administration of the 

imanitib (10 mg/kg/day, orally), a PDGF inhibitor, for the 

first 30 days after RT completely prevented development of 

CAN at 90 days in the treated group. An immunosuppressive 

drug, FK778, inhibits de novo pyrimidine biosynthesis and 

several receptor tyrosine kinases. Rintala et al70 investigated 

its effects on acute and chronic rejection as well as post-

transplant PDGF and TGF-β expression in combination 

therapy with CNIs. FK778 in combination with CNIs 

significantly reduced both early and late PDGF and TGF-β 

expression and development of CAN.

DA-to-LEW model of CAN
Pascher et  al31 have described the development of CAN 

using DA rats as donors to LEW recipients in a variety of 

immune-modulating models. One model, considered to 

be a high-responder immunologically, was used in experi-

ments which involved the use of carbon monoxide to reduce 

immunogenicity and thereby the development of CAN.71 

Transplanting kidneys from DA to LEW rats, without immu-

nosuppression, leads to death of rats from acute rejection 

some 7 days after transplantation.72 Denecke et  al11 had 

examined the effect of low-dose cyclosporine in the same 

model and observed induction of donor hypo-responsiveness 

to secondary renal allografts, significantly reduced alloan-

tibody titers in the primary recipients, and dose-dependent 

and transferable “pro-tolerogenic” effect of low-dose 

cyclosporine treatment.11

SD-to-WF model of CAN
The SD-to-WF combination is an accelerated model of 

CAN, where histological evidence of CAN appears as early 

as 4 weeks post-RT. Teng et al73 examined the expression of 

the cytoprotective genes A20, heme oxygenase (HO)-1, Bcl-2, 

and Bcl-XL in this model using three different immunosup-

pressive regimens. All animals received cyclosporin 10 mg/

kg/day for 10 days, but two further groups were maintained 

on either cyclosporin 6 mg/kg/day or MMF 20 mg/kg/day. 

At the end of 8 weeks, CAN was evident in all groups, but 

the expression of A20 in grafted kidneys was significantly 

higher in the MMF than in the cyclosporine group, helping to 

explain the mechanism by which MMF ameliorates transplant 

arteriosclerosis in experimental chronic rejection. There was 

no significant difference between the cyclosporin and the 
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MMF groups in the expression of HO-1, Bcl-2, and Bcl-XL.73 

Similar results were observed when rapamycin was compared 

with tacrolimus in this model.74

Fractalkine is a unique chemokine that functions both as 

a potent chemoattractant molecule (soluble form)1 and as 

an adhesion molecule (membrane anchored form) for cells 

expressing the fractalkine receptor CX3CR1, such as mono-

cytes, NK (natural killer) cells, and subsets of CD8+ T-cells, 

involved in chronic transplant arteriosclerosis. Cao et al32 

demonstrated increased expression of the fractalkine recep-

tor CX3CR1 in the SD-to-WF model of RT. Fractalkine/

CX3CR1 was mostly expressed in the tubulointerstitium 

and tubular epithelial cell basolateral membrane. A propor-

tion of the vessel showed positive staining for fractalkine/

CX3CR1, occasionally in glomerular parietal wall cells, 

was significantly lower in MMF than cyclosporine-treated 

animals.32

LEW-to-BN model of CAN
Transplanting kidneys from LEW-to-B (RT1n) rats shows inter-

stitial mononuclear cell infiltration, tubulitis, and glomerulitis, 

in addition to early phase of arteritis at 30 days. By 80 days, 

TA is seen in 25%–50% and interstitial fibrosis in up to 25% 

of renal cortex. There is focal, diffuse, segmental, or globular 

glomerulosclerosis. In a study by Neto et al,33 all recipients had 

received tacrolimus (0.5 mg/kg/day) for 7 days. Cardinal et al75 

demonstrated that the administration of molecular hydrogen 

dissolved in water to this model slowed the progression of CAN, 

reduced oxidant injury and inflammatory mediator produc-

tion, and improved overall survival. Inflammatory signaling 

pathways, such as mitogen-activated protein kinases, were less 

activated in renal allografts from hydrogen water-treated rats 

as compared with regular water-treated rats.75

WF-to-LEW model of CAN
Solini et  al76 developed a model of CAN using a fully 

MHC-mismatched rat strain combination, with WF rats as 

kidney donor and LEW rats as recipients. The two strains 

differ for class I, class II, and non-MHC genes. Cyclosporin  

(5 mg/kg/ day, intramuscularly) needed to be given for the first 

10 days to prevent acute rejection. At 120 days, the allografts 

developed features of CAN and donor-specific antibodies and 

chronic antibody-mediated rejection.76 A few studies have 

been carried out in this model, which include gene transfer of 

CTLA-4 Ig into donor kidney, leading to prevention of pro-

gressive proteinuria and CAN, and transfer of donor-specific 

T helper-2 clones into recipient rats to regulate alloimmune 

response and prevention of CAN.77,78

Conclusion
We reviewed the relevant published literature that described 

RT in rat models of CAN employing combinations of strains 

and the outcomes of various interventions. We believe that 

the review will help researchers to understand the applica-

tion of various rat models of CAN in understanding the 

molecular mechanisms and development of novel treatments 

for CAN.
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