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Chaotic Behaviour in Some Discrete —Time
Adaptive Control Systems

Dr Khalid Khan

Abstract— It has been shown that nonlinear discrete maps can display extremely rich behaviour and under certain parameter conditions
to show chaotic phenomenon. This work looks at adaptive control feedback systems which can be represented as nonlinear discrete maps
and shows how model mismatch can lead to undesired complicated and chaotic behaviour. Moreover that a discrete-time adaptive control
system which can display chaotic behaviour can be extended into higher order systems and the results show that under certain parameter
conditions, the higher order systems also behave chaotically. A generalised equation form for the eigenvalues is also given.

Index Terms— Adaptive Feedback Control Systems, Bifurcation, Chaos, Nonlinear Mappings, Simulation

1 INTRODUCTION

Chaos theory looks at the study of deterministic dynamical
systems that are very sensitive to initial conditions. Small dif-
ferences in initial conditions can lead to widely diverging out-
comes, for such systems making long term predictions gener-
ally becomes impossible. Chaotic phenomena have been ob-
served in numerous systems in the science and engineering
fields [1]. Lorenz [2] made early studies in the changes in the
atmosphere which tended to display erratic and unpredictable
behaviour. In more recent years, with potential application in
engineering fields the study and control of chaotic systems has
become important specifically chaos control and synchroniza-
tion [3].

Adaptive feedback control starts with a system model with
known or unknown parameters. Parameter adaptive control
looks at global behaviour and a set of parameters which are
manipulated by the observer. The observed behaviour is com-
pared with the desired one and corrections made using the
system parameters. It is know that adaptive control inherently
leads to a nonlinear closed-loop system, even in the situation
where we have a linear plant or a linear model of the plant,
when a linear output feedback law is used and where the
feedback parameters are estimated from input and output da-
ta. Adaptive systems can be thought of as being asymptotical-
ly linear when the feedback parameters have converged to
some steady state. The study considers what sort of dynamical
effects on the performance of the adaptive system the nonline-
ar features can have

A discrete adaptive system can be represented as a nonline-
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ar discrete map. It has been shown that a one-dimensional
nonlinear map [4], [5], a one-dimensional map with a quadrat-

ic nonlinearity known as the logistic map [6], exhibit unpre-
dictable and chaotic phenomena. Ydstie [7] has shown how a
simple model-reference adaptive system (MRAC) character-
ised by a third order nonlinear discrete map with no external
forcing can exhibit chaotic behaviour. More recently, due the
potential applications in a variety of disciples, chaos control
has become an important consideration like the area of secure
communications [8].

In this paper a general n" order plant is taken with in-
creasing order model assumptions and using analysis and
simulation show that complex dynamics and chaotic behav-
iour can occur for higher order systems for certain parameter
values. A general closed form equation is developed giving
the eigenvalue structure for the nth order plant with a first
order model assumption. This provides insight into the unsta-
ble behaviour of our systems.

2 GENERAL BACKGROUND

In model-reference adaptive control, the basic idea is to com-
pare the behaviour of the controlled plant with that of refer-
ence model representing the desired performance and attempt
to reduce the difference between them by changing the con-
troller parameters in an appropriate manner. The basic struc-
ture is as shown in fig 1.
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Fig. 1 Model - reference adaptive control system structure.
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The general adaptive control system is designed by combin-
ing a particular estimation technique with a control law.

y(®) = al(@ Dyt -1+ Blgu(t—1)

B@™) = B+ hq + oo +fmg ™Y
qaly@®) £y(t-1)
For simplicity f(¢g™') = 1 and (ay,..a,, u(t),y(t) € R)

It is assumed that the system can be adequately represent-
ed as a first-order model,

y@® = a;t-Dyt-D+ut-1)
where @, is an estimate of a;.

The desired output y(t) is be equal to some reference value
y*, we can choose u(t) using an adaptive control law to
achieve closed-loop stability and to asymptotically achieve
zero tracking error.

u() = y* = a,()y(e)

An algorithm we use to give @, an estimate of the actual
parameter a;.
a;(t) = a;(t—1) +py(t — De(t)

Where p is the adaptation rate and e(t) denotes model error.

3 GENERAL NTH ORDER PLANT, FIRST ORDER MODEL

Plant: y@® =Xk, aqy@—D)+ult-—1)

Model:  y(t) = a;t—-Dyt—-1) +u(t—-1)
Control Law: u(t) = y*— a, )y

Estimation Algorithm:

a,(t) = a;(t - +py(t - D[y®) — &, (¢t -yt -1
—u(t - 1)]

This produces a sequence of parameters
{a,(®)} t = 1 withcontrols {u(t)} t =1, given a,(0).

Closed-loop system equations become:

n

YO = ) ay(t=D+y = &t - Dyt —1)

i=1
a,(t)=a,t—1) + py(t—D[ y(©) — y"]

In order to facilitate analysis and simulation we can rewrite

the above equations as a set of (n+1) first order equations:

Let wi(t) = wy(t—1)
wy(t) = wz(t—1)
Wno(t) = wp_1(t — 1)
wno1(t) = y(t=1)

So,

n-1

y(®) = o =@, (= DIyE =D+ ) Gy gl = 0+’

i=1

a,(t) = a,(t=1) + py(t =D[ y(©) — y7]

4 EQuILIBRIUM POINTS

Replacing t by t — 1 in the left hand side equations gives:
wit-1)=y(t-1)
y@®) =y

alz Z a;

i=1

From which is it can be seen that if there is no plant to
model mismatch (i.e. n=1) then our parameter estimate &, (t)
at equilibrium is equal to a;.

5 EIGENSTRUCTURE FOR THE GENERAL MODEL

The set of (n+1) first order equations represents a nonlinear
discrete mapping. The stability of the adaptive system can be
determined by looking at the eigenvalue structure of the Jaco-
bian matrix at the fixed point.

Linearization of the system equations at the equilibrium
point gives the Jacobian of first partial derivatives DFy:

IJSER © 2013
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r Awq(t) 1 [ Awy(t—1) ]
Aw,(t) Aw,(t — 1)

: = DFQ :
A4 (0) Awp_y(t— 1)
Ay(6) Ay(t—-1)

A, () | | Ad,(t—1) |

where, the matrix of first partial derivatives DF, is given by :

DFg =
0 1 0 0 0 0
[ 0 0 1 0 w
I I
: 0 1 0
an an—1 .. e A a; — a1 -y
anpy an_1py azpy (ay — d)py 1—py?

A

— — * —_ n
atwy=y=Yy, 1= iz &

The characteristic equation y(z) for DFy is given
by

x(z) = det (DFy — zI)

x(2) =
—z 1 0 " 0 0 0
0 -z 1 0 0 0
0 0 -z : : :
1 0 0
H -z 1 0
an Ap_q o a; a,—a,—z -y*

anDY" ap_1py”* .. a:py* (a,— a)py" 1-py? —z

A concise algebraic form for y(z) is:

x2)=0-2)[D"(z" +a, 2" — Z ayz"" )]

r=1

+py*t (Dt 2

So, x(z) = 0is a polynomial equation giving the eigenvalues
for a general n™ order plant with a first order model assump-
tion.

6 ANALYSIS AND SIMULATION RESULTS

The simplest case in our general representation model with
n=2 has been shown to exhibit chaotic behaviour under certain
parameter conditions, Ydstie [3]. We consider a plant which is
now of third order assuming it can be modelled by a first or-
der system (i.e.n=3).

6.1 THIRD ORDER PLANT WITH FIRST ORDER MODEL

Our system equations become:
wi(t) = wy(t—1)
wy(t) = y(t—1)
y(@) = ay(t —1) + a;w,(t — 1) +azwy (¢ —1) +y°
- at-Dyt-1)
a(t) = a;(t—1) + pyt—-D[ y@©) - y"]

The above equations can be represented as a nonlinear dis-
crete mapping Fg(wy,w,,y,8,) : R* - R* where (wy,w,,y,d;)
is the state vector, 8 = (a,a,, a3, p,y*) is a vector of parame-
ters.

The eigenstructure for this system is given by the characteris-
tic equation, y(z) = 0 with n=3,

z-1D(z3—(ay —d))z%2 —a,z—az )+ py**z3 =0

By varying different parameters of 6, we can observe the
system’s dynamical behaviour. Letting parameter a, vary over
a range of values from 0.2 to 0.8, with

w;(0)

a, 0.6
° 0.1 Py o
w2(0)f _ 101 g fag = | .01
y(© | (10 p| |o.00s
a0l 10> y 5.0

Fig. 2 shows y(i) as a, ranges from 0.2 - 0.8.

Plot of y(i) with a2=0.2, ( a1=0.6, a3=0.01, p=0.005 )

1
§ g L L L L L ‘
0 50 100 150 200 250 300
Time
Plot of y(i) with a2=0.5, (a1=0.6, a3=0.01, p=0.005)
§ (5) L L L L L
0 50 100 150 200 250 300
Time
Plot of y(i) with a2=0.76, ( a1=0.6, a3=0.01, p=0.005 )
SqT T : T : : |
§ 5% L L L L L T
0 50 100 150 200 250 300
Time
Plot of y(i) with a2=0.8, (a1=0.6, a3=0.01, p=0.005 )
5 T T T : :
§ 5% L L L L L
0 50 100 150 200 250 300

Time

Fig. 2 — Plot of y(i)
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Fig. 3 below shows y(i) chaotic for 2000 iterations.

It is also seen that as a, increases from 0.2 to 0.8 and the sys-

tem becomes more unstable and eventually chaotic, that one of
the eigenvalues becomes greater than one in modulus.
Plot of y(i) with a2=0.8, ( a1=0.6, a3=0.01, p=0.005 )

Parameter a, with corresponding eigenvalues:
az - 0.2 az == 0.5 az - 0.76 az == 0.8
7300 350 400 450 500 550 600 650 700 750 800 —0.51 —1.04 —1.39 —1.44
) —0.05 0.57 0.65 0.66
Time 0.42 —0.02 —-0.01 -0.01
Plot of y(i) with a2=0.8, ( a1=0.6, a3=0.01, p=0.005 ) 0.87 0.86 0.85 0.85
5C T T T T T T T
= QAT OV Y et Similar type of behaviour can be observed if other parameters
= -56 | | | | | | | .
800 850 900 950 1000 1050 1100 1150 1200 are varied
Time [a1] [ 01 _|
Plot of y(i) with a2=0.8, ( a1=0.6, a3=0.01, p=0.005 ) a | 0.44 |
50 T T T T T T T a3 = 10.096
L GO T p l p J
i -5 | | | | | | | y * 5.0
1200 1250 1300 1350 1400 1450 1500 1550 1600
Time and let p € [ 0.0, 0.032 ] be the bifurcation parameter.
Plot of y(i) with a2=0.8, ( a1=0.6, a3=0.01, p=0.005 )
50Q \ \ \ \ \ \ \ Fig. 5 below shows the results for the parameter p € [ 0.001,
— o L N (ST 0.032].
\; -56 | | | | | | | as
1600 1650 1700 1750 1800 1850 1900 1950 2000 Plot of y(i) with p=0.001, (a1=0.1, a2=0.44, a3=0.096 )
T|me 1 T T T T T T T T T
- 5ij
Fig. 3 - Plot of y(i) S0l L
& 0 20 40 60 80 100 120 140 160 180 200
Fig. 4 below shows the corresponding phase-plane plot of y(i)
and a(i).

Time
Plot of y(i) with p=0.01, ( a1=0.1, a2=0.44, a3=0.096 )
10

Phase-Plane plot of (a,y) with a2=0.8,
25 T T T T

y(i)

| | | | | | | |
0 20 40 60 80 100120 140 160 180 200

Time

Plot of y(i) with p=0.028, ( a1=0.1, a2=0.44, a3=0.096 )
10
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G’;‘ ! ! ! ! ! ! ! ! !
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Time

e Plot of y(i) with p=0.031, ( a1=0.1, a2=0.44, a3=0.096
- 2 T T T T T

~ 10
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Time

Plot of y(i) with p=0.031, ( a1=0.1, a2=0.44, a3=0.096
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Fig. 4 - Plot of y(i) vs a(i)

Fig. 5 - Plot of y(i)
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Again from the simulation results in Fig. 5, the system going
through various bifurcations, from stable to limit cycle to peri-
od doubling through to chaotic behaviour as parameter p
gradually increases.

6.2 THIRD ORDER PLANT WITH SECOND ORDER MODEL

It is now possible to assume a model which is second order
and thus a better approximation to our third order plant. It is
expected that system to be more structurally stable as parame-
ter values are varied than our first order model assumption.
The corresponding set of first order equations become:

wi(t) = wy(t—1)
wp(t) = y(t—1)
2(6) = a,(t — 1)

y®) =ayt—1 +aw,(t—1) +azwy(t—1) +y”
—a,t—Dyt—-1) —2(t— Dw,(t —1)

a; ()= a,t—1) + py(t—D[ y(@©) — y*1]
a,(t) = a,(t—1) + pw(t — D[ y(&) — ¥7]

Since we have a single reference input value y(t) = y* and
we are estimating two parameters @, , d, then both @, and 4,
cannot be determined explicitly and so we do not have a
unique equilibrium point. We can still simulate our system
equations above to see our system behaviour for different pa-
rameter values.

Letting parameter a; vary over a range of values from 0.1
to 0.63, with

w;(0) 0.0

[Wz(o)} loc0] [“2] [ 06
):(0) = (%9 and |as|=| @
2(0) 8-8 llle 0.005
a,(0) : y* 5.0
a,(0) l0.1J

Fig. 6 shows y(i) as a; ranges from 0.1 — 0.63.

Plot of y(i) with a3=0.1, ( a1=0.6, a2=0.8, p=0.005 )
ZC T T T T T T T T T

,/\— | | | | | | | | 1

|
0 20 40 60 80 100120 140 160 180 200
Time
Plot of y(i) with 23=0.6, ( a1=0.6, a2=0.8, p=0.005 )
N | | | | | | | | |
0 20 40 60 80 100120 140 160 180 200
Time
Plot of y(i) with a3=0.62, ( a1=0.6, a2=0.8, p=0.005 )
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Plot of y(i) with a3=0.63, ( a1=0.6, a2=0.8, p=0.005 )
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Plot of y(i) with a3=0.63, ( a1=0.6, a2=0.8, p=0.005 )
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Fig. 6 - Plot of y(i)

7 DisScuUsSIONS AND CONCLUSIONS

It is seen that model reference adaptive systems which can
be represented as nonlinear discrete maps undergo various
bifurcations before the system becomes unstable and eventual-
ly unbounded. Before the system becomes unbounded it
traverses a region of increasingly complex dynamics charac-
terised by random unpredictable behaviour which is termed
as chaotic. A similar type of behaviour was observed for dif-
ferent bifurcation parameter values. A discrete time adaptive
control system which had shown to display chaotic behaviour
was extended into a higher order system. It was shown that
the higher order system was also likely to display chaotic be-
haviour under certain parameter conditions. Observations of
chaotic behaviour for higher order plants with first order
model assumptions were expected because these higher order
systems can be reduced back into second and third order sys-
tems by choosing the appropriate parameter values. A gener-
alised analytical form for the characteristic equation was de-
termined and this allowed the parameter values to be deter-
mined for which the system just becomes unstable. However,
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to find the values of the bifurcation parameter for which cha-
otic behaviour occurs simulation was used.

When a second order model assumption to the third order

plant was used, the system was found to be stable for a larger
range of parameter values. It was seen in section 6.2 as the
parameter az was increased beyond a critical point the system
no longer converged to the desired value but began to diverge
slowly and gradually became unbounded. Chaotic behaviour
was not observed as in the previous section, and a possible
suggestion for this could be that the system does not have
unique equilibrium points as was the case for the earlier sys-
tems we studied with a first order model assumption. The
chaotic phenomena was generally associated with the equilib-
rium point continually bifurcating from a stable fixed point to
a limit cycle and through continuous period doubling and
eventually leading to complex chaotic behaviour.
From a control aspect, it is important to know the dynamical
behaviour of a system for different parameter values. It is rea-
sonable to assume that local stability can be maintained if the
period doubling phenomena can be avoided. Knowledge of
the overall system behaviour for different parameter values is
crucial in attaining any desired type of behaviour or maybe
avoids an undesirable type of behaviour.
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