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Background: Glioblastoma is the most aggressive primary brain tumor, and is associated
with a very poor prognosis. In this study we investigated the potential of microRNA expres-
sion profiles to predict survival in this challenging disease.

Methods: MicroRNA and mRNA expression data from glioblastoma (n = 475) and grade Il and
Il glioma (n = 178) were accessed from The Cancer Genome Atlas. LASSO regression
models were used to identify a prognostic microRNA signature. Functionally relevant tar-
gets of microRNAs were determined using microRNA target prediction, experimental vali-

dation and correlation of microRNA and mRNA expression data.

Results: A 9-microRNA prognostic signature was identified which stratified patients into
risk groups strongly associated with survival (p = 2.26e—09), significant in all glioblas-
toma subtypes except the non-G-CIMP proneural group. The statistical significance of
the microRNA signature was higher than MGMT methylation in temozolomide treated
tumors. The 9-microRNA risk score was validated in an independent dataset (p = 4.50e
—02) and also stratified patients into high- and low-risk groups in lower grade glioma
(p = 5.20e—03). The majority of the 9 microRNAs have been previously linked to glio-
blastoma biology or treatment response. Integration of the expression patterns of pre-
dicted microRNA targets revealed a number of relevant microRNA/target pairs, which
were validated in cell lines.

Conclusions: We have identified a novel, biologically relevant microRNA signature that
stratifies high- and low-risk patients in glioblastoma. MicroRNA/mRNA interactions
identified within the signature point to novel regulatory networks. This is the first study
to formulate a survival risk score for glioblastoma which consists of microRNAs
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associated with glioblastoma biology and/or treatment response, indicating a function-

ally relevant signature.

© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.

1. Introduction

Glioblastoma is a primary central nervous system tumor with
a particularly poor outcome (Louis et al., 2007; Stupp and Roila,
2009). Standard treatment involves surgery followed by radio-
therapy and chemotherapy with temozolomide (Louis et al.,
2007; Stupp and Roila, 2009). Current molecular prognostic
markers include IDH1/2 (isocitrate dehydrogenase 1/2) muta-
tion and MGMT (O6-methylguanine-DNA methyltransferase)
promoter methylation, which confer improved prognosis
and relative sensitivity to temozolomide treatment respec-
tively (Riemenschneider et al., 2010). Additional prognostic in-
dicators are age and Karnofsky performance score (KPS)
(Chaichana et al., 2013). Glioblastoma primarily occurs de
novo with no evidence of progression from a lower grade tu-
mor. However, approximately 5%, known as secondary glio-
blastoma, arise by progression from a lower grade
astrocytoma (Ohgaki and Kleihues, 2007). Secondary glioblas-
toma is often associated with mutations in IDH1/2 (Parsons
et al., 2008).

MicroRNAs are 22—24 nucleotide non-coding RNAs, which
downregulate translation by targeting messenger RNAs
(mRNAs) (Krol et al., 2010). MicroRNA expression signatures
can define tumor types and molecular subgroups, and are
prognostic in some cancers (Calin and Croce, 2006; Hayes
et al,, 2014; Kim et al., 2011; Volinia et al., 2006). Molecular
profiling studies have shown differential microRNA expres-
sion in glioblastoma compared to normal brain tissue, and
also between glioblastoma subtypes (Kim et al., 2011; Lang
et al., 2012). Several individual microRNAs have been associ-
ated with glioblastoma prognosis (Mizoguchi et al., 2012), but
it is likely that multiple microRNAs will provide a more statis-
tically robust approach. Previous prognostic signatures for
GBM have been designed {Lakomy:2011ju}{Srinivasan:2011fh}
{Zhang:2012iq}, although the microRNAs employed are not
consistent between studies.

A novel methodology, known as LASSO (least absolute
shrinkage and selection operator (Tibshirani, 1996)), was
used, with glioblastoma data from The Cancer Genome Atlas
(TCGA) (“The Cancer Genome Atlas — Data Portal, tcga-
data.nci.nih.gov”), to identify a 9-microRNA prognostic signa-
ture. The 9 microRNAs were then used to generate a risk score
algorithm suitable for clinical prognostic stratification. The
signature separated patients according to outcome, was rele-
vant in temozolomide treatment and was validated in an in-
dependent dataset. Although other microRNA prognostic
signatures have been identified in glioblastoma, this is the
first to use the whole TCGA dataset; it is relevant across sub-
types and in treatment, and is the first to be validated in an in-
dependent dataset. Moreover, the signature microRNAs have
been previously implicated in glioblastoma, with known

functional roles, further supporting the relevance of the signa-
ture. Thus we have identified a functionally relevant,
microRNA-based prognostic signature in glioblastoma.

2. Materials and methods
2.1. TCGA clinical information and expression data

Level 2 Agilent microRNA 8 x 15k microarray and G4520A
microarray gene expression data plus clinical information
for 475 glioblastoma and 10 unmatched non-tumor samples
were downloaded from TCGA (“The Cancer Genome Atlas —
Data Portal, tcga-data.nci.nih.gov”) (accessed October 2012).
Only patients treated with radiotherapy and some form of
chemotherapy were selected (Table 1). Illumina HiSeq
sequencing data (level 3, reads per million of total reads map-
ping to a mature microRNA) for microRNAs were downloaded
for all samples with grade II or III glioma from TCGA (n = 178;
55 astrocytoma, 47 oligodendrocytoma, 75 oligodendroglioma,
1 not stated; 95 grade II, 112 grade III, 1 not stated).

Table 1 — Characteristics of patients used in the generation of the
signature. The characteristics of the 475 patients included in the
generation and testing of the model. There are more males in the

study (62%), which is expected for a glioblastoma cohort. KPS was
calculated prior to surgery. There were 26 IDH mutations recorded
in this cohort although 117 did not have IDH mutation
information.

Characteristic Number of patients (n = 475)

Age (median = 59)

<60 years 248

>60 years 227
Gender

Male 293

Female 182
Karnovsky performance score

<70 141

>70 220

Not available 114
Days to death/last follow-up (median 430 days)

<450 days 301

>450 days 174

<30 days 20
Therapy

TMZ 3

TMZ and radiation 187
Other 285
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2.2. Statistical analysis of microRNA expression data in
glioblastoma

Glioblastoma samples were assessed using a LASSO penalized
regression analysis to predict survival using microRNA
expression (Tibshirani, 1996) with leave-one-out cross-valida-
tion using R software (v2.15.1) and the Penalized package
(Goeman, 2012.). A risk score was generated using the sum
of microRNA expression values weighted by the coefficients
from the LASSO regression, as described (Alencar et al., 2011).

This was: E_miR-n = expression of microRNA n.

Risk score = -0.044E_miR-370 + 0.062E_miR-124a +
—0.066E_miR-145 + 0.005E_miR-34a + 0.015E_miR-10b +
0.092E_miR-148a + 0.162E_miR-222 + —0.032E_miR-9 + —0.021
E_miR-182.

The risk score was applied to all glioblastoma samples in
the dataset and the samples separated into low- and high-
risk groups using the median as a cut-off. A Cox regression
model incorporating age and the log-rank test were used to
assess overall survival (OS) of the two groups in the whole
dataset, the molecular subtypes of glioblastoma (using pub-
lished classification information (Brennan et al., 2013)) and
temozolomide treated patients. The score was also assessed
in progression-free survival (PFS). A statistical significance
threshold of p = 0.05 was used throughout. Pearson’s correla-
tion coefficient was calculated for correlation of age with risk
score. Multivariable Cox regression models for the risk groups
and each of the following factors (separately); MGMT methyl-
ation, gender, IDH mutation, subtypes, extent of resection and
KPS (at diagnosis) were used to compare the two predictors us-
ing TCGA data (Brennan et al., 2013).

2.3. Prognostic validation of the signature in an
independent dataset

Frozen glioblastoma tissue was obtained from the Brain
Tumour North West tissue bank, Royal Preston Hospital, UK.
Total RNA was extracted using TRIZOL (Life Technologies,
UK) according to the manufacturer’s guidelines. 1 pg of total
RNA was reverse transcribed using the NCode miRNA First-
strand cDNA synthesis Kit (Life Technologies). Real-time PCR
was performed using GoTaq qPCR Master Mix (Promega, UK)
on an Applied Biosystems 7500 PCR Machine with U6 snRNA
endogenous control. Average C; values were calculated for
each miRNA, then normalized to U6 average C. values (ACy).
These AC; values were used in the signature algorithm to
create risk scores for each patient. One-tailed Cox regression
was performed using these scores. The patients were sepa-
rated according to the 60th percentile and the high- and
low-risk groups assessed for association with survival using
a one-tailed log-rank test.

2.4. Assessment of the 9-microRNA signature in lower
grade glioma

MicroRNA expression for WHO Grade II and Grade III astrocy-
toma was based on sequencing reads per million mapping to a
mature microRNA. Risk scores were calculated and signifi-
cance assessed as above. The median of the lower grade

dataset was recalculated and used to separate the samples
into two groups.

2.5. Cell culture, transfection and validation of
candidate microRNA targets

LN229 glioblastoma cells (ATCC) were cultured in DMEM con-
taining 10% fetal bovine serum at 37 °C in 5% CO,. Cells were
transfected with 100 nM miR-9 mimic or scrambled control
oligonucleotides (ThermoScientific, Waltham, USA), using
10 pl of Lipofectamine RNAIMAX (Life Technologies, Carlsbad,
CA) per 2.5 ml of transfection mix in six-well plates contain-
ing 150,000 cells/well. RNA was extracted 48 h post-
transfection (miRNeasy, Qiagen, Gaithersburg, MD) and
first-strand synthesis done using SuperScript® II Reverse
Transcriptase (Life Technologies). Quantitative PCR (qPCR)
analyses were performed in triplicate with Tagman assays
(Life Technologies).

2.6. Identifying predicted microRNA targets associated
with survival

Gene expression was compared between two groups of pa-
tients from the extremes of survival in the TCGA dataset;
poor prognosis (survival time < 115 days, n = 14, minimum
KPS at diagnosis = 80) and good prognosis groups (survival
time > 1825 days, n = 14). The LIMMA (linear models for
microarray data) package was used to perform differential
expression analysis, and the genes with a p-value of less
than 0.05 and greater than 1.5-fold change in expression
were used as input to RmiR version 1.14, an R-based program
for assessment of microRNA targets (Favero v2.14). Gene
ontology analysis was performed using Metacore v6.16
(Thomson Reuters) modified exact Fisher’s test and pathways
determined using DIANA miRpath (Vlachos et al., 2012) (one-
tailed Fisher’s exact test for enrichment of predicted micro-
RNA targets). RmiR v1.14 was used to identify targets of the
9 microRNAs amongst the genes which were present in all
databases of; Miranda (Miranda et al., 2006), Pictar (Krek
et al.,, 2005) and Targetscan (Lewis et al., 2005) (as loaded by
RmiR vignette). Correlation of microRNA and gene expression
was performed using Spearman’s correlation on all 475 glio-
blastoma samples.

3. Results

3.1 Identification of a 9-microRNA signature associated
with prognosis in glioblastoma

In order to identify microRNAs associated with OS in glioblas-
toma, LASSO regression (Tibshirani, 1996) was performed us-
ing microRNA expression data (534 microRNAs, 1510 probes)
for 475 glioblastomas. This method is optimized to hi-
dimensional data (where there are more potential predictors
than samples) allowing valid inclusion of the 9 microRNAs
in the model. The method performs a sub-selection of micro-
RNAs involved in survival by shrinkage of the regression coef-
ficient through imposing a penalty proportional to their size.
This results in most potential predictors being shrunk to
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zero leaving a relatively small number with a weight of non-
zero. These microRNAs may not be the only potential predic-
tors in the set, because, if two predictors exhibit co-linearity,
LASSO will choose the one that has the strongest association
with response (which is not necessarily the only causal one,
especially if the difference between the two predictors’ degree
of association with response is not significant) and the other
will be given zero weight.

Using the LASSO method, 12 microRNA probes were iden-
tified with non-zero regression coefficients. This included
two probes for miR-182, which differed in length by one nucle-
otide. The longer probe was used for the remainder of the
study. Also a probe for miR-565 was identified that has since
been excluded from miRBase (Griffiths-Jones et al., 2008) as
it is classified as a tRNA fragment; this was not studied
further. The LASSO model was refitted without these two
probes resulting in a 9-microRNA signature (Table 2). Micro-
RNAs given a negative LASSO coefficient are positive predic-
tors of survival and vice versa. Seven of the microRNAs were
significantly differentially expressed in non-tumor tissue
compared to glioblastoma (Table 2).

3.2 A risk score combining expression values of the 9
microRNAs predicts survival

A risk score was created using the regression coefficients
from the LASSO analysis (see Methods) to weight the
expression value of each of the 9 microRNAs. The risk score
was then separated on the median (1.48 quantile normal-
ized probe expression) to create high and low risk groups.
The median survival time of the low-risk group was 13.1
months and the median of the high-risk group was 9.5
months. Risk score was associated with survival using log-
rank test (Figure 1, p = 2.26e—09). Median expression of
each signature microRNA in both groups is shown in
Supplementary Figure S1.

Pearson’s correlation of age with risk score showed a sig-
nificant direct correlation (R = 0.248, p = 4.13e—08). Multivari-
able Cox regression of the risk group and age showed the risk

Table 2 — MicroRINAs associated with survival using the LASSO
regression test. Significant (p < 0.05) results are shown in bold.
Nine microRNAs were reported as non-zero coefficients, five were

negatively associated with survival and four were positively
associated with survival. Seven were differentially expressed in
unmatched non-tumor samples compared to glioblastoma samples.

Mirna LASSO penalized Fold change in
coefficient for risk GBM compared
score (log 2) to non-tumor
miR-124a 0.062 0.032
miR-10b 0.015 10.005
miR-222 0.162 0.278
miR-34a 0.005 3.121
miR-182 —0.021 3.708
miR-148a 0.092 2.752
miR-145 —0.066 0.541
miR-370 —0.044 1.274
miR-9 —0.032 0.863

group to be an independent predictor of survival irrespective
of age (Group HR = 1.61, 95% CI = 1.30—1.99, p = 1.40e-5;
Age HR = 1.03, CI = 1.02—1.04, p = 2.50e—3). As males have
poorer outcome in glioblastoma (Krex et al., 2007), the risk
score was evaluated according to gender, and was found to
be similar in the male and female groups (median 1.48 in
each group).
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Figure 1 — The patient groups assigned to the high- and low-risk

groups using the median as a threshold. A score for each patient was
calculated using the microRNA expression signature and patients
were separated into high and low risk groups using the median as a
cut-off. A) The low-risk group has significantly longer survival times
than those in the high-risk group by log-rank test. B) Expression
patterns of the significant microRNAs in the high- and low-risk
groups, as defined by the risk score, shown in a heatmap. The top five
microRNAs in the heatmaps (black) act as more aggressive
microRNAs, and the bottom four (yellow) are less aggressive
microRNAs.
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3.3.  Assessment of the risk score in glioblastoma
subtypes and in relation to other prognostic factors

We then determined the risk groups for each of the TCGA-
defined glioblastoma molecular subtypes (Brennan et al.,
2013): proneural G-CIMP positive (n = 36), proneural G-CIMP
negative (n = 88), neural (n = 77), classical (n = 128) and mesen-
chymal (n = 143). Risk group was associated with survivalin all
subtypes except proneural G-CIMP negative (Figure 2A—E).

The groups were then fitted to a Cox regression model
incorporating age in each patient subtype. The score
remained significant in the classical (HR = 1.73, 95%
Cl = 1.13-2.64, p = 0.011) and neural (HR = 2.03, 95%
CI = 1.23—-3.38, p = 0.007) groups and age was a confounding
factor in the mesenchymal group (HR = 146, 95%
CI = 0.95-2.23, p = 0.084). The proneural G-CIMP positive
group could not be calculated because all samples but one
stratified to the low risk group. The proneural G-CIMP nega-
tive group was not significant (HR = 1.15, 95%
CI = 0.70—1.86, p = 0.059). The survival groups also had signif-
icantly different PFS by log-rank (p = 9.91e—08) (Figure 2F).
There were 26 samples in the cohort with IDH1 mutations,
only one of which stratified to the high-risk group, which
suggests the signature is selecting for a subtype with already
known survival differences.

The risk score was evaluated by fitting a Cox model incor-
porating the risk group and other factors involved in glioblas-
toma prognosis (gender, MGMT methylation, IDH mutation,
patient subtype, extent of resection and KPS score). In each
case, the score was significant and was not related to these
factors (Supplementary Table S2).

We then calculated the risk score solely in the group of pa-
tients treated with the most common chemotherapy agent,
temozolomide (n = 219). This group showed a high associa-
tion between risk score and survival using log-rank
(p = 8.6e—04) (Figure 3A). The power of the signature was
compared to that of MGMT status by the log-rank test. In
the 304 patients for whom MGMT methylation status was
available (Brennan et al., 2013), multivariable Cox regression
indicated the microRNA signature (HR = 1.88,
Cl = 1.42-2.48, p = 9.4e—06), which showed a 1.88-fold
increased risk when stratified to the high-risk group, was
more predictive than the MGMT methylation signature
(HR = 1.47, CI = 1.12—1.93, p = 0.006), which showed a 1.47-
fold increase in risk when MGMT is unmethylated. In the
group treated with temozolomide only (n = 219) there was a
1.76-fold increase in risk by stratification to the low-risk
group; this stratifies patients better than the MGMT signature,
which shows a 1.65-fold increase in risk when stratified to
the unmethylated group in the TCGA dataset.

3.4. Risk score validation in an independent dataset

Risk scores were calculated for an independent dataset of 20
glioblastoma samples (Supplemental Figure S3), with micro-
RNA expression generated using qRT-PCR and was signifi-
cantly associated with survival (HR = 10.7, p = 0.036). This
patient group had an overall worse prognosis (80% died earlier
than the expected median of 450 days) than those in the TCGA
(70% died earlier than 450 days), and therefore, expecting

more patients to fall into the high-risk group, the patients
were dichotomized based on the 60th percentile (0.76AC;).
This resulted in 12 patients in the high-risk group with a me-
dian survival of 6.27 months and 8 patients in the low-risk
group with a median survival of 16 months. These groups pre-
dict survival using a one-sided log-rank test (HR = 3.01,
p = 0.045) (Figure 3B).

3.5. Risk score assessment in lower grade glioma

Risk scores were also calculated for grade II and III gliomas
(n = 178), using TCGA sequencing data. This was done using
the 9 microRNAs and weighting derived in glioblastoma. The
cohort was dichotomized into high- and low-risk groups using
the median (—19541.96 reads per million) as a cut-off. As
observed in the glioblastoma dataset, the score proved to be
a significant predictor of survival using log-rank (Figure 3C,
p = 5.2e—03) and in a Cox model with age (Group HR = 0.62,
CI = 1.05-3.31, p = 3.5e—02; Age HR = 1.06, CI = 1.04—1.10,
p = 2.2e—07). The low-risk group comprised of 44 grade II
and 45 grade IIl samples; 22 were astrocytomas, 22 oligoastro-
gliomas and 45 oligodendrogliomas. The high-risk group
comprised of 37 grade II samples and 51 grade III samples (1
not stated); 33 were astrocytomas, 25 oligoastrocytomas and
30 oligodendrogliomas.

3.6. Predicted targets of these microRNAs

Bioinformatic analysis was used to investigate targets of
signature microRNAs to identify the associated pathways
involved. Firstly, genes associated with long and short sur-
vival groups in glioblastoma were identified in TCGA. A total
of 1154 genes were associated with short and 400 genes with
long survival (Supplementary Figure S4).

Predicted interactions of the 9 microRNAs with the
survival-associated genes were assessed in the Miranda
(Miranda et al., 2006), Pictar (Krek et al., 2005) and Targetscan
(Lewis et al., 2005) databases. This led to the identification of
10 significant microRNA/mRNA interactions with an inverse
correlation of at least 0.25 across all glioblastoma samples
(Table 3). Using DIANA miRPath (Vlachos et al., 2012) we iden-
tified the top pathways that the signature microRNAs are pre-
dicted to target. The most significant pathways identified
included adherens junction, MAPK signaling, focal adhesion,
axon guidance and WNT signaling (Supplementary
Figure S5).

Targets implicated most strongly in patient survival were
identified for miR-9, which showed a significant correlation
with eight mRNAs. Correlation with FBN1 is shown in
Figure 3D. In order to assess whether these may be functional
targets, a glioblastoma cell line was transfected with a miR-9
mimic and the expression levels of the predicted targets
were assessed using qPCR. LMNA, WNT4, FBN1, P4HA2 and
SLC25A24 had significantly lower levels of expression when
transfected with the mimic in comparison to a scrambled con-
trol (Figure 3E) suggesting miR-9 may directly target these
mRNAs in glioblastoma cells.

Thus, bioinformatic analysis of signature microRNAs has
identified potential targets and biological processes known
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Figure 3 — Assessment of risk groups in TMZ treated patients, the validation cohort and lower grade glioma and correlation of FBNI with miR-9.
A) The subgroup of patients treated with the chemotherapy agent temozolomide was significantly delineated using the signature. B) MicroRNA
expression determined by qRT-PCR in an independent cohort of 20 glioblastomas stratified patients by survival based on the signature. C)
MicroRNA sequencing data of 178 lower grade glioma samples (55 astrocytoma, 47 oligodendrocytoma, 75 oligodendroglioma, 1 not stated)
significantly separated this cohort into high and low risk groups by log-rank. D) FBNI mRNA expression showed an inverse correlation of at least
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Table 3 — Predicted target interactions of the signature microRNAs with significant correlation in expression. The ten interactions predicted
between the 9-microRNA signature and the mRNAs identified to be involved in survival, which also showed a significant inverse correlation in

expression of at least 0.25 across the patient set. Two of these mRNAs, FBNI and TGFBI, exhibited particularly high correlations in expression
with miR-9 as well as significant (p < 0.05) differential expression between glioblastoma compared to non-tumor tissue.

MicroRNA LASSO Gene Gene change Spearmans Fold difference p-Value
penalized symbol with increasing  correlation in GBM to non-tumor  of GBM/normal
coefficient (log 2) survival tissue (FDR adjusted)
hsa-miR-9 —0.032 TGFBI 4.499 —0.649 11.487 0.000
hsa-miR-9 —0.032 P4HA2 2.527 —0.615 1.108 0.999
hsa-miR-9 —0.032 FBN1 2.054 —-0.53 1.808 0.001
hsa-miR-222 0.162 KHDRBS2 0.189 —0.496 0.024 0.000
hsa-miR-9 —0.032 SLC25A24 3.574 —0.473 2.17 0.000
hsa-miR-9 —0.032 SLC31A2 2.384 —0.463 0.593 0.039
hsa-miR-9 —0.032 FNDC3B 2171 —0.406 3.828 0.000
hsa-miR-182 —0.021 F13A1 10.982 —0.309 1.785 0.106
hsa-miR-9 —0.032 LMNA 2.034 —0.292 2.25 0.000
hsa-miR-9 —0.032 WNT4 2.038 —0.265 0.691 0.003

to be involved in glioblastoma biology, further supporting the
relevance of the 9-microRNA signature.

4. Discussion
4.1.  The 9-microRNA signature is a molecular indicator
of prognosis

Using LASSO regression, this study has identified and inde-
pendently validated a biologically relevant 9-microRNA signa-
ture that predicts survival in glioblastoma. The signature
separates patients into high- and low-risk groups with respect
to OS and PFS and may have clinical utility for decisions on pa-
tient management. The signature is valid in all glioblastoma
subtypes except proneural G-CIMP negative tumors, and is
linked to temozolomide response.

The independent dataset used here is relatively small and
therefore confounding factors for patient age, treatment
received and extent of resection could not be accounted for.
Further validation, ideally prospective, and calculation of
sensitivity and specificity, is required before this signature
could be implemented clinically. The independent dataset re-
sults that were generated using gRT-PCR indicate that the
signature can be implemented using techniques that would
be more conducive to a clinical diagnostic laboratory and
these are the methods that should be explored further. A lim-
itation of this approach is that a different technique has been
used for validation and therefore a single, defined cut-off
could not be ascertained.

Prognostic signatures using microRNAs have been
formulated previously in glioblastoma but these have not
been validated or evaluated within different subgroups of
the disease, or in relation to molecular characteristics of
the disease (Kim et al., 2011; Niyazi et al., 2011; Srinivasan
et al., 2011; Visani et al., 2013). A recent study identified

prognostic microRNAs for each subtype of glioblastoma us-
ing TCGA data (Li et al.,, 2014) and five microRNAs in our
signature overlap; miR-222, which they report predicts
prognosis in classical and neural, miR-370 which predicts
prognosis in neural and miR-34a, miR-145 and miR-182
which predict prognosis in the proneural non-G-CIMP
group. Interestingly, 3/9 microRNAs in our signature are pre-
sent in their model for proneural G-CIMP negative tumors
yet our signature did not significantly stratify patients in
this subtype.

The LASSO regression model was chosen to improve on
other approaches by utilizing all 475 patients, and all micro-
RNAs available to build the signature. This allows a small
number of microRNAs for use in a diagnostic signature
with maximal information but does not identify all predic-
tors in the dataset involved in survival. This provides a
signature with the prediction power similar, or better than,
that of MGMT methylation. It must be noted however that
MGMT methylation was assessed in an unselected popula-
tion, with the Infinium methylation beadchip {Bady:2012jb},
which is not the gold standard employed in a diagnostic lab-
oratory and therefore may lack sensitivity compared to clin-
ical results. MGMT was also not assessed in the validation
dataset due to lack of methylation data so this finding re-
quires further confirmation. This signature has a manage-
able number of microRNAs for a prognostic indicator, and
is well below the number of predictors employed in
commercialized kits for other cancer signatures such as
Mammaprint (Sorlie et al.,, 2001) and ms-14 (Cheang et al.,
2009) in breast cancer.

4.2. Roles of the microRNAs in the signature in glioma
biology

All microRNAs in this signature, with the exception of miR-
370, have been previously associated with glioma biology

0.5 with miR-9 expression. E) Expression of the predicted targets following transfection of a miR-9 mimic into LN229 cells relative to a scrambled
control. Significant decrease in expression (¢-test, p < 0.05) was observed for P4HA2, LMINA, WNT4, FBN1 and SLC25A424 48 h after transfection

of the mimic. Results are representative of duplicate experiments.
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(Fowler et al., 2011; Gabriely et al., 2011; Genovese et al., 2012;
Kim et al.,, 2014; Mucaj et al., 2014; Rani et al., 2013; Song et al.,
2012; Tan et al., 2012; Zhang et al., 2010) which has not been
shown for previous glioblastoma microRNA signatures {Lako-
my:2011ju}{Srinivasan:2011fh}{Zhang:2012iq}. Although miR-
370 has not been reported to have a role in glioblastoma, it tar-
gets TGFB-RII (Lo et al., 2012), which has a role in glioblastoma
cell growth and invasion (Kaminska et al., 2013). These studies
suggest a potential role for miR-370 in glioma biology. Estab-
lishing a defined role for these microRNAs in glioma biology
requires further work to determine the direct roles of these
microRNAs in predicting prognosis of glioblastoma.

In addition to their established roles in glioma biology, 5
of the 9 signature microRNAs have been associated with
sensitivity to temozolomide; miR-9 (Munoz et al., 2013),
miR-145 (Yang et al., 2012), miR-148a (Hummel et al., 2011),
miR-182 (Tang et al., 2013) and miR-222 (Chen et al., 2012).
These observations suggest that the microRNA signature re-
flects roles in both tumor biology and treatment resistance,
which combined lead to significant effects on patient
survival.

4.3. Translational relevance of the signature

This prognostic signature has potential applicability to the
clinic by stratifying patients, and identifying those less likely
to respond to current treatments. The signature ultimately
may facilitate confidence in treatment decisions and recog-
nizing candidates for new therapies. It may be that the most
powerful use of the signature is in combination with MGMT
methylation status. Technologies such as the nanostring
nCounter platform may provide highly accurate quantitative
measurements of transcripts for tumor diagnosis as has
been shown for medulloblastoma (Northcott et al., 2012),
and is readily applicable to microRNA studies.

In conclusion, we have identified and validated a 9-micro-
RNA-expression signature using biologically relevant
markers of use in prediction of prognosis in glioblastoma.
Analysis of targets of these microRNAs has identified poten-
tial key players in glioblastoma networks that could be tar-
geted to combat the aggressive disease. The LASSO
approach may be more broadly applicable in the identifica-
tion of relevant microRNA and gene expression signatures
in large datasets.
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