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Background: Glioblastoma is the most aggressive primary brain tumor, and is associated

with a very poor prognosis. In this study we investigated the potential of microRNA expres-

sion profiles to predict survival in this challenging disease.
Methods: MicroRNA and mRNA expression data from glioblastoma (n ¼ 475) and grade II and

III glioma (n ¼ 178) were accessed from The Cancer Genome Atlas. LASSO regression

models were used to identify a prognostic microRNA signature. Functionally relevant tar-

gets of microRNAs were determined using microRNA target prediction, experimental vali-

dation and correlation of microRNA and mRNA expression data.
Results: A 9-microRNA prognostic signature was identified which stratified patients into

risk groups strongly associated with survival ( p ¼ 2.26e�09), significant in all glioblas-

toma subtypes except the non-G-CIMP proneural group. The statistical significance of

the microRNA signature was higher than MGMT methylation in temozolomide treated

tumors. The 9-microRNA risk score was validated in an independent dataset ( p ¼ 4.50e

�02) and also stratified patients into high- and low-risk groups in lower grade glioma

( p ¼ 5.20e�03). The majority of the 9 microRNAs have been previously linked to glio-

blastoma biology or treatment response. Integration of the expression patterns of pre-

dicted microRNA targets revealed a number of relevant microRNA/target pairs, which

were validated in cell lines.
Conclusions: We have identified a novel, biologically relevant microRNA signature that

stratifies high- and low-risk patients in glioblastoma. MicroRNA/mRNA interactions

identified within the signature point to novel regulatory networks. This is the first study

to formulate a survival risk score for glioblastoma which consists of microRNAs
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associated with glioblastoma biology and/or treatment response, indicating a function-

ally relevant signature.

ª 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction functional roles, further supporting the relevance of the signa-
Table 1 e Characteristics of patients used in the generation of the
signature. The characteristics of the 475 patients included in the
generation and testing of the model. There are more males in the
study (62%), which is expected for a glioblastoma cohort. KPS was
calculated prior to surgery. There were 26 IDH mutations recorded
in this cohort although 117 did not have IDH mutation
information.

Characteristic Number of patients (n ¼ 475)

Age (median ¼ 59)

<60 years 248

�60 years 227

Gender

Male 293

Female 182

Karnovsky performance score

�70 141

>70 220

Not available 114

Days to death/last follow-up (median 430 days)

<450 days 301

�450 days 174

�30 days 20

Therapy

TMZ 3

TMZ and radiation 187

Other 285
Glioblastoma is a primary central nervous system tumor with

a particularly poor outcome (Louis et al., 2007; Stupp and Roila,

2009). Standard treatment involves surgery followed by radio-

therapy and chemotherapy with temozolomide (Louis et al.,

2007; Stupp and Roila, 2009). Current molecular prognostic

markers include IDH1/2 (isocitrate dehydrogenase 1/2) muta-

tion and MGMT (O6-methylguanine-DNA methyltransferase)

promoter methylation, which confer improved prognosis

and relative sensitivity to temozolomide treatment respec-

tively (Riemenschneider et al., 2010). Additional prognostic in-

dicators are age and Karnofsky performance score (KPS)

(Chaichana et al., 2013). Glioblastoma primarily occurs de

novo with no evidence of progression from a lower grade tu-

mor. However, approximately 5%, known as secondary glio-

blastoma, arise by progression from a lower grade

astrocytoma (Ohgaki and Kleihues, 2007). Secondary glioblas-

toma is often associated with mutations in IDH1/2 (Parsons

et al., 2008).

MicroRNAs are 22e24 nucleotide non-coding RNAs, which

downregulate translation by targeting messenger RNAs

(mRNAs) (Krol et al., 2010). MicroRNA expression signatures

can define tumor types and molecular subgroups, and are

prognostic in some cancers (Calin and Croce, 2006; Hayes

et al., 2014; Kim et al., 2011; Volinia et al., 2006). Molecular

profiling studies have shown differential microRNA expres-

sion in glioblastoma compared to normal brain tissue, and

also between glioblastoma subtypes (Kim et al., 2011; Lang

et al., 2012). Several individual microRNAs have been associ-

ated with glioblastoma prognosis (Mizoguchi et al., 2012), but

it is likely that multiple microRNAs will provide a more statis-

tically robust approach. Previous prognostic signatures for

GBM have been designed {Lakomy:2011ju}{Srinivasan:2011fh}

{Zhang:2012iq}, although the microRNAs employed are not

consistent between studies.

A novel methodology, known as LASSO (least absolute

shrinkage and selection operator (Tibshirani, 1996)), was

used, with glioblastoma data from The Cancer Genome Atlas

(TCGA) (“The Cancer Genome Atlas e Data Portal, tcga-

data.nci.nih.gov”), to identify a 9-microRNA prognostic signa-

ture. The 9 microRNAs were then used to generate a risk score

algorithm suitable for clinical prognostic stratification. The

signature separated patients according to outcome, was rele-

vant in temozolomide treatment and was validated in an in-

dependent dataset. Although other microRNA prognostic

signatures have been identified in glioblastoma, this is the

first to use the whole TCGA dataset; it is relevant across sub-

types and in treatment, and is the first to be validated in an in-

dependent dataset. Moreover, the signature microRNAs have

been previously implicated in glioblastoma, with known
ture. Thus we have identified a functionally relevant,

microRNA-based prognostic signature in glioblastoma.
2. Materials and methods

2.1. TCGA clinical information and expression data

Level 2 Agilent microRNA 8 � 15k microarray and G4520A

microarray gene expression data plus clinical information

for 475 glioblastoma and 10 unmatched non-tumor samples

were downloaded from TCGA (“The Cancer Genome Atlas e

Data Portal, tcga-data.nci.nih.gov”) (accessed October 2012).

Only patients treated with radiotherapy and some form of

chemotherapy were selected (Table 1). Illumina HiSeq

sequencing data (level 3, reads per million of total reads map-

ping to a mature microRNA) for microRNAs were downloaded

for all samples with grade II or III glioma from TCGA (n ¼ 178;

55 astrocytoma, 47 oligodendrocytoma, 75 oligodendroglioma,

1 not stated; 95 grade II, 112 grade III, 1 not stated).

http://dx.doi.org/10.1016/j.molonc.2014.11.004
http://dx.doi.org/10.1016/j.molonc.2014.11.004
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2.2. Statistical analysis of microRNA expression data in
glioblastoma

Glioblastoma samples were assessed using a LASSO penalized

regression analysis to predict survival using microRNA

expression (Tibshirani, 1996) with leave-one-out cross-valida-

tion using R software (v2.15.1) and the Penalized package

(Goeman, 2012.). A risk score was generated using the sum

of microRNA expression values weighted by the coefficients

from the LASSO regression, as described (Alencar et al., 2011).

This was: E_miR-n ¼ expression of microRNA n.

Risk score ¼ �0.044E_miR-370 þ 0.062E_miR-124a þ
�0.066E_miR-145 þ 0.005E_miR-34a þ 0.015E_miR-10b þ
0.092E_miR-148a þ 0.162E_miR-222 þ �0.032E_miR-9 þ �0.021

E_miR-182.

The risk score was applied to all glioblastoma samples in

the dataset and the samples separated into low- and high-

risk groups using the median as a cut-off. A Cox regression

model incorporating age and the log-rank test were used to

assess overall survival (OS) of the two groups in the whole

dataset, the molecular subtypes of glioblastoma (using pub-

lished classification information (Brennan et al., 2013)) and

temozolomide treated patients. The score was also assessed

in progression-free survival (PFS). A statistical significance

threshold of p ¼ 0.05 was used throughout. Pearson’s correla-

tion coefficient was calculated for correlation of age with risk

score. Multivariable Cox regression models for the risk groups

and each of the following factors (separately); MGMT methyl-

ation, gender, IDHmutation, subtypes, extent of resection and

KPS (at diagnosis) were used to compare the two predictors us-

ing TCGA data (Brennan et al., 2013).
2.3. Prognostic validation of the signature in an
independent dataset

Frozen glioblastoma tissue was obtained from the Brain

Tumour North West tissue bank, Royal Preston Hospital, UK.

Total RNA was extracted using TRIZOL (Life Technologies,

UK) according to the manufacturer’s guidelines. 1 mg of total

RNA was reverse transcribed using the NCode miRNA First-

strand cDNA synthesis Kit (Life Technologies). Real-time PCR

was performed using GoTaq qPCR Master Mix (Promega, UK)

on an Applied Biosystems 7500 PCR Machine with U6 snRNA

endogenous control. Average Ct values were calculated for

each miRNA, then normalized to U6 average Ct values (DCt).

These DCt values were used in the signature algorithm to

create risk scores for each patient. One-tailed Cox regression

was performed using these scores. The patients were sepa-

rated according to the 60th percentile and the high- and

low-risk groups assessed for association with survival using

a one-tailed log-rank test.
2.4. Assessment of the 9-microRNA signature in lower
grade glioma

MicroRNA expression for WHO Grade II and Grade III astrocy-

tomawas based on sequencing reads permillionmapping to a

mature microRNA. Risk scores were calculated and signifi-

cance assessed as above. The median of the lower grade
dataset was recalculated and used to separate the samples

into two groups.

2.5. Cell culture, transfection and validation of
candidate microRNA targets

LN229 glioblastoma cells (ATCC) were cultured in DMEM con-

taining 10% fetal bovine serum at 37 �C in 5% CO2. Cells were

transfected with 100 nM miR-9 mimic or scrambled control

oligonucleotides (ThermoScientific, Waltham, USA), using

10 ml of Lipofectamine RNAiMAX (Life Technologies, Carlsbad,

CA) per 2.5 ml of transfection mix in six-well plates contain-

ing 150,000 cells/well. RNA was extracted 48 h post-

transfection (miRNeasy, Qiagen, Gaithersburg, MD) and

first-strand synthesis done using SuperScript� II Reverse

Transcriptase (Life Technologies). Quantitative PCR (qPCR)

analyses were performed in triplicate with Taqman assays

(Life Technologies).

2.6. Identifying predicted microRNA targets associated
with survival

Gene expression was compared between two groups of pa-

tients from the extremes of survival in the TCGA dataset;

poor prognosis (survival time < 115 days, n ¼ 14, minimum

KPS at diagnosis ¼ 80) and good prognosis groups (survival

time > 1825 days, n ¼ 14). The LIMMA (linear models for

microarray data) package was used to perform differential

expression analysis, and the genes with a p-value of less

than 0.05 and greater than 1.5-fold change in expression

were used as input to RmiR version 1.14, an R-based program

for assessment of microRNA targets (Favero v2.14). Gene

ontology analysis was performed using Metacore v6.16

(Thomson Reuters) modified exact Fisher’s test and pathways

determined using DIANA miRpath (Vlachos et al., 2012) (one-

tailed Fisher’s exact test for enrichment of predicted micro-

RNA targets). RmiR v1.14 was used to identify targets of the

9 microRNAs amongst the genes which were present in all

databases of; Miranda (Miranda et al., 2006), Pictar (Krek

et al., 2005) and Targetscan (Lewis et al., 2005) (as loaded by

RmiR vignette). Correlation of microRNA and gene expression

was performed using Spearman’s correlation on all 475 glio-

blastoma samples.
3. Results

3.1. Identification of a 9-microRNA signature associated
with prognosis in glioblastoma

In order to identify microRNAs associated with OS in glioblas-

toma, LASSO regression (Tibshirani, 1996) was performed us-

ing microRNA expression data (534 microRNAs, 1510 probes)

for 475 glioblastomas. This method is optimized to hi-

dimensional data (where there are more potential predictors

than samples) allowing valid inclusion of the 9 microRNAs

in the model. The method performs a sub-selection of micro-

RNAs involved in survival by shrinkage of the regression coef-

ficient through imposing a penalty proportional to their size.

This results in most potential predictors being shrunk to

http://dx.doi.org/10.1016/j.molonc.2014.11.004
http://dx.doi.org/10.1016/j.molonc.2014.11.004
http://dx.doi.org/10.1016/j.molonc.2014.11.004
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zero leaving a relatively small number with a weight of non-

zero. These microRNAs may not be the only potential predic-

tors in the set, because, if two predictors exhibit co-linearity,

LASSO will choose the one that has the strongest association

with response (which is not necessarily the only causal one,

especially if the difference between the two predictors’ degree

of association with response is not significant) and the other

will be given zero weight.

Using the LASSO method, 12 microRNA probes were iden-

tified with non-zero regression coefficients. This included

two probes formiR-182, which differed in length by one nucle-

otide. The longer probe was used for the remainder of the

study. Also a probe for miR-565 was identified that has since

been excluded from miRBase (Griffiths-Jones et al., 2008) as

it is classified as a tRNA fragment; this was not studied

further. The LASSO model was refitted without these two

probes resulting in a 9-microRNA signature (Table 2). Micro-

RNAs given a negative LASSO coefficient are positive predic-

tors of survival and vice versa. Seven of the microRNAs were

significantly differentially expressed in non-tumor tissue

compared to glioblastoma (Table 2).
3.2. A risk score combining expression values of the 9
microRNAs predicts survival

A risk score was created using the regression coefficients

from the LASSO analysis (see Methods) to weight the

expression value of each of the 9 microRNAs. The risk score

was then separated on the median (1.48 quantile normal-

ized probe expression) to create high and low risk groups.

The median survival time of the low-risk group was 13.1

months and the median of the high-risk group was 9.5

months. Risk score was associated with survival using log-

rank test (Figure 1, p ¼ 2.26e�09). Median expression of

each signature microRNA in both groups is shown in

Supplementary Figure S1.

Pearson’s correlation of age with risk score showed a sig-

nificant direct correlation (R ¼ 0.248, p ¼ 4.13e�08). Multivari-

able Cox regression of the risk group and age showed the risk
Table 2 e MicroRNAs associated with survival using the LASSO
regression test. Significant ( p < 0.05) results are shown in bold.
Nine microRNAs were reported as non-zero coefficients, five were
negatively associated with survival and four were positively
associated with survival. Seven were differentially expressed in
unmatched non-tumor samples compared to glioblastoma samples.

Mirna LASSO penalized
coefficient for risk

score (log 2)

Fold change in
GBM compared
to non-tumor

miR-124a 0.062 0.032

miR-10b 0.015 10.005

miR-222 0.162 0.278

miR-34a 0.005 3.121

miR-182 �0.021 3.708

miR-148a 0.092 2.752

miR-145 �0.066 0.541

miR-370 �0.044 1.274

miR-9 �0.032 0.863
group to be an independent predictor of survival irrespective

of age (Group HR ¼ 1.61, 95% CI ¼ 1.30e1.99, p ¼ 1.40e�5;

Age HR ¼ 1.03, CI ¼ 1.02e1.04, p ¼ 2.50e�3). As males have

poorer outcome in glioblastoma (Krex et al., 2007), the risk

score was evaluated according to gender, and was found to

be similar in the male and female groups (median 1.48 in

each group).
Figure 1 e The patient groups assigned to the high- and low-risk

groups using the median as a threshold. A score for each patient was

calculated using the microRNA expression signature and patients

were separated into high and low risk groups using the median as a

cut-off. A) The low-risk group has significantly longer survival times

than those in the high-risk group by log-rank test. B) Expression

patterns of the significant microRNAs in the high- and low-risk

groups, as defined by the risk score, shown in a heatmap. The top five

microRNAs in the heatmaps (black) act as more aggressive

microRNAs, and the bottom four (yellow) are less aggressive

microRNAs.

http://dx.doi.org/10.1016/j.molonc.2014.11.004
http://dx.doi.org/10.1016/j.molonc.2014.11.004
http://dx.doi.org/10.1016/j.molonc.2014.11.004


Figure 2 e Log-rank of the low-risk and high-risk groups in subgroups of glioblastoma. Risk scores were calculated with the same threshold as the

whole cohort for each subtype of glioblastoma. The risk groups were significant by log-rank test (non-age adjusted) in all subtypes of glioblastoma

but proneural G-CIMP negative (AeE). Risk score is also a significant predictor of progression free survival (F).
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3.3. Assessment of the risk score in glioblastoma
subtypes and in relation to other prognostic factors

We then determined the risk groups for each of the TCGA-

defined glioblastoma molecular subtypes (Brennan et al.,

2013): proneural G-CIMP positive (n ¼ 36), proneural G-CIMP

negative (n¼ 88), neural (n¼ 77), classical (n¼ 128) andmesen-

chymal (n¼ 143). Risk groupwas associatedwith survival in all

subtypes except proneural G-CIMP negative (Figure 2AeE).

The groups were then fitted to a Cox regression model

incorporating age in each patient subtype. The score

remained significant in the classical (HR ¼ 1.73, 95%

CI ¼ 1.13e2.64, p ¼ 0.011) and neural (HR ¼ 2.03, 95%

CI ¼ 1.23e3.38, p ¼ 0.007) groups and age was a confounding

factor in the mesenchymal group (HR ¼ 1.46, 95%

CI ¼ 0.95e2.23, p ¼ 0.084). The proneural G-CIMP positive

group could not be calculated because all samples but one

stratified to the low risk group. The proneural G-CIMP nega-

tive group was not significant (HR ¼ 1.15, 95%

CI ¼ 0.70e1.86, p ¼ 0.059). The survival groups also had signif-

icantly different PFS by log-rank ( p ¼ 9.91e�08) (Figure 2F).

There were 26 samples in the cohort with IDH1 mutations,

only one of which stratified to the high-risk group, which

suggests the signature is selecting for a subtype with already

known survival differences.

The risk score was evaluated by fitting a Cox model incor-

porating the risk group and other factors involved in glioblas-

toma prognosis (gender, MGMT methylation, IDH mutation,

patient subtype, extent of resection and KPS score). In each

case, the score was significant and was not related to these

factors (Supplementary Table S2).

We then calculated the risk score solely in the group of pa-

tients treated with the most common chemotherapy agent,

temozolomide (n ¼ 219). This group showed a high associa-

tion between risk score and survival using log-rank

( p ¼ 8.6e�04) (Figure 3A). The power of the signature was

compared to that of MGMT status by the log-rank test. In

the 304 patients for whom MGMT methylation status was

available (Brennan et al., 2013), multivariable Cox regression

indicated the microRNA signature (HR ¼ 1.88,

CI ¼ 1.42e2.48, p ¼ 9.4e�06), which showed a 1.88-fold

increased risk when stratified to the high-risk group, was

more predictive than the MGMT methylation signature

(HR ¼ 1.47, CI ¼ 1.12e1.93, p ¼ 0.006), which showed a 1.47-

fold increase in risk when MGMT is unmethylated. In the

group treated with temozolomide only (n ¼ 219) there was a

1.76-fold increase in risk by stratification to the low-risk

group; this stratifies patients better than theMGMT signature,

which shows a 1.65-fold increase in risk when stratified to

the unmethylated group in the TCGA dataset.

3.4. Risk score validation in an independent dataset

Risk scores were calculated for an independent dataset of 20

glioblastoma samples (Supplemental Figure S3), with micro-

RNA expression generated using qRT-PCR and was signifi-

cantly associated with survival (HR ¼ 10.7, p ¼ 0.036). This

patient group had an overall worse prognosis (80% died earlier

than the expectedmedian of 450 days) than those in the TCGA

(70% died earlier than 450 days), and therefore, expecting
more patients to fall into the high-risk group, the patients

were dichotomized based on the 60th percentile (0.76DCt).

This resulted in 12 patients in the high-risk group with a me-

dian survival of 6.27 months and 8 patients in the low-risk

group with amedian survival of 16months. These groups pre-

dict survival using a one-sided log-rank test (HR ¼ 3.01,

p ¼ 0.045) (Figure 3B).
3.5. Risk score assessment in lower grade glioma

Risk scores were also calculated for grade II and III gliomas

(n ¼ 178), using TCGA sequencing data. This was done using

the 9 microRNAs and weighting derived in glioblastoma. The

cohort was dichotomized into high- and low-risk groups using

the median (�19541.96 reads per million) as a cut-off. As

observed in the glioblastoma dataset, the score proved to be

a significant predictor of survival using log-rank (Figure 3C,

p ¼ 5.2e�03) and in a Cox model with age (Group HR ¼ 0.62,

CI ¼ 1.05e3.31, p ¼ 3.5e�02; Age HR ¼ 1.06, CI ¼ 1.04e1.10,

p ¼ 2.2e�07). The low-risk group comprised of 44 grade II

and 45 grade III samples; 22 were astrocytomas, 22 oligoastro-

gliomas and 45 oligodendrogliomas. The high-risk group

comprised of 37 grade II samples and 51 grade III samples (1

not stated); 33 were astrocytomas, 25 oligoastrocytomas and

30 oligodendrogliomas.
3.6. Predicted targets of these microRNAs

Bioinformatic analysis was used to investigate targets of

signature microRNAs to identify the associated pathways

involved. Firstly, genes associated with long and short sur-

vival groups in glioblastoma were identified in TCGA. A total

of 1154 genes were associated with short and 400 genes with

long survival (Supplementary Figure S4).

Predicted interactions of the 9 microRNAs with the

survival-associated genes were assessed in the Miranda

(Miranda et al., 2006), Pictar (Krek et al., 2005) and Targetscan

(Lewis et al., 2005) databases. This led to the identification of

10 significant microRNA/mRNA interactions with an inverse

correlation of at least 0.25 across all glioblastoma samples

(Table 3). Using DIANAmiRPath (Vlachos et al., 2012) we iden-

tified the top pathways that the signature microRNAs are pre-

dicted to target. The most significant pathways identified

included adherens junction, MAPK signaling, focal adhesion,

axon guidance and WNT signaling (Supplementary

Figure S5).

Targets implicated most strongly in patient survival were

identified for miR-9, which showed a significant correlation

with eight mRNAs. Correlation with FBN1 is shown in

Figure 3D. In order to assess whether these may be functional

targets, a glioblastoma cell line was transfected with a miR-9

mimic and the expression levels of the predicted targets

were assessed using qPCR. LMNA, WNT4, FBN1, P4HA2 and

SLC25A24 had significantly lower levels of expression when

transfectedwith themimic in comparison to a scrambled con-

trol (Figure 3E) suggesting miR-9 may directly target these

mRNAs in glioblastoma cells.

Thus, bioinformatic analysis of signature microRNAs has

identified potential targets and biological processes known

http://dx.doi.org/10.1016/j.molonc.2014.11.004
http://dx.doi.org/10.1016/j.molonc.2014.11.004
http://dx.doi.org/10.1016/j.molonc.2014.11.004


Figure 3 e Assessment of risk groups in TMZ treated patients, the validation cohort and lower grade glioma and correlation of FBN1 with miR-9.

A) The subgroup of patients treated with the chemotherapy agent temozolomide was significantly delineated using the signature. B) MicroRNA

expression determined by qRT-PCR in an independent cohort of 20 glioblastomas stratified patients by survival based on the signature. C)

MicroRNA sequencing data of 178 lower grade glioma samples (55 astrocytoma, 47 oligodendrocytoma, 75 oligodendroglioma, 1 not stated)

significantly separated this cohort into high and low risk groups by log-rank. D) FBN1 mRNA expression showed an inverse correlation of at least
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Table 3 e Predicted target interactions of the signature microRNAs with significant correlation in expression. The ten interactions predicted
between the 9-microRNA signature and the mRNAs identified to be involved in survival, which also showed a significant inverse correlation in
expression of at least 0.25 across the patient set. Two of these mRNAs, FBN1 and TGFBI, exhibited particularly high correlations in expression
with miR-9 as well as significant (p < 0.05) differential expression between glioblastoma compared to non-tumor tissue.

MicroRNA LASSO
penalized

coefficient (log 2)

Gene
symbol

Gene change
with increasing

survival

Spearmans
correlation

Fold difference
in GBM to non-tumor

tissue

p-Value
of GBM/normal
(FDR adjusted)

hsa-miR-9 L0.032 TGFBI 4.499 L0.649 11.487 0.000

hsa-miR-9 �0.032 P4HA2 2.527 �0.615 1.108 0.999

hsa-miR-9 L0.032 FBN1 2.054 L0.53 1.808 0.001

hsa-miR-222 0.162 KHDRBS2 0.189 �0.496 0.024 0.000

hsa-miR-9 �0.032 SLC25A24 3.574 �0.473 2.17 0.000

hsa-miR-9 �0.032 SLC31A2 2.384 �0.463 0.593 0.039

hsa-miR-9 �0.032 FNDC3B 2.171 �0.406 3.828 0.000

hsa-miR-182 �0.021 F13A1 10.982 �0.309 1.785 0.106

hsa-miR-9 �0.032 LMNA 2.034 �0.292 2.25 0.000

hsa-miR-9 �0.032 WNT4 2.038 �0.265 0.691 0.003
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to be involved in glioblastoma biology, further supporting the

relevance of the 9-microRNA signature.
4. Discussion

4.1. The 9-microRNA signature is a molecular indicator
of prognosis

Using LASSO regression, this study has identified and inde-

pendently validated a biologically relevant 9-microRNA signa-

ture that predicts survival in glioblastoma. The signature

separates patients into high- and low-risk groups with respect

to OS and PFS andmay have clinical utility for decisions on pa-

tient management. The signature is valid in all glioblastoma

subtypes except proneural G-CIMP negative tumors, and is

linked to temozolomide response.

The independent dataset used here is relatively small and

therefore confounding factors for patient age, treatment

received and extent of resection could not be accounted for.

Further validation, ideally prospective, and calculation of

sensitivity and specificity, is required before this signature

could be implemented clinically. The independent dataset re-

sults that were generated using qRT-PCR indicate that the

signature can be implemented using techniques that would

be more conducive to a clinical diagnostic laboratory and

these are the methods that should be explored further. A lim-

itation of this approach is that a different technique has been

used for validation and therefore a single, defined cut-off

could not be ascertained.

Prognostic signatures using microRNAs have been

formulated previously in glioblastoma but these have not

been validated or evaluated within different subgroups of

the disease, or in relation to molecular characteristics of

the disease (Kim et al., 2011; Niyazi et al., 2011; Srinivasan

et al., 2011; Visani et al., 2013). A recent study identified
0.5 with miR-9 expression. E) Expression of the predicted targets following

control. Significant decrease in expression (t-test, p< 0.05) was observed fo

of the mimic. Results are representative of duplicate experiments.
prognostic microRNAs for each subtype of glioblastoma us-

ing TCGA data (Li et al., 2014) and five microRNAs in our

signature overlap; miR-222, which they report predicts

prognosis in classical and neural, miR-370 which predicts

prognosis in neural and miR-34a, miR-145 and miR-182

which predict prognosis in the proneural non-G-CIMP

group. Interestingly, 3/9 microRNAs in our signature are pre-

sent in their model for proneural G-CIMP negative tumors

yet our signature did not significantly stratify patients in

this subtype.

The LASSO regression model was chosen to improve on

other approaches by utilizing all 475 patients, and all micro-

RNAs available to build the signature. This allows a small

number of microRNAs for use in a diagnostic signature

with maximal information but does not identify all predic-

tors in the dataset involved in survival. This provides a

signature with the prediction power similar, or better than,

that of MGMT methylation. It must be noted however that

MGMT methylation was assessed in an unselected popula-

tion, with the Infinium methylation beadchip {Bady:2012jb},

which is not the gold standard employed in a diagnostic lab-

oratory and therefore may lack sensitivity compared to clin-

ical results. MGMT was also not assessed in the validation

dataset due to lack of methylation data so this finding re-

quires further confirmation. This signature has a manage-

able number of microRNAs for a prognostic indicator, and

is well below the number of predictors employed in

commercialized kits for other cancer signatures such as

Mammaprint (Sorlie et al., 2001) and ms-14 (Cheang et al.,

2009) in breast cancer.

4.2. Roles of the microRNAs in the signature in glioma
biology

All microRNAs in this signature, with the exception of miR-

370, have been previously associated with glioma biology
transfection of a miR-9 mimic into LN229 cells relative to a scrambled

r P4HA2, LMNA,WNT4, FBN1 and SLC25A24 48 h after transfection

http://dx.doi.org/10.1016/j.molonc.2014.11.004
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(Fowler et al., 2011; Gabriely et al., 2011; Genovese et al., 2012;

Kim et al., 2014; Mucaj et al., 2014; Rani et al., 2013; Song et al.,

2012; Tan et al., 2012; Zhang et al., 2010) which has not been

shown for previous glioblastoma microRNA signatures {Lako-

my:2011ju}{Srinivasan:2011fh}{Zhang:2012iq}. Although miR-

370 has not been reported to have a role in glioblastoma, it tar-

gets TGFB-RII (Lo et al., 2012), which has a role in glioblastoma

cell growth and invasion (Kaminska et al., 2013). These studies

suggest a potential role for miR-370 in glioma biology. Estab-

lishing a defined role for these microRNAs in glioma biology

requires further work to determine the direct roles of these

microRNAs in predicting prognosis of glioblastoma.

In addition to their established roles in glioma biology, 5

of the 9 signature microRNAs have been associated with

sensitivity to temozolomide; miR-9 (Munoz et al., 2013),

miR-145 (Yang et al., 2012), miR-148a (Hummel et al., 2011),

miR-182 (Tang et al., 2013) and miR-222 (Chen et al., 2012).

These observations suggest that the microRNA signature re-

flects roles in both tumor biology and treatment resistance,

which combined lead to significant effects on patient

survival.

4.3. Translational relevance of the signature

This prognostic signature has potential applicability to the

clinic by stratifying patients, and identifying those less likely

to respond to current treatments. The signature ultimately

may facilitate confidence in treatment decisions and recog-

nizing candidates for new therapies. It may be that the most

powerful use of the signature is in combination with MGMT

methylation status. Technologies such as the nanostring

nCounter platform may provide highly accurate quantitative

measurements of transcripts for tumor diagnosis as has

been shown for medulloblastoma (Northcott et al., 2012),

and is readily applicable to microRNA studies.

In conclusion, we have identified and validated a 9-micro-

RNA-expression signature using biologically relevant

markers of use in prediction of prognosis in glioblastoma.

Analysis of targets of these microRNAs has identified poten-

tial key players in glioblastoma networks that could be tar-

geted to combat the aggressive disease. The LASSO

approach may be more broadly applicable in the identifica-

tion of relevant microRNA and gene expression signatures

in large datasets.
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