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 23 

Abstract 24 

A polyacrylamide-based molecularly imprinted polymer (MIP) was prepared for bovine haemoglobin  25 

(BHb).  A 3 mg/ml solution of BHb was injected over a dual polarisation interferometer (DPI) sensor 26 

to form a physisorbed layer typically of 3.5±0.5 nm thickness. Onto the pre-adsorbed protein layer, 27 

MIP and NIP (non-imprinted polymer) were separately injected to monitor the interaction of BHb 28 

MIP or NIP particles under different loading conditions with the pre-adsorbed protein layer. In the 29 

case of NIP flowing of the protein layer, there was negligible surface stripping of the pre-adsorbed 30 

protein. When a protein-eluted sample of MIP particles was flowed over a pre-adsorbed protein 31 

layer on the sensor chip, the sensor detected significant decreases in both layer thickness and mass, 32 

suggestive that protein was being selectively bound to MIP after being stripped-off from the sensor 33 

surface. We also integrated thin-film MIPS for BHb and BSA onto the DPI sensor surface and were 34 

able to show that whereas BHb bound selectively and strongly to the BHb MIP thin film (resulting in 35 

a sustained increase in thickness and mass), the BHb protein only demonstrated transient and 36 

reversible binding on the BSA MIP. MIPs were also tested after biofouling with plasma or serum at 37 

various dilutions. We found that serum at 1/100 dilution allowed the MIP to still function selectively. 38 

This is the first demonstration of MIPs being integrated with DPI in the development of synthetic 39 

receptor-based optical protein sensors. 40 

 41 

 42 

Keywords: Hydrogel; MIP; biomimicry; interferometry; protein; biosensor 43 

44 
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1. Introduction 45 

Molecularly imprinted polymers (MIPs) continue to receive much attention in research effort as they 46 

promise (and in some cases are delivering) synthetic materials capable of mimicking the selective 47 

binding function of antibodies and enzymes. The implications for such biomimicry are immense in 48 

the field of biosensor development and novel drug delivery modes. Over the past decade, there has 49 

been an exponential increase in research activity in developing hydrogel-based molecularly 50 

imprinted polymers (HydroMIPs) for the imprinting of proteins [1]. Hydrogels are insoluble, 51 

crosslinked polymer network structures composed of hydrophilic homo- or hetero-co-polymers, 52 

which have the ability to absorb significant amounts of water [2]. Monomers that have commonly 53 

been used for non-covalent molecular imprinted hydrogels are generally chosen on their ability to 54 

form weak hydrogen bonds between the monomer and the template [2-4]. Polyacrylamide 55 

hydrogels are known to be very inert, offer hydrogen bonding capabilities, and are biocompatible. 56 

For these reasons, acrylamide has been commonly used for molecular imprinting [5-9]. 57 

The use of optical sensor platforms in conjunction with imprinted polymers have been recently 58 

reported, primarily detailing the use of SPR [10] and quantum dots/array technologies [11-12].  Both 59 

applications have been reviewed in depth by Al-Kindy et al. [13]. 60 

Interferometric sensors based on dual polarisation interferometry (DPI) can be used for biological 61 

detection and the sensing is accomplished by directly monitoring a bioconjugate reaction occurring 62 

within an evanescent field extending out from the interferometer’s sensing channel [14]. There are 63 

no subsequent steps, which are typical in many other sensing schemes, in which a second 64 

bioconjugate is reacted with the first to produce a sandwich complex.  65 

The optical analytical technique has been designed specifically for the study of thin films, which uses 66 

electromagnetic evanescent wave probes to characterise the film above a planar waveguide surface.  67 

By including an optical bridge in the form of a buried reference waveguide, the sensitivity of thin film 68 
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measurements is maximised with the resolutions determined by the interaction length between thin 69 

film and the evanescent field [15]. 70 

The measurement principle involves the use of a HeNe laser light (=632.8 nm) source coupled to 71 

the end facet of a silicon substrate and a ferroelectric  liquid crystal halfwave plate switches the 72 

plane of polarisation of the input beam between Transverse Electric (TE) and Transverse Magnetic 73 

(TM) at frequencies of typically 50 Hz.  At the output, interference fringes in the far-field form on a 74 

digital camera screen, with the fringes being representative of the relative phase position of the 75 

sensing and reference light paths at the output.  Any thin film changes thereof on the sensor surface 76 

of the waveguide will interact with its evanescent field and change its effective refractive index (RI).  77 

Such changes will move the phase of the light exiting the sensing waveguide, and the position of the 78 

fringes on the camera will move.   79 

 80 

The phase positions refer to the two orthogonal polarisations (TE and TM) that are measured by the 81 

instrument.  The absolute effective index of a waveguide mode is found by solving Maxwell’s 82 

equations of electromagnetism for a system of uniform multiple dielectric layers in which the fields 83 

in the semi-infinite bounding layers are exponentially decaying solutions.  The parameters required 84 

are the RI and thickness of each layer for each of two polarisations.  Provided the input information 85 

is complete, an effective index value is obtained which is representative of the distribution of optical 86 

power amongst the layers. If a new layer is introduced to (or removed from) the system, it will alter 87 

the effective index.  For each of the two polarisations, the new effective index can satisfy a 88 

continuous range of thickness and refractive index values.  However, there will only be one unique 89 

combination that satisfies the index of the two polarisations. 90 

Using different evanescent field profiles, various characteristics of the thin-film can be resolved.  91 

Different polarisations are used to resolve the optical density and the thin film thickness 92 

simultaneously at resolutions of <1pg/mm2 and <10pm [16]. If a new layer is introduced to (or 93 
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removed from) the system, it will alter the effective index.  For each of the two polarisations, the 94 

new effective index can satisfy a continuous range of thickness and refractive index values.  95 

However, there will only be one unique combination that satisfies the index of the two polarisations. 96 

The technique allows the precise behaviour of layers to be determined in terms of both their density 97 

(absolute RI) and thickness in real time and therefore, mass, surface coverage and concentration can 98 

be calculated.  Integral to this is the calibration of both the sensor chip and bulk refractive index, 99 

which allows the accurate derivation of the data, and takes into account subtle changes film 100 

parameters and variations in chip structure which may give rise to errors in sensitivity.  As a result, 101 

the DPI technology presents the opportunity to further provide a rapid method for the 102 

characterisation and quantification of molecular binding events. 103 

To date, work using dual polarisation interferometry  has been focused on investigations into the 104 

studying nucleic acid interactions [17], DNA immobilisation [18], antibody-antigen interactions [19], 105 

protein characterisation [20-23], and polymer characterisation [24-26]. Herein is the first report of 106 

DPI to characterise HydroMIPs and develop thin film HydroMIP-based protein sensors. 107 

108 
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2. Materials & Methods 109 

Acrylamide, glacial acetic acid (AcOH), ammonium persulphate (APS), N, N’ – 110 

methylenebisacrylamide; ethanol (EtOH), sodium dodecyl sulphate (SDS); N, N, N’, N’ – 111 

tetramethylethyldiamine (TEMED), phosphate buffered saline (PBS), succinic acid, tris base, and tris 112 

hydrochloric acid were purchased from Sigma-Aldrich. Bovine haemoglobin (BHb); and bovine serum 113 

albumin (BSA) were purchased from Sigma-Aldrich. Unmodified silicon oxynitride sensor chips were 114 

purchased from Farfield Sensors (Crewe, UK) and a programmable syringe pump (PHD 2000) was 115 

purchased from Harvard Apparatus (Holliston, MA, USA).  Plastic syringes (1ml & 5ml with Leur Lock 116 

fittings) were purchased from Becton Dickinson UK Ltd (Oxford, UK). Pooled plasma and serum 117 

samples were used in the biocompatibility studies. 118 

 119 

2.1 Preparation of Solutions 120 

A solution of 10% (w/v) AcOH:SDS was prepared for use in the wash stages before and after the 121 

reloading stage of the rebinding studies. SDS (10g) was dissolved in 90ml of MilliQ water. 10ml of 122 

AcOH was added and mixed thoroughly using a magnetic stirrer. A 0.3mg/ml stock solution of BHb in 123 

RO water was prepared, as were SDS solutions to give final percentages of 10%, 5%, 2%, 0.5%, 0.1% 124 

and 0.05% (w/v).  A reverse osmosis (RO) water stock solution was degassed under vacuum (with 125 

stirring) for 10mins, as was an 80% (w/w) solution of ethanol (EtOH) in degassed RO water.  A stock 126 

solution of bovine haemoglobin (BHb) template solution was prepared in MilliQ water.  127 

 128 

2.2 HydroMIP production 129 

Molecularly imprinted (MI) hydrogels were produced using our optimised methodology [5]. It was 130 

shown that when imprinting BHb using bulk polyacrylamide hydrogels, a 10% crosslinked 131 

polyacrylamide/ N, N’- methylenebisacrylamide hydrogel produced the optimal imprint for BHb in 132 

terms of specificity and rebinding efficiency of the MIP compared to the non imprinted polymer 133 
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(NIP). Hawkins et al. also demonstrated that using a 10% AcOH:SDS during the elution stage of the 134 

rebinding studies performed resulted in optimal protein recovery for BHb specific MIPs. 135 

Therefore, MI hydrogels were produced as follows for 1ml of gel: 54mg of functional monomer 136 

(acrylamide), 6mg of crosslinker (N, N’- methylenebisacrylamide), and 12mg of template protein 137 

were all dissolved in PBS or MilliQ water and added together to create the MIP solution. 20µl/ml of a 138 

10% (w/v) ammonium persulfate (APS) solution was added to the MIP solution, and the solution was 139 

purged with nitrogen for 5 minutes. Once the solution was degassed, 20µl/ml of a 5% (v/v) N, N, N’, 140 

N’– tetramethylethyldiamine (TEMED) was added and the solution was then left to polymerise 141 

overnight at room temperature. We looked at freshly prepared MIP following granulation and water 142 

washing (hereafter,  referred to as MIP1). A sample of MIP1 was washed with SDS and acetic acid 143 

followed by a further water wash to produce sample MIP2. MIP3 was the sample produced after 144 

MIP2 was reloaded with target protein (bovine haemoglobin). 145 

For every BHb MIP created a NIP was also created using the same material concentration as the MIP 146 

but without the protein template in order to serve as a control. BSA MIPs were also prepared using 147 

12mg of BSA template instead of BHb.  The BSA MIPs were used as control polymers for BHb binding 148 

to be compared against BHb MIPs.  149 

 150 

2.3 Dual Polarisation Interferometry AnaLight®Bio200 Set-up  151 

All DPI experiments were performed on the Farfield AnaLight®Bio200 instrument, which had been 152 

installed and internally calibrated by the manufacturer.  The AnaLight®Bio200 instrument provides a 153 

flexible platform that incorporates a modular fluidics arrangement to enable a wide range of 154 

experimentation to be undertaken.  Integral to all experimentation is the sensor chip used to exploit 155 

the technology.  The sensor is a multiplayer deposited waveguide structure on a silicon wafer, and is 156 

manufactured to a high tolerance to enable accurate measurement to take place.  Opening windows 157 
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in the top cladding of the waveguide define the two active areas on the chip, which also define the 158 

active path length of the sensor and are lithographically produced to micron levels of precision.  The 159 

precise sensitivity is dependant on the waveguide thickness and refractive index.  Many variations in 160 

chip functionalisation and design are available and should be used following the careful 161 

consideration of the method of immobilisation of molecules on the sensor surface.  Hydroxylation of 162 

the silicon oxynitride sensor is one of the simplest and most commonly employed surface 163 

modifications and is typically used for the physisorption of proteins and the functionalisation of 164 

“smart” polymers.  Modifications in chip functionalisation can also include amination, biotinylation 165 

and thiolation to name but a few. 166 

  167 

The fluidic design of the AnaLight®Bio200 is based on a flow cell, which comprises two sample 168 

chambers fitted with two independent feeds and drains, and makes up the core of the system.  The 169 

two channels can be configured in series or (more commonly) in parallel with a number of sample 170 

introduction methods possible that should be chosen to optimise the experimental aim.  When 171 

performing an experiment, a pump supplies running buffer to the sensor chamber, with an injection 172 

loop allowing the controlled introduction of the sample. The AnaLight®Bio200 instrument software 173 

also allows the extensive post experimental analysis of results using an analysis of the interference 174 

fringe position and operation of Maxwell’s equation.  The technique allows the precise behaviour of 175 

layers to be determined in terms of both their density (absolute RI) and thickness in real time and 176 

therefore, mass, surface coverage and concentration can be calculated.  177 

 178 

Each experiment was carried out on an unmodified silicon oxynitride sensor chip and analysed using 179 

the AnaLight® Bio200 software (version 2.1.12/inject application version 1.0.1).  Prior to each 180 

experiment, RO water running buffer and 80% (w/w) EtOH was degassed.  A 50ml syringe was filled 181 

with the degassed running buffer, and fitted into the syringe pump.  The Farfield fluidic system was 182 

attached to the buffer syringe, the flow rate set at 200µl/min, and flow started (initially directed to 183 
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waste) to eliminate any air bubbles from the fluidic piping immediately associated to the buffer 184 

reservoir.  The flow rate was changed to 100µl/min (50µl/min per channel) to set the experimental 185 

fringes.  Degassed EtOH was loaded and injected across both channels in duplicate to wash the new 186 

sensor chip before switching back to buffer and waiting for the fringes to stabilise (approximately 187 

45seconds).  The automated fringe selection function was employed to select the fringe positions, 188 

with good amplitude and agreement being the key factors governing fringe choice.  Prior to each 189 

experiment, the sensor chip was calibrated by performing a routine EtOH injection.  The injection 190 

loop was filled with EtOH and injected across the experimental channels being used at 100µl/min 191 

initially (3mins) before being changed to 15µl/min per channel (30µl/min if both channels were 192 

used).  The injection was allowed to run completely through to running buffer (rather than abruptly 193 

stopping the injection) over a period of approximately 20mins.  194 

 195 

2.4 DPI - BHb Physisorption Studies 196 

The DPI system was set up and calibrated as described above.  A 0.3mg/ml BHb solution was loaded 197 

into the injection loop, and injected across both experimental channels at a flow rate of 50µl/min for 198 

approximately six minutes.  The flow was switched back to the buffer, and the sensor chip recycled 199 

by injecting EtOH in duplicate followed by 2% SDS at 100µl/min. The DPI instrument phase responses 200 

were recorded throughout the experiment.  201 

Non-imprinted HydroNIP control gels were diluted 1/10 and 1/15 using RO water.  The 1:15 dilution 202 

of the HydroNIP suspension was loaded into the injection loop and injected across the sensor 203 

surface at 50µl/min for approximately six minutes, followed by an EtOH injection each time at 204 

100µl/min.  Following the three 1/15 dilution HydroNIP injections, two 1/10 dilutions of HydroNIP 205 

were injected in an identical fashion, followed once again by EtOH.  Upon conclusion of the 206 

experiment, the sensor chip was recycled by injecting 2% SDS at 100µl/min. The experiment was 207 

then repeated with MIP1, MIP2 and MIP3. 208 

 209 
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2.5 Interrogation of HydroMIP Imprinting Effect 210 

A 0.3mg/ml BHb solution was loaded and injected as before.  Approximately five minutes after the 211 

end of the BHb injection, a 1:15 dilution of the HydroNIP control was injected in duplicate as 212 

previously described.  Two EtOH injections and a 2% SDS injection were then performed at 213 

100µl/min to recycle the sensor chip.  This cycle (BHb; hydrogel sample x 2; EtOH x 2 and 2% SDS) 214 

was repeated in an identical fashion for the remaining gel samples (MIP 1, MIP 2 & MIP 3).  215 

 216 

 217 

2.6 DPI – Data Analysis  218 

All experimental analyses were performed in the first instance using the AnaLight®Bio200 software.  219 

In each experiment (where applicable), layer tables were constructed which in turn allowed the 220 

quantification of specific binding and analysis events in terms of changes in thickness, refractive 221 

index, layer density and mass of the deposited layers upon the sensor surface.  All data were 222 

exported into Microsoft Excel, which was employed to produce graphical representations of the raw 223 

data obtained. 224 

 225 

2.7 Thin film MIP application to DPI chip 226 

Thin films were created by applying pressure to the hydrogel solutions over the optical waveguide 227 

chips. This was done by injecting 50μl of free-radical initiated polymerising hydrogel solution over 228 

the channels of the DPI chip and placing an 18mm2 cover slip over the chip, thereby sandwiching the 229 

hydrogel polymerising solution in between the cover slip and the DPI chip surface. Pressure (2kPa) 230 

was then applied using bronze weights placed on top DPI chip for 10 minutes. After polymerisation 231 

was completed, the weight and cover slip were removed the DPI chip was stored in a fridge at 4˚C 232 

overnight.   Dual polarisation interferometry was used to characterise the real time binding effects 233 

of BHb template molecules to BHb specific MI hydrogels. The selectivity and rebinding effect were 234 

characterised using BHb specific MIPs as MIPs selective for the reloaded template, and BSA specific 235 
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MIPS as controls. DPI chips were first calibrated using blank chips. The materials used to calibrate 236 

the chips were 80% ethanol and MilliQ water. The DPI chips were first exposed to running PBS buffer 237 

for 20 min at a flow rate of 50μl/min. 100µg/ml of BHb template was then injected over both sets of 238 

MIPs for 10 minutes at 20µl/min flow rate. This was followed by an injection of 100µg/ml of BSA 239 

which was left to flow over the MIPs using the same association time and flow rate.  240 

Stopping the flow of running buffer after BHb and BSA injections was also investigated to increase 241 

the association time of the proteins to the MIPs, however this did not have a major effect on the 242 

rebinding of BHb or BSA to the MIPs as results obtained were similar to those under constant flow 243 

conditions. 244 

3 Results & Discussion 245 

3.1 DPI Sensing of BHb Protein Adsorption 246 

Figure 1 shows the changes in thickness, mass and density observed due to BHb protein (0.3 mg/ml) 247 

adsorption on a cleaned DPI chip surface.  As expected, both the thickness and mass of the 248 

deposited protein layer increase rapidly at first as protein physisorbs to the sensor surface.  Upon 249 

switching the flow from BHb solution back to the running buffer, excess BHb is clearly removed from 250 

the sensor surface.  It is probable that this was caused by the formation of a bi-layer of protein as a 251 

result of the relatively high concentration of protein deposited upon the sensor surface [21].   252 

<INSERT FIGURE 1> 253 

It can be seen that the density of the deposited layer reaches a plateau with the continual 254 

accumulation of protein upon the surface.  As the injection ends and the flow switches to buffer, the 255 

density of the deposited layer dramatically increases, at the same time as protein is removed from 256 

the surface (as indicated by the changes in thickness and mass).   257 
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When the BHb molecules are removed, the remaining protein can re-organise and associate more 258 

strongly with the sensor surface allowing physisorption to occur to a greater degree [20]. The 259 

increase in the spatial association that occurs between the protein molecules and the sensor 260 

surface, could be resulting in a more densely bound protein layer due to the ability of the protein 261 

molecule to form hydrogen bonds with the sensor surface.  262 

3.3 DPI sensing of selective stripping of pre-adsorbed protein layers by MIP. 263 

All gels were granulated to 75µm (the internal diameter of the tubing in which fluid flow passes in 264 

the instrument, was 250µm). Because of the viscous nature of the hydrogels, dilution was required 265 

in order for the gel particles to be dispersed enough to flow.  Initial experiments showed that flow 266 

would not be possible at dilutions of 1:2 through to 1:8 as the samples were congealed resulting in 267 

potentially clogging the fluid channels.  Dilutions of 1:10 and 1:15 were appropriate for the injection 268 

of HydroMIP and HydroNIP samples across the sensor surface.  The MIP samples were found to be 269 

stable for at least over a 3 month period when stored at 4C when not in use. Table 1 summarises 270 

the change in thickness, mass and density for various injections of protein (BHb adsorption), 271 

followed by double injections of NIP, MIP1, MIP2 or MIP3.  272 

<INSERT TABLE 1> 273 

3.3.1 Effect of NIP on pre-adsorbed protein layer 274 

Table 1 shows the changes in thickness, mass and density of the deposited protein layer upon the 275 

sensor surface during protein deposition and following the injection of HydroNIP control gels. A final 276 

BHb layer with a thickness of 2.74nm and a mass of 1.99ng/mm2 was adsorbed upon the sensor 277 

surface following protein deposition.    Following the injection of the first HydroNIP sample, there is 278 

a small decrease in both thickness and mass of layer, which rises slightly following the second 279 

HydroNIP injection.  Overall, there is no significant protein stripping effect.  This is expected, as other 280 

than the random formation of cavities that demonstrate the appropriate architecture and selectivity 281 
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to accept the protein molecules, there is no reason why the control gel would strip protein from the 282 

sensor surface.   283 

3.3.2 Effect of MIP1 on pre-adsorbed protein layer 284 

The injection of BHb across the sensor surface results in a layer 4.32nm thick with a mass of 285 

2.39ng/mm2 being deposited upon the sensor surface (see Table 1).  The initial MIP 1 sample 286 

injection contributes a small increase in both mass and thickness, with the second injection 287 

contributing to a small decrease.  The density of the protein layer fluctuates slightly, but overall, the 288 

MIP 1 sample has little effect, as would be expected, in the removal of BHb from the sensor surface. 289 

The imprinted cavities within the MIP 1 sample are still occupied with the original template protein, 290 

with very few (if any) imprinted cavities exposed.  As a result, association between the immobilised 291 

protein and imprinted cavities could not occur explaining why the MIP 1 gels had no effect upon 292 

removal of protein from the sensor surface.  293 

3.3.3 Effect of MIP2 on pre-adsorbed protein layer 294 

Figure 2 shows the changes in thickness, mass and density of the deposited protein layer upon the 295 

sensor surface during protein deposition, followed by the injection of MIP 2 HydroMIP samples.  296 

Following the physisorption of BHb upon the sensor surface, a protein layer that was 4.43nm thick 297 

with a mass of 2.48ng/mm2 remained.  Following the first MIP 2 injection, this layer decreased 298 

significantly in thickness to 3.38nm, and once again to 3.26nm following the second injection.  The 299 

mass responded in an identical manner with a decrease to 2.31ng/mm2 and 2.26ng/mm2  300 

<INSERT FIGURE 2> 301 

respectively following the two MIP injections.  The small change following the second injection in Fig 302 

2 confirms that the majority of the stripping effect occurs as a result of the first injection. In contrast 303 

to the NIP control and MIP 1 samples, the MIP 2 sample which possessed exposed imprinted 304 

cavities, was able to strip away BHb from the sensor surface.  The layer density values also support 305 
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this event, as an increase from 0.55g/cm3 (BHb protein layer) to 0.68g/cm3 (injection 1) and 306 

0.70g/cm3 (injection 2) was observed as protein was removed from the surface apparently allowing 307 

the remaining protein molecules to associate themselves in a denser fashion upon the sensor 308 

surface.   309 

As previously observed, the deposition of BHb (in terms of thickness and mass) results in an 310 

immediate and distinctive (peaked) binding curve, followed by a plateau that relates to the 311 

remaining deposited protein layer.   312 

Immediately following the first injection of HydroMIP, there is a rapid increase in the density of the 313 

protein layer.  This suggests that protein is being removed from the sensor surface, which allows the 314 

remaining protein that has not been stripped to orientate itself upon the surface in a highly ordered 315 

manner (in comparison to the relative disorder of the saturated protein layer).  Upon returning to 316 

running buffer, the density falls slightly but once again increases when the second HydroMIP 317 

injection is performed.  An identical effect occurs, resulting in a final baseline density value that is 318 

higher than that obtained following the first injection and considerably higher than the value 319 

obtained prior to both the MIP2 injections.  320 

The suggestion that protein is removed from the sensor surface is supported by the values relating 321 

to the decreased mass of the protein layer.  Following the injection of both HydroMIP samples, the 322 

mass upon the sensor surface rises sharply, before decreasing to give values lower than those 323 

observed prior to the injections.  This strongly suggests that protein is indeed being removed from 324 

the sensor surface by MIP2. 325 

  326 

3.3.4 Effect of MIP3 on pre-adsorbed protein layer 327 

In contrast to both NIP and MIP 1, the injection of the MIP 3 sample across the sensor surface results 328 

in an increase in thickness and mass and a decrease in density of the protein layer (Table 1), 329 
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however not to the same degree as the MIP 2 sample comprising exposed (unoccupied) molecularly 330 

imprinted cavities. 331 

The elevation in the density of the protein layer as a result of the injection of the MIP3 sample 332 

indicates that protein is being stripped from the sensor surface by the gel samples.  It appears that 333 

the MIP 3 HydroMIP is behaving in a similar manner to that of MIP 2, but to a much lesser degree. 334 

The MIP 3 sample is similar in nature to MIP 2 sample, but has been subjected to the rebinding of 335 

the target template molecule within the imprinted cavities that it possesses.  The rebinding of the 336 

template molecule within these imprinted sites can be highly efficient [5, 27], however it cannot be 337 

assumed that it is a process that is 100% efficient and that every cavity becomes reoccupied 338 

following rebinding.  Some imprinted cavities that have not been reoccupied by the template protein 339 

are available within the MIP3 sample. When the gel is removed by the buffer solution some surface-340 

adsorbed protein is stripped away with the gel.  The above promising results demonstrate that we 341 

can distinguish between different MIP loading states using DPI sensing by monitoring their effect on 342 

a pre-adsorbed protein layer. 343 

3.4 Thin film HydroMIPs integrated to the DPI sensor and optimisation of biological conditions 344 

Having demonstrated the selective stripping-off of protein from the sensor surface by MIP2, we 345 

investigated the development of a thin-film MIP integrated to the DPI sensor. With the MIP attached 346 

to the sensor, we would effectively have the makings of biosensor for protein detection. Thin MIP 347 

films were prepared as detailed in Section 2.7. Instead of using a NIP control, we used a MIP 348 

prepared for BSA, a protein of similar molecular weight to haemoglobin. Thin-film MIPs for 349 

haemoglobin and BSA were prepared separately (as shown in the methods) and tested for their 350 

selectivity in rebinding haemoglobin. The sensing region of the DPI instrument used in this thesis 351 

typically extends to 500nm from the waveguide surface of the DPI chips, therefore it was favourable 352 

to produce films less or equal in thickness to this parameter. The maximum thickness obtained for 353 
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the gels was 381nm ± 5nm and the minimum thickness obtained was 138nm ± 9nm  at 0.5 kPa and 2 354 

kPa pressure applied during film formation respectively. Gels prepared at 2kPa pressure 355 

demonstrated the highest degree of sensitivity in terms of changes in the mass and density of the 356 

polymers on the surface of the chip and were therefore investigated further for their selective 357 

nature.  Prior to rebinding of BHb to either BHb MIP or BSA MIP, the MIP layer was washed with SDS 358 

to remove surface imprinted protein, followed by DI water to remove any residual SDS. Both the 359 

BHb and BSA MIPs were then exposed to BHb. Selective binding of cognate protein for the BHb MIP 360 

gave a sustained increase in film thickness and mass (Fig 3), whereas when BHb was injected over 361 

the BSA MIP although there was an initial increase in film thickness and mass, the response was 362 

transient and returned to thickness and mass values before protein injection. This indicates that the 363 

there is no net non-specific binding of BHb to the BSA MIP (Fig 3).   364 

<INSERT FIG. 3> 365 

The trace for BHb loading onto BHb MIP can be interpreted as a swelling after BHb is injected over 366 

the BHb MIP. The gel then relaxes, and interestingly, the mass of the layer increases. This increase in 367 

mass implies the reloaded BHb is adhering to the polymer as it flows over the BHb MIP.  The 368 

thickness of the material remains at steady state, and the density of the material increases. This 369 

could indicate that the majority of the BHb rebinding is occurring in cavities below the surface of the 370 

film. The BHb MIP sensor exhibited a linear response up to 200 g/ml with a limit of detection of 371 

2g/ml. Hb in urine in known as hemoglobinuria and can occur due to for example kidney cancer, 372 

burns, and malaria. Brian et al. [28] when using surface plasmon resonance detection of hemoglobin 373 

reported a very similar lower limit of detection of 1.3 g/ml. The mechanism of detection did not 374 

rely on a MIP layer but relied on rebinding of heme to surface immobilised apo-hemoglobin. Our 375 

lower limit of protein detection suggests that with some improvement in, for example, film thickness 376 

and MIP cavity density, the technique will be appropriate for the measurement of disease markers 377 
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such as the prostate cancer markers, prostate specific antigen (2-10 ng/mL) in blood and engrailed-2  378 

protein (>42.5 ng/mL) in urine [29] and other such biomarkers in blood. 379 

 In order to assess their suitability in real biological samples, HydroMIPs were investigated for their 380 

potential application for biological diagnostics using plasma and serum matrices as potential 381 

interferents for template protein rebinding. We applied thin films of a BSA MIP and  investigated the 382 

effects of neat, 1/10 and 1/100 diluted plasma exposure of MIPs prior to template protein (BSA) 383 

rebinding (Table 2).  384 

<Insert Table 2> 385 

As neat plasma is injected over a BSA MIP a very large thickness, mass, and density change occurs 386 

which exceeds the limitations of the DPI instrument.  This could be due to swelling of the gel and the 387 

detection of highly concentrated plasma flowing over the channels by the DPI instrument. This event 388 

is followed by a decrease in mass and thickness, and an increase in density. The loss in mass and 389 

thickness of the layer is indicative of the majority of the reloaded plasma passing over the MIP, and 390 

that the MIP is exhibiting limited non-specific binding of the plasma proteins. Upon BSA reloading, a 391 

small contraction event occurs followed by re-swelling of the gel. A steady state response is then 392 

subsequently observed. The loss in mass and thickness observed after BSA reloading was 0.07 393 

ng/mm2 and 0.15nm respectively, and an increase of density of 0.02 g/cm3. This response indicates 394 

no specific rebinding of BSA to the BSA MIP which is likely due to protein fouling of the MIP from the 395 

plasma injected. This suggests that whole plasma as a sample matrix is not suitable for MIP use.  396 

When using a lowered concentration of plasma (1:10 dilution) the initial mass, thickness and density 397 

changes of the gel are significantly lower when comparing with whole plasma reloading.  As the 398 

response of the layer reaches steady state, the mass and thickness of the gel demonstrate a lower 399 

steady state response compared with whole plasma, giving a difference of 0.22ng/mm2 and 0.33nm 400 

respectively. As BSA is reloaded onto the BSA MIP, a small contraction event occurs. This is followed 401 

by re-swelling of the gel and a steady state response. The response of the resolved mass, thickness 402 
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and density of the gel did not change significantly after BSA reloading, which could indicate that 403 

even lowering the concentration of the plasma interferent by 1:10 dilution, a high degree of protein 404 

fouling still occurs in the gel. Lowering the concentration of plasma further to a 1:100 dilution, 405 

demonstrates an interesting effect for the BSA MIPs. As 1:100 diluted plasma is injected over the 406 

BSA MIP, the thickness, mass and density of the gel initially increase.  This is followed by a gradual 407 

decrease in these parameters, which suggests that the injected plasma is flowing over the MIP and 408 

showing a low degree of non-specific rebinding. As BSA is subsequently injected over the BSA MIP, 409 

there is an initial decrease in mass and thickness of the gel, followed by an increase in these 410 

parameters. This suggests that BSA is stripping away non-specifically bound plasma from the MIP 411 

and replacing it with BSA. However, there is also a gradual decrease in thickness and mass after this 412 

event occurs, which could imply that the rebound BSA is also gradually being lost from the surface of 413 

the MIP. This was not ideal and so we investigated the use of serum at various dilutions to see the 414 

effect on MIP binding (Table 2). Again, neat and 1/10 diluted serum samples demonstrate a high 415 

degree of non-specific binding of proteins. Subsequent addition of template BSA leads to a decrease 416 

in thickness but no apparent change in mass, suggesting possibly that BSA is adsorbing to the MIP 417 

after some of the non-specifically bound serum proteins are removed. At 1:100 diluted serum, the 418 

serum proteins have a small to negligible effect on thickness and mass. Subsequent BSA addition 419 

results in selective uptake of these template molecules as evidenced by significant increases in 420 

thickness and mass. Our results suggest that further optimisation of MIPs applied to blood sample 421 

should be conducted using 1:100 diluted serum samples as this dilution demonstrates negligible 422 

fouling of MIP. 423 

4. Conclusions 424 

We have shown that when a layer of protein was physically immobilised upon the sensor surface, 425 

the cavity-containing HydroMIP gels clearly stripped protein from the sensor surface in contrast to 426 

non-imprinted polymer and the HydroMIP samples that did not possess available imprinted sites 427 



Page 19 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

 19 

capable of accepting the template protein.  This effect has been quantified in terms of layer 428 

thickness, mass and density, and this is a firm indication of the presence of imprinted cavities within 429 

the HydroMIP structure. 430 

Thin film MIPs can be applied to the DPI sensor also.  This section of work indicates that the 431 

HydroMIP materials, may play a significant role as the selective recognition material of a thin film 432 

MIP biosensor strategy. Possible applications of HydroMIPs generally extend to either diagnostics, 433 

such as detection of drugs, viruses, pesticides, toxins, or bacteria, or therapeutics i.e. controlled 434 

release systems. The HydroMIPs are able to retain their selectivity after exposure to real biological 435 

samples only when used in 1:100 diluted serum. 436 
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Captions for Figures/Tables: 515 

 516 

Figure 1 Changes in thickness (-x-), mass (--) and layer density (      ) following the 517 
deposition of BHb upon the sensor surface. 518 

 519 

Figure 2  Changes in thickness (-x-), mass (--) and layer density (       ) of deposited 520 
protein layer as a result of the injection of MIP 2 HydroMIP gel samples. 521 

 522 

Figure 3  DPI mass response for BSA MIP (bottom trace), and BHb MIP (top trace) 523 

when reloading 100µg/ml BHb.  524 

Table 1  Changes in thickness, mass and density of a pre-deposited BHb layer and 525 

following the injection of  NIP and MIP1 to MIP3 gel samples. 526 

Table 2  Thickness, mass, density and refractive index changes after injecting either: 527 
whole; 1:10 diluted serum; or 1:100 diluted serum or plasma followed by 528 

100µg/ml BSA over BSA MIPs. 529 
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Table 1  The quantified changes in thickness, mass and density of a pre-deposited 

BHb layer and following the injection of  NIP and MIP 1 to MIP 3 gel samples. 

 

Name 
 
 

Th / nm 
 

(0.10nm) 

Mass 
(ng/mm²) 

 

(0.20ng/mm
2
) 

Density  
(g/cm³) 

 

(0.02 
g/cm

3
) 

BHb 2.74 1.99 0.73 

NIP Injection 1 2.67 1.96 0.73 

NIP Injection 2 2.87 2.05 0.72 

    

BHb 4.32 2.39 0.55 

MIP 1 Injection 1 4.42 2.46 0.56 

MIP 1 Injection 2 3.91 2.22 0.57 

    

BHb 4.43 2.48 0.56 

MIP 2 Injection 1 3.38 2.31 0.68 

MIP 2 Injection 2 3.26 2.26 0.70 

        

BHb 3.87 2.04 0.53 

MIP 3 Injection 1 3.40 1.88 0.55 

MIP 3 Injection 2 3.26 1.82 0.56 

        

 

 

 

 

 

 

Table(s)
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Sample 

dilution 

Thickness 

nm 

Mass 

ng/mm
2
 

Density 

g/cm
3
 

Refractive 

index 

BSA MIP      

Plasma reloading 0 1.28 0.75 0.58 1.44 

 1 in 10 0.95 0.53 0.56 1.44 

 1 in 100 0.52 0.20 0.38 1.41 

      

After 100µg/ml BSA reloading 0 1.13 0.68 0.60 1.44 

 1 in 10 0.94 0.51 0.54 1.43 

 1 in 100 0.39 0.12 0.31 1.39 

BSA MIP      

Serum reloading 0 0.97 0.68 0.70 1.46 

 1 in 10 2.85 0.80 0.28 1.39 

 1 in 100 0.15 0.09 0.57 1.44 

      

After 100µg/ml BSA reloading 0 0.76 0.60 0.78 1.48 

 1 in 10 2.02 0.63 0.31 1.39 

 1 in 100 1.45 0.66 0.45 1.42 

 

 

Table 2 Thickness, mass, density and refractive index changes after injecting either: 

whole; 1:10 diluted serum; or 1:100 diluted serum or plasma followed by 100µg/ml 

BSA over BSA MIPs. 

Table(s)
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Figure 1 Changes in thickness (-x-), mass (--) and layer density (    ) following 

the deposition of BHb upon the sensor surface. 
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Figure 2 Changes in thickness (-x-), mass (--) and layer density (     ) of 

deposited protein layer as a result of the injection of MIP 2 HydroMIP gel 

samples. 
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Figure 3: DPI mass response for BSA MIP (bottom trace), and BHb MIP (top trace) 

when reloading 100µg/ml BHb. 
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