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Synthesis of carbon-13 labelled carbonaceous deposits and their 1 

evaluation for potential use as surrogates to better understand the 2 

behaviour of the carbon-14-containing deposit present in 3 

irradiated PGA graphite.  4 

L. Paynea*, S. Walkerb, G. Bondb, H. Ecclesc, P. J. Hearda, T. B. Scotta and S. J. 5 

Williams d.  6 

a) Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, BS8 1TL, UK. 7 

b) Centre for Materials Science, University of Central Lancashire, PR1 2HE, UK. 8 

c) John Tyndall Institute for Nuclear Research, School of Computing, Engineering and Physical 9 

Sciences, University of Central Lancashire, PR1 2HE, UK. 10 

d) Radioactive Waste Management, B587, Curie Avenue, Harwell Oxford, Didcot, OX11 0RH, UK 11 

Abstract 12 

The present work has used microwave plasma chemical vapour deposition to generate 13 

suitable isotopically labelled carbonaceous deposits on the surface of Pile Grade A graphite 14 

for use as surrogates for studying the behaviour of the deposits observed on irradiated 15 

graphite extracted from UK Magnox reactors. These deposits have been shown elsewhere to 16 

contain an enhanced concentration of 14C compared to the bulk graphite. A combination of 17 

Raman spectroscopy, ion beam milling with scanning electron microscopy and secondary ion 18 

mass spectrometry were used to determine topography and internal morphology in the formed 19 

deposits. Direct comparison was made against deposits found on irradiated graphite samples 20 

trepanned from a Magnox reactor core and showed a good similarity in appearance. This 21 

work suggests that the microwave plasma chemical vapour deposition technique is of value in 22 

producing simulant carbon deposits, being of sufficiently representative morphology for use 23 

in non-radioactive surrogate studies of post-disposal behaviour of 14C-containing deposits on 24 

some irradiated Magnox reactor graphite.  25 

 26 

 27 

 28 

 29 

 30 
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1. Introduction 33 

The decommissioning of the UK’s first generation of gas-cooled, graphite-moderated 34 

(Magnox) reactors will lead to approximately 45,000 m3 of irradiated reactor core graphite, 35 

with a packaged volume of 59,000 m3, for geological disposal [1].  An important radionuclide 36 

in safety assessments for the disposal of radioactive waste in a geological disposal facility 37 

(GDF) is the long lived isotope 14C (half-life 5730 years) [2]. With an approximate total 14C 38 

activity of more than 7000 TBq arising from Magnox graphite cores and the additional 39 

volume of graphite waste arising from advanced gas-cooled reactors (AGR) [2], investigation 40 

of the behaviour of 14C associated with such wastes after closure of a geological disposal 41 

facility is important. Whilst reactor graphite has been extensively studied from a physio-42 

mechanical standpoint, related to core integrity, relatively little research effort has been 43 

placed on understanding the behaviour of the graphite and constituent 14C in a geological 44 

disposal environment.  45 

Recent research [3] providing post mortem analysis of irradiated graphite from two Magnox 46 

reactor cores highlighted the presence of a carbonaceous deposit on the exposed surfaces of 47 

the graphite bricks (channel and interstitial walls) from one of the reactors that has a 48 

pronounced and markedly different morphology to the bulk graphite. The extent of this 49 

deposit is likely to be a worst case scenario and it is anticipated that not all Magnox reactors 50 

may contain such significant deposits. However, these surface deposits have been determined 51 

to have a significant 14C content compared to the bulk graphite [4] that has been created via 52 

formation pathways discussed elsewhere [5].  It is not understood how these deposits will 53 

behave in a GDF setting in comparison to the graphite which it coats. Specifically there is a 54 

gap in the understanding of the release rate and magnitude of the labile 14C fraction, of which 55 

14C located in deposited material may contribute significantly, with this labile fraction 56 

expected to achieve relatively early release in the lifetime of a GDF [6]. The pronounced 57 

“cauliflower-like” morphology observed is not unique to nuclear reactors and similar 58 

morphologies have been commonly reported within the scientific literature for carbon from a 59 

range of deposition techniques unrelated to nuclear applications [7-11]. At present such 60 

deposits are of specific interest in geological disposal of graphite waste from the 61 

decommissioning of Magnox reactors, as the deposited material may be present and represent 62 

a significant fraction of the labile 14C. 63 

The Magnox reactors represent the first generation of gas-cooled reactors in the UK that used 64 

carbon dioxide (CO2) as the primary coolant and a honeycomb network of graphite bricks to 65 
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provide neutron moderation. During reactor operation significant amounts of carbon 66 

monoxide (CO) was produced from the CO2 coolant. This CO in turn can be radiolytically 67 

polymerised to form a carbonaceous deposit on free surfaces [12]. This non-graphitic carbon 68 

deposit is significantly more chemically reactive to air than the underlying graphite [12, 13]. 69 

During the lifetime of some Magnox reactors, small quantities of methane gas were injected 70 

into the coolant gas to inhibit weight loss of the graphite core due to radiolytic oxidation [14]. 71 

Methane (CH4) is a precursor for carbonaceous deposits that form a sacrificial layer 72 

protecting the underlying graphite from excessive weight loss [15] and reduction in 73 

mechanical strength [16]. It is assumed nitrogen incorporation during deposit formation is the 74 

subsequent production route for the high 14C levels observed.  75 

CH4 is also a commonly utilised feedstock gas for the production of diamond and other 76 

carbon coatings by the process of chemical vapour deposition (CVD) [17]. The growth of 77 

carbon materials by CVD involves the excitation of a carbon-containing precursor gas using a 78 

thermal or plasma energy source that creates activated radicals that will bond to a suitable 79 

exposed surface. Therefore, even though differences exist in the formation of carbonaceous 80 

deposits from CO and CH4, both include the activation of carbon-containing gas creating 81 

activated carbon species that will bond to surfaces. Recent work [3] showed that graphite 82 

from the Oldbury Magnox power station, which had methane introduced into the coolant gas, 83 

had a significant deposit on the fuel and interstitial channel walls of the graphite bricks. This 84 

suggested that the deposit formed may be due to methane. A comparison of the morphology 85 

and density of such deposits will help determine whether a 13C methane deposit can be used 86 

as a simulant for the surface deposit found on irradiated graphite in further work.  If 13C 87 

carbonaceous deposits can be used as a simulant for the deposits seen on irradiated graphite it 88 

will allow easier, non-radioactive investigations of the potential release of 14C from deposits 89 

on irradiated graphite in a geological disposal environment including the potential microbial 90 

interaction with such material. If the deposits observed on the graphite behave differently to 91 

the underlying graphite it may lead to a significantly different release rate for 14C from the 92 

deposit than from the underlying graphite when contacted by groundwater some time after 93 

the closure of a geological disposal facility. Microbial colonisation may also be more likely 94 

on the deposit than the underlying graphite due to the increased surface area due to the 95 

amorphous nature of the material. 96 

The use of a 13C simulant allows wider access into the research of nuclear graphite, which 97 

contains many other radionuclides such as 60Co, as facilities to handle radioactive materials 98 

are not required. Isotopic differences in the precursor material should not alter the chemical 99 
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nature and/or effect the chemistry of the deposited carbon material. To this end, 13C has 100 

previously been used as a common isotopic tracer in biological systems [18] and implanted in 101 

graphite [19] as a non-radioactive proxy for 14C . In the current work we demonstrate the use 102 

of microwave plasma CVD to create a carbonaceous layer on graphite substrates that exhibit 103 

similar morphologies and densities to deposits observed to have formed in-service on 104 

Magnox graphite moderator blocks. The non-radioactive isotope 13C was selected as a tracer 105 

during CVD deposition such that deposit-substrate interfaces could be clearly resolved using 106 

imaging mass spectrometry analysis to determine the degree of material mixing and substrate 107 

etching.  108 

The present work is part of a larger programme (C14-BIG) directed at gaining a better 109 

understanding and predicting the release of graphite derived 14C from a GDF and the 110 

influence of microbial activity under alkaline conditions expected to predominate for a 111 

significant time in a cement-based near field of a geological disposal facility after closure. 112 

2. Experimental 113 

2.1. Sample preparation 114 

Pile Grade A (PGA) graphite was provided by Magnox Limited as a surplus material from 115 

the commissioning of the Wylfa nuclear power reactors, Wales. This graphite was trepanned 116 

into cores of 12 mm diameter using a stainless steel coring tool. The cores were then cut into 117 

2 mm thick discs using a South Bay Technology Inc. Model 650 low speed diamond cutting 118 

wheel with deionised water used as coolant. This process gave a flat surface that was a 119 

Figure 1, Schematic diagram of a single mode microwave plasma chemical vapour deposition (MPCVD) 
system. (A: variable power microwave controller (max. 1000 W); B: air-cooled microwave generator; C: water-
cooled circulator; D: 4 port single mode TE01 microwave cavity; E: double plunge microwave tuner; F: mass-
flow controllers; G: diaphragm vacuum pump; H: mass spectrometer; I : quartz tube containing a graphite disc 
on a porous glass sinter.) 
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suitable substrate for deposition. Subsequently 12C and 13C carbonaceous deposits were 120 

formed on the graphite surfaces using microwave plasma chemical vapour deposition 121 

(MPCVD), Figure 1.  122 

Coating was carried out using a computer-controlled 2.45 GHz microwave generator 123 

(variable power output – maximum 1000 Watts), TE01 single mode cavity (Sairem 124 

downstream plasma source WR340), double plunge microwave tuner, mass-flow controllers 125 

(MFC) and a carrier (Argon) and precursor gas at a total flow rate of 50 cm3  min-1. Sample 126 

coatings were made at methane concentrations of 2, 10 and 20% for 12CH4 and 2% for 13CH4. 127 

For coating, each cylindrical PGA graphite disc was placed on a glass sinter situated inside a 128 

quartz tube which was aligned to position the disc within the centre of the waveguide. The 129 

tube was then connected to the mass-flow controllers, a gas flow was established and then the 130 

system was placed under a low vacuum. Once a 1000 Pa system pressure had been achieved 131 

the microwave generator was switched on and the microwave reflectance was reduced, as 132 

much as possible, using the double plunge microwave tuner. Once the microwave reflectance 133 

was tuned the CVD coating process was left to proceed for a period of 30 minutes [20].  134 

Additionally, deposition was performed at varying pressures (1000, 5000, 10 000 Pa), 135 

however a flow rate of 50 cm3 min-1 for the gas mixture did not achieve a system pressure of 136 

less than 700 Pa. A lower flow rate of 20 cm3 min-1 was applied at 10% 12CH4 so that a 137 

system pressure of 500 Pa could be achieved, additionally growth was performed at 10 Pa 138 

system pressure at this reduced flow rate. 139 

1-2 mm particles were also produced alongside the disc samples due to crucible size 140 

restrictions for the Linkam catalyst stage for Raman spectroscopy. Additional PGA graphite 141 

was provided by the National Nuclear Laboratory (NNL). This graphite was sectioned into 142 

smaller rectangular sheets using a JCB toolbox saw and then cut into smaller monoliths using 143 

an Erbauer ERB180C tile cutter (with no coolant) thus making the graphite more 144 

manageable. The graphite monoliths were then put into a metal container and placed into a 145 

10-ton hydraulic press, where a pressure between 5-10 tonnes of pressure was used to break 146 

the graphite down into smaller pieces. The pieces were then subsequently filtered using a 3 147 

compartment Fisherbrand stainless steel sieve (aperture sizes: >2 mm, 1-2 mm and <1 mm) 148 

and the 1-2 mm particles were retained for subsequent microwave deposition. Both the larger 149 

and smaller pieces were repeatedly pressed until all of the graphite was left as a mixture of 150 

either particles or powder, following sieving.  151 
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A selection of virgin PGA samples (i.e. without deposit) and irradiated graphite specimens 152 

extracted by trepanning from a Magnox power station were also analysed for comparison, 153 

exact details previously described in [4]. 154 

2.2. Scanning electron microscopy/ Focused ion beam 155 

A Helios NanoLab 600i combined SEM/FIB system (FEI, Oregon USA) was used to obtain 156 

scanning electron micrographs. The focused ion beam (FIB) was utilised to precision mill 157 

trenches to allow the thickness and morphology of the deposit to be determined with 158 

nanometre accuracy and to allow subsequent analysis using other techniques.  159 

Electron micrographs were acquired using an accelerating voltage of 15 kV, an electron beam 160 

current of 0.17 nA and a dwell time of 100 µs. Trenches were FIB milled with the use of a 161 

Ga+ ion source with an accelerating voltage of 30 kV. A Selective Carbon Mill (SCM) gas 162 

was used throughout to enhance milling rates. The SCM admits small amounts of water 163 

vapour directly over the milling area, promoting gasification of the milled material, 164 

enhancing the etch rate and reducing redeposition. It also minimises beam damage and 165 

therefore reduces the need to deposit platinum on the surface as a protective measure. 166 

Initially a 20 nA beam current was used to generate coarsely defined trenches, with 167 

subsequent incremental reductions in ion current to reach a final beam current of 0.9 nA for 168 

surface finishing. The milled trenches had approximate dimensions of 50 µm x 56 µm x 20 169 

µm (x, y and z respectively).  The trench faces were smooth and flat, allowing for direct and 170 

high spatial resolution observation of structures and features.  171 

2.3. Magnetic Sector-Secondary Ion Mass Spectrometry 172 

For isotopic analysis of the samples, an in-house built magnetic sector secondary ion mass 173 

spectrometer (MS-SIMS) was utilised. Full details of the system are described elsewhere 174 

[21]. In summary the system comprised of a focused gallium ion gun (FEI electronically 175 

variable aperture type) fitted to a Vacuum Generators model 7035 double-focusing magnetic 176 

sector mass analyser with a channeltron detector. The sample was held at a 4 kV potential 177 

during analysis. The equipment was controlled using PISCES software, written in-house by 178 

Dayta Systems Ltd (Thornbury, UK).  The system was capable of providing selected ion 179 

mapping and depth profiling with sub-micron resolution.  180 

MS-SIMS analyses were performed in negative ion mode for both spectral acquisition and 181 

secondary ion imaging. Mass spectra and depth profiles were initially acquired from 4 182 
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different areas of the 2% 12C and 13C methane deposits, detecting mass/charge (m/z) signals 183 

at 12, 13, 24 and 26 Da. These ion signals are generated due to the C- and C2
- ions derived 184 

from sputtered 12C and 13C respectively. Mass spectra were obtained by scanning through the 185 

mass range 0-100 Da in 0.05 Da steps, with duration of 100 ms per step and 200 s in total. 186 

Data acquisition was performed at a low magnification to reduce beam damage (area 187 

analysed ~0.25 mm2) and with a 3 nA beam current.  Identification and calibration of the 188 

exact m/z values for use in subsequent depth profiles and images were achieved with the use 189 

of these survey spectra.  190 

Depth profiles record the ion yield intensity from selected sputtered analyte ions over time 191 

while rastering the ion beam over a selected area. As the deposits are suitably thick it is not 192 

anticipated that the depth profile will sputter enough material to immediately expose the 193 

underlying graphite. This allows the signal to be averaged over a set period of time and then 194 

the ratio between signals to be compared. Depth profiles were acquired for 1800 s with a 195 

beam current of 3 nA and area analysed of approximately 2500 µm2. Electronic gating was 196 

used throughout to eliminate signal created at the margins of the etched area. Signal averages 197 

and ratios were calculated from 200 s to 1800 s, disregarding the first 200 s of data as this 198 

was the observed transient period for the experiment.    199 

The species compared were the C2
- ions at 24 and 26 Da, rather than 12 and 13 Da, due to the 200 

strong signals obtained from these species, and also to avoid some prominent mass 201 

interferences. Interference peaks are difficult to eliminate, however the use of the C2
- peak is 202 

appropriate as the present work is not trying to identify trace elements but aiming to 203 

investigate whether the surface deposits are formed of 13C, to what extent 13C is incorporated 204 

into the graphite and how thick the overall deposit is.  205 

Secondary ion images were recorded from the FIB milled trenches using the C2
- ions (24 and 206 

26 Da).  The images were obtained by selecting the m/z ratio of the ion of interest, and then 207 

raster scanning the ion beam over a defined area of the sample. The images presented in this 208 

paper were acquired over a total area of approximately 0.0225 mm2. Each image was 209 

acquired over a 60 second period using a 0.3 nA beam current to give the best possible spatial 210 

resolution whilst still maintaining sufficient ion signal.   211 

2.4.Catalyst stage Raman spectroscopy 212 

A CCR1000 catalyst stage reactor system connected to a T95 system controller and LinkPad 213 

interface (Linkam, Surrey UK) was used for the thermal oxidation of the PGA graphite 1-2 214 
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mm particles. For in situ spectral acquisition, a LabRAM HR800 confocal Raman microscope 215 

(Horiba Jobin Yvon, Kyoto Japan) was used.The sample was heated up in the crucible inside 216 

of the catalyst stage from room temperature up to 600 °C (at 10 °C min-1), with a 50 cm3 min-
217 

1 flow of air. Spectra were acquired using a 532 nm laser, a 50X long-working distance 218 

objective, a 300 g mm-1 grating, and spectral acquisition times of 25 s every 50 °C. 219 

The heating regime and the spectral acquisition parameters for automated analysis were 220 

controlled using a built-in Linkam module script in the Horiba Labspec 6 software package. 221 

The Raman spectroscopy system was calibrated using the 520 cm-1 peak from a silicon 222 

crystal.Spectral analysis, during thermal oxidation in air, of virgin PGA graphite and PGA 223 

graphite with 12C and 13C carbonaceous deposits was carried out to analyse the thermal 224 

profile of the surface material (i.e. graphite substrate) and the “cauliflower-like” 225 

carbonaceous deposit. This technique allows for analysis of the thermal oxidation 226 

properties/reactivity of the different carbon materials and also surface chemical changes due 227 

to thermal oxidation. 228 

3. Results  229 

3.1. Scanning Electron Microscopy 230 

The deposit formed on irradiated graphite taken from Oldbury Magnox reactor has a distinct 231 

and pronounced morphology, Figure 2a, compared to virgin PGA graphite, Figure 2b [3]. For 232 

comparison, electron micrographs of the 2% 12CH4 and 2% 13CH4 deposits can be seen in 233 

Figure 3, a and b respectively. The distinction between deposit and underlying graphite 234 

should be noticeable due to the lack of characteristic features in the deposit that are routinely 235 

seen in all PGA graphite such as shrinkage cracks and ligaments between pores [22] , Figure 236 

4. The deposits found on irradiated graphite have a ‘cauliflower-like’ appearance due to an 237 

agglomeration of irregular spheres, Figure 5.  After FIB milling the internal morphology of 238 

the 2% 13CH4 and 2%, 10% and 20%  12CH4 deposited samples can be seen in  Figure 6a, b ,c 239 

,and d respectively.  240 

The 2% 12C and 13C methane CVD deposits were observed to have a porous, ‘feathery’ 241 

texture that appears to be significantly less dense than the underlying graphite. For the 242 

irradiated graphite however, there was very little distinction in density or fine structure 243 

between the deposit and the underlying graphite (the deposit appears to have a lower porosity 244 

compared to virgin PGA, Figure 5). It is possible that the underlying PGA graphite in the 245 
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irradiated samples is protected from radiolytic oxidation by the carbon deposit, leading to the 246 

deposit and underlying graphite being difficult to distinguish [15].   247 

  248 

Further investigation using greater methane concentrations showed increases in the apparent 249 

density of the deposit (which was only determined visually), Figures 6 (b), (c) and (d), that 250 

are more closely comparable to the deposit found on irradiated graphite. Deposits produced at 251 

system pressures of 5000 and 10000 Pa were of different morphology, instead comprising an 252 

agglomeration of spherical deposits that were not as extensive or as thick as those grown at 253 

the lower pressure of 1000 Pa. Reducing the flow rate to 20 cm3 min -1 allowed a system 254 

pressure of 500 Pa to be achieved, however even though the surface topography of the 255 

Figure 3, Scanning electron micrographs from 12C (a) and 13C (b) carbonaceous deposits on Pile 
Grade A graphite, system pressure 1000 Pa. 

Figure 2,a) Focused ion beam mage of deposit found on irradiated graphite surface, from [4] and 
b) virgin PGA surface. 
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deposit was similar to irradiated material and the other cauliflower-like deposits formed, the 256 

internal morphology exhibited extensive porosity and this did not appear suitable as a 257 

simulant, Figure 7(a).  Conversely, growth at a system pressure of 1000 Pa at this reduced 258 

flow rate formed a deposit that was very similar to that grown at 50 cm3 min-1, Figure 7(b). 259 

The deposit formed at 1000 Pa pressure at 10% methane concentration showed the closest 260 

resemblance to those seen on Oldbury irradiated Magnox graphite and was deemed to be the 261 

most suitable for use as a simulant. 262 

 263 

 264 

 265 

 266 

  267 

 268 

 269 

  270 

Figure 4, Scanning electron micrograph from 
cross section of an uncoated Pile Grade A 
graphite after FIB milling showing 
characteristic cracking and ligaments, shown 
with the arrows.  

Figure 5, Focused ion beam image from cross 
section of channel wall trepanned sample 
from a Magnox reactor [3]. 
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 271 

Figure 6. Scanning electron micrographs showing the ion beam milled cross sections for 2% 13CH4 
(a) and 2% (b), 10% (c) and 20% (d) 12CH4 deposited samples, all at system pressure of 1000 Pa. 

Figure 7. Scanning electron micrographs showing the ion beam milled cross sections at system pressures of 
500 (a) and 1000 (b) Pa, flow rate 20 cm3 min-1. 
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3.2. Secondary Ion Mass Spectrometry  272 

Survey spectra from the 2% methane 12C and 13C deposits are shown in Figures 8 (a) and (b) 273 

respectively.  Signals recorded at mass/charge peaks of 13 Da (13C- and 26 Da (13C2
-)) are 274 

significantly greater in the 13C deposit compared to the 12C deposit, although these signals are 275 

also present in the 12C sample due to 12CH- and 12CN- species respectively. The mean ratio 276 

(n=4) between the peak heights at 26 Da and 24 Da for the 12C deposit was found to be 0.14 ± 277 

0.03. The mean ratio (n=4) for the 13C deposit was 115.3 ± 19.1. This increase of several 278 

orders of magnitude is strong evidence that the deposit is predominately 13C as the interfering 279 

peak from 12CH at 13 Da is unlikely to be higher in the 13C sample.  The errors given here are 280 

likely to be due to the strong dependence of signal intensity on location and geometry of the 281 

sample in the SIMS system [23]. 282 
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Figure 8, SIMS spectra from 2% methane 12C (a) and 13C (b) deposit. 
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The areas analysed were selected randomly and the only criteria for examination was that 283 

they produced sufficient SIMS signal to allow analysis. Due to the surface not having a 284 

uniform, flat surface there are likely to be topographic effects that will affect the signal 285 

recorded. This has been studied by other authors [23-25] with suggestions that the changes 286 

may be due to the incident angle of the beam, the height of the features and variations in the  287 

electric field due to topographic features that may lead to trajectory changes of the secondary 288 

ions [24].   289 

SIMS ion signal maps have been recorded for 26 Da and 24 Da for a 13C sample, Figure 9 (a) 290 

and Figure 9 (b) respectively.  For the 13C deposit the mass peak signal at 26 Da is present 291 

primarily on the deposit with a significant reduction in signal in the underlying graphite with 292 

the 24 Da signal being the reverse, with a more intense signal recorded in the underlying 293 

graphite than in the deposit.  This shows that the 13C is deposited on top of the underlying 294 

graphite.  The signal at the bottom of the trench has a relatively high intensity for both 24 and 295 

26 Da, and this may be due to re-deposition of sputtered material originating from the 13C 296 

deposit during FIB milling of samples [26]. 297 

3.3.Catalyst stage Raman spectroscopy 298 

A three-vectored graph displaying Raman shift, intensity and temperature (x, y and z axis 299 

respectively) was used to illustrate the Raman spectra at each temperature during the thermal 300 

oxidation experiment. The Raman spectra are displayed between 1100 – 1700 cm-1 to allow 301 

the critical peaks related to both 12C and 13C carbonaceous materials to be compared. The 12C 302 

Figure 9, Secondary Ion signal maps for 26 Da (a) and 24 Da (b) from cross section of 13C carbonaceous deposit on 
top of Pile Grade A graphite after FIB milling. 

50µm 50µm 
(b) (a) 
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peaks are the 12D peak at ~1350 cm-1 and the 12G peak at ~1575 cm-1 and the 13C peaks are 303 

the 13D peak at ~1300 cm-1 and the 13G peak at ~1525 cm-1.  304 

3.3.1.  Virgin PGA 305 

The thermal oxidation spectral profile for a virgin PGA graphite 1-2 mm particle is shown in 306 

Figure 10. This spectral profile shows that there was a negligible change in the intensity of 307 

the D and G peaks between 50 – 600 °C. This indicates that between 50 – 600 °C the surface 308 

of the PGA graphite undergoes very minimal surface oxidation and that the PGA is mostly 309 

unreactive. 310 

As the surface of the virgin PGA material remains relatively unchanged during thermal 311 

oxidation it will readily allow for any spectral changes, due to the thermal oxidation of 12C 312 

and 13C carbonaceous deposits, to be isolated. 313 

 314 

Figure 10, In situ Raman spectral analysis, during thermal oxidation, of a 1-2 mm virgin PGA 
graphite particle. 
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3.3.2. PGA Graphite with 12C and 13C Deposits 315 

The thermal oxidation spectral profiles for a 2 % 12CH4 and 13 CH4 deposit on a PGA graphite 316 

particle are shown in Figures 11 and 12 respectively. Figure 11 shows that there is a 317 

noticeable decrease in the 12D peak intensity between 400 – 600 °C. This indicates that the 318 

12C carbonaceous deposit begins to thermally oxidise at approximately 400 °C and appears to 319 

have been completely removed by 600 °C indicated by the intensity of the 12D peak at 600 320 

°C, showing the spectral profile of the virgin PGA graphite material.  321 

There is a noticeable decrease in the 13D & 13G peak intensities between 450 – 600 °C in 322 

Figure 12, which are solely present due to the 13C carbonaceous deposit. This indicates that 323 

the 13C carbonaceous deposit begins to thermally oxidise at approximately 450 °C and 324 

appears to have been completely removed by 600 °C indicated by the absence of the 13D & 325 

13G peaks at 600 °C, showing the spectral profile of the virgin PGA graphite material.  326 

The intensities of the 12D and 12G peaks (PGA graphite) do not decrease but in fact increase 327 

relative to the decrease in the intensities of  the 13D and 13G peaks (13C carbonaceous 328 

Figure 11, In situ Raman spectral analysis, during thermal oxidation, of a 2% CH4 
12C 

carbonaceous deposit on a 1-2 mm PGA graphite particle 
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deposit), which also illustrates that the surface of the virgin PGA material, as a base substrate, 329 

remains relatively unchanged during thermal oxidation. 330 

As the Raman peaks associated with the deposits decrease between 400 - 600 °C it indicates 331 

that the carbonaceous material on the surface has a similar oxidation temperature to that of 332 

the carbonaceous deposits found on irradiated PGA graphite (M. P. Metcalfe, personal 333 

communication, 11th November 2013). 334 

Figure 13 illustrates the isothermal profiles of virgin PGA graphite, irradiated PGA graphite 335 

deposit & a 12C microwave simulant deposit at 450 oC, in air, over a 50 hour period. The 336 

oxidation of virgin PGA graphite is negligible whereas the irradiated PGA graphite deposit & 337 

the C-12 microwave simulant deposit show significantly greater rates of oxidation and are 338 

clearly more reactive. Initially the rates of thermal oxidation remain fairly similar for the first 339 

5 hours for the irradiated PGA graphite deposit & the 12C microwave simulant deposit but for 340 

the next 45 hours the irradiated PGA graphite deposit shows a greater rate of thermal 341 

Figure 12, In situ Raman spectral analysis, during thermal oxidation, of a 2% CH4 
13C 

carbonaceous deposit on a 1-2 mm PGA graphite particle 
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oxidation. This deviation in rates of reactivity may be due to irradiated damage caused to the 342 

underlying PGA graphite in the irradiated PGA graphite sample whereas the underlying PGA 343 

graphite in the microwave simulant underwent no irradiation and started off as pristine virgin 344 

PGA graphite. However the microwave simulant carbonaceous deposit reactivity seen in the 345 

TGA isothermal data shows a similar reactivity to that of the carbonaceous deposit seen in 346 

irradiated PGA graphite.   347 

4. Discussion 348 

 Previous examination [3] of irradiated graphite from Magnox reactors has shown that during 349 

generation lifetime a carbonaceous deposit can be formed on the fuel and interstitial channel 350 

walls of the graphite moderator that has a markedly different morphology to the underlying 351 

PGA graphite. This work aimed to form a similar carbonaceous deposit using 13C precursor 352 

gas to allow subsequent investigation of the behaviour of such deposits in leaching and 353 

microbial studies pertinent to examining graphite degradation and 14C release in a GDF [27]. 354 

Use of a simulant allows future experiments to be performed more easily than using 355 

irradiated graphite due to a removal of the need to work with radioactive materials.  356 

However, the use of simulants necessitates care to ensure that they are representative of the 357 

properties being examined. With the use of several experimental techniques (FIB, SEM, MS-358 

SIMS, Raman) this work has examined the internal morphology as well as the surface 359 

Figure 13, Thermograms from virgin PGA graphite, irradiated PGA graphite and 12C simulant 
deposit on PGA graphite examined at 450 °C, in air, over a 50 hour period. 
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topography of carbonaceous deposits formed using microwave plasma CVD and compared 360 

them to irradiated graphite trepanned from a Magnox power station graphite core.  361 

Microwave plasma CVD has been used to form adherent carbonaceous deposits on the 362 

surfaces of virgin (unirradiated) PGA graphite discs. Microwave plasma CVD is widely used 363 

to grow other carbon materials with differences in growth parameters (precursor gas, 364 

temperature, pressure, microwave power) leading to different allotropes being formed most 365 

notably Carbon-Nanotubes (CNT) [28, 29] and diamond [30, 31].  Initially, 12C precursor gas, 366 

using a system pressure of 1000 Pa with a flow rate of 50 cm3 min-1, was used, primarily due 367 

to the high cost of labelled isotopic gases, and with the use of scanning electron microscopy 368 

the surface topography was found to be very similar to the ‘cauliflower-like’ deposits found 369 

on irradiated graphite [3]. However, after sectioning with a focused ion beam it was found 370 

that the internal morphology was more porous than the deposit found on irradiated graphite.  371 

This is believed to be due to the growth rate, approximately 50 µm hour-1, of the deposit 372 

being too rapid to allow a dense deposit to be formed. By comparison, growth rates of 373 

diamond using microwave plasma CVD are usually in the region of 1 µm hour-1 [32] and 374 

these form ‘solid’ deposits. By increasing the methane concentration in the precursor gas mix 375 

an increased density in the deposit was achieved, likely due to the increased availability of 376 

carbon radicals available for deposition. It should be noted that the deposits formed on 377 

irradiated graphite are formed at conditions that are very difficult to replicate, pressures of 1-378 

3 MPa, temperatures of approximately 400 °C and in the presence of a neutron flux [33], 379 

therefore the high density of the deposits found on irradiated graphite is likely due to the high 380 

pressure environment, whereas in microwave plasma CVD low pressures are used so that the 381 

plasma can be sustained.   382 

Further experiments were carried out to investigate the parameters which can affect the 383 

growth rate of carbonaceous deposits and to determine whether a more representative 384 

carbonaceous deposit could be formed using microwave plasma CVD. Experiments carried 385 

out at 200 W using 2, 10 & 20% CH4 failed to generate carbonaceous deposits. However, 386 

deposition at 400 W induced a rapid growth of carbonaceous material.  387 

Further tests were carried out at both 5000 & 10000 Pa pressures using 10% CH4. Deposits 388 

were produced for both pressures; however these deposits showed a thin agglomeration of 389 

carbonaceous spheres on the graphite substrate. This difference in form and thickness shows 390 

that growth at higher pressures is not suitable in producing an analogous material for studying 391 

irradiated material. At pressures of 500 Pa with the reduced flow rate the deposit was not 392 

analogous of those found in irradiated material, suggesting that the most representative 393 
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deposit is formed at system pressure of 1000 Pa with a 50 cm3 min-1 flow of 10% CH4:90% 394 

Ar. 395 

Growth using 13C precursor gas showed a similar topography/morphology to 12C deposits 396 

indicating that there is no appreciable difference in the growth mechanism between the 397 

different isotopes, thereby justifying the use of this simulant to study the behaviour of 398 

carbonaceous deposits found on irradiated graphite. The clear separation of the deposit and 399 

underlying graphite shown by isotopic imaging using a MS-SIMS has shown that a deposit is 400 

formed, and cross-sectional images indicate that the topography and morphology are very 401 

similar to the ones found on irradiated graphite. Catalyst stage Raman spectroscopy 402 

combined with TGA have shown these deposits to be of a similar reactivity to those found on 403 

irradiated graphite. These deposits appear to be suitable for further studies involving 404 

microbial systems to examine the possible release of the deposit into the environment in a 405 

geological disposal facility. Based on the thermal oxidation behaviour, the density difference 406 

in the surface deposit materials between irradiated and simulant samples does not appear to 407 

significantly influence observed reactivity. With the surface layers exhibiting rapid 408 

degradation at much lower temperatures than the underlying graphite.  409 

5. Conclusion 410 

Carbonaceous 12C and 13C deposits were formed on Pile Grade A graphite using microwave 411 

plasma deposition and examined using Focused Ion Beam, Scanning Electron Microscopy 412 

and Magnetic Sector-Secondary Ion Mass Spectrometry.  Several conclusions can be drawn: 413 

1. The surface topography of both 12C and 13C deposits formed by MPCVD are very 414 

similar to the ‘cauliflower-like’ deposits found on graphite samples trepanned from a 415 

Magnox reactor. 416 

2. Deposits formed at 1000 pa system pressure with a 50 cm3 min-1 flow of 10% 417 

CH4:90% Ar showed the closest resemblance to the deposits on the irradiated 418 

material.  419 

3. The internal morphology of the deposit is slightly more porous than that found in 420 

irradiated graphite. However, variations in methane concentrations and gas pressure 421 

can affect the density of deposited material. 422 

To summarise, there is a potential use of the 13C containing deposits synthesised in this work 423 

to act as simulants in future studies aimed at better understanding and predicting the post-424 
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disposal behaviour of irradiated graphite waste  in a geological disposal environment and the 425 

associated release profile of 14C arising from the labile deposit.    426 
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