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Introduction: Vocal anger is a salient social signal serving adaptive functions in typical child
development. Despite recent advances in the developmental neuroscience of emotion pro-
cessing with regard to visual stimuli, little remains known about the neural correlates of
vocal anger processing in childhood. This study represents the first attempt to isolate a
neural marker of vocal anger processing in children using electrophysiological methods.

5‘;{ zords" Methods: We compared ERP wave forms during the processing of non-word emotional
ERP vocal stimuli in a population sample of 55 6-11-year-old typically developing children.
N400 Children listened to three types of stimuli expressing angry, happy, and neutral prosody
Children and completed an emotion identification task with three response options (angry, happy

and neutral/‘ok’).
Results: A distinctive N400 component which was modulated by emotional content of vocal
stimulus was observed in children over parietal and occipital scalp regions—amplitudes
were significantly attenuated to angry compared to happy and neutral voices.
Discussion: Findings of the present study regarding the N400 are compatible with adult
studies showing reduced N400 amplitudes to negative compared to neutral emotional stim-
uli. Implications for studies of the neural basis of vocal anger processing in children are
discussed.

© 2011 Elsevier Ltd. Open access under CC BY-NC-ND license,

1. Introduction as well as infants (Grossmann et al., 2010) and 4-5-year-
old children (Rogier et al., 2010). Further research suggests
that the human brain begins to become sensitive to emo-
tional information expressed in vocal tone at an early stage
in development (Grossmann et al., 2010, 2005). The abil-
ity to read others’ non-verbal social signals is argued to
allow humans to navigate their social environment suc-

cessfully and modify their behaviour according to others’

Human voices are auditory stimuli processed in spe-
cialised brain regions in healthy adults (Belin et al., 2000),
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feelings and intentions (Frith and Frith, 2007). Further-
more, sensitivity to others’ vocal emotional expressions has
been associated with social competence in childhood and
adolescence (Goodfellow and Nowicki, 2009; Rothman and
Nowicki, 2004; Trentacosta and Fine, 2010).

Emotional prosody (or speech melody) refers to changes
in the intonation of the voice according to the speaker’s
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emotional state (Banse and Scherer, 1996; Hargrove, 1997).
According torecent research, words with an angry prosody,
for example, elicited more negative ERP responses (latency
450ms) over fronto-central sites compared to words
with happy or neutral prosody in 7-month-old infants
(Grossmann et al., 2005). Further studies showed increased
brain activation patterns in the posterior temporal cor-
tex to angry compared to neutral and happy prosody in
7-month-old infants (Grossmann et al., 2010). Similarly,
functional Magnetic Resonance Imaging (fMRI) studies in
adults have shown that angry relative to neutral prosody
elicited enhanced responses in middle superior temporal
sulcus (Grandjean et al., 2005; Sander et al., 2005). In con-
trast, happy voices (and not angry or neutral voices) have
been found to evoke an increased response in right infe-
rior frontal cortex in 7-month-old infants (Grossmannetal,,
2010) and adults (Johnstone et al., 2006).

Several research studies have shown that children can
reliably recognise anger on the basis of vocal tone (Baum
and Nowicki, 1998; Nowicki and Mitchell, 1998; Tonks
et al.,, 2007), however little is known about how this pro-
cess changes with development. The N100 is a negative
component occurring at about 100 ms post stimulus and
is thought to reflect sound detection and early attentional
orienting (Bruneauetal., 1997; Nddtdnen and Picton, 1987).
The N100 is sensitive to differences in sound intensity
or frequency of acoustic stimuli (Ceponiene et al., 2002;
Nddtdnen and Picton, 1987). In 4-8-year-olds, the N100
peaks around 170 ms at temporal sites, for example, and is
thought to reflect auditory behavioural orienting (Bruneau
et al., 1997). A recent study showed no effect of vocal
emotion (angry, happy) on the amplitude and latency of
an early (i.e,, 100-200 ms) negative component during a
passive listening task in 13 healthy 9-11-year-old boys
(Korpilahti et al., 2007). However, previous research has
typically employed a small sample size and utilised speech
stimuli (i.e., ‘give it to me’; see Korpilahti et al., 2007);
making it difficult to disentangle sensitivity to emotional
prosody from sensitivity to the language content. In the
current study we isolated the N100 suggested to reflect
early auditory attention orienting (Bruneau et al., 1997).

In addition, we explored the N400; a centro/parietal
negative component occurring at about 400 ms after stim-
ulus onset. The N400 is typically larger for words presented
in incongruous than congruous sentence contexts (i.e., cof-
fee with socks/sugar) (Kutas and Hillyard, 1980). Schirmer
etal.(2005) presented adult listeners prime sentences (i.e.,
‘she had her exam’) with happy or sad prosody followed
by visual target words. Half the target words matched the
prosody of the preceding sentence (i.e., ‘success’ follow-
ing happy prosody) and half did not (i.e., ‘failure’ following
happy prosody). Participants indicated whether the tar-
get word matched the prosody of the preceding sentence.
Results showed that target words (i.e., ‘success’) elicited
a larger N400 when preceded by a prime with incon-
gruous (i.e., sad) as compared to congruous (i.e., happy)
emotional prosody (Schirmer et al., 2005). This demon-
strates sensitivity of the N40O component to an emotional
prosodic context. In a similar study, Bostanov and
Kotchoubey (2004) presented different word-exclamation
pairs using spoken emotion words as primes (i.e., ‘joy’) and

corresponding emotional exclamations as targets (i.e.,
grief) with consistent (i.e., positive-positive) and inconsis-
tent (i.e., positive-negative) combinations. Results showed
that N400 amplitude was significantly larger for the
inconsistent condition. In summary, the N400 is thought
to reflect cognitive processes related to context viola-
tion during emotion recognition and can prove a useful
electrophysiological marker of emotional prosody compre-
hension.

In summary, previous research has focused on the N400
to vocal emotion in adults and incongruity effects following
a prime, however, the time course (ERPs) of vocal anger
processing in middle childhood remains unexplored.

1.1. The current study

The goal of the current study was to isolate the
neural signature of anger prosody processing in chil-
dren. To this end, we focused on N100, a putative
marker of early auditory processing, and the N400, a late
emotion-specific processing component. Following previ-
ous research (Bostanov and Kotchoubey, 2004; Schirmer
et al.,, 2005; Toivonen and Rdamd, 2009) we predicted that
the N400 component would be modulated by emotional
prosody (i.e., anger vs. neutral stimuli). Second, following
previous findings (i.e., Korpilahti et al., 2007) we predicted
that the N100 would be insensitive to the emotional con-
tent of the sounds and so be insensitive to anger related
stimuli in children. We focused on the N100 to rule out
that predicted N400 effects were not driven by pervasive
problems in auditory orienting.

2. Methods
2.1. Participants

Of the 105 children initially approached via primary
schools, 80 were recruited to the study. Children and their
mothers gave informed written consent for participation.
Of those, pilot data from 5 children (mean age = 7.30 years,
SD=.73, age range 6.08-8 years, 2 boys) were excluded
from analyses due to incomplete data and ERP artifacts.
One boy (5.42 years) with a hearing threshold in the atypi-
calrange (46 dB; see below)in the right ear was excluded. In
the end, complete ERP and behavioural data were available
from 55 children (mean age=28.90 years, SD=1.60 years,
age range 6.08-11.83, 39 boys). The study was approved
by the University of Southampton, School of Psychology
Ethics Committee.

2.2. Vocal expression stimuli

Three types of vocal stimuli expressed emotional
prosody (interjection ‘ah’). One stimulus expressed anger,
one happiness, both at a high intensity. There was also
a neutral expression (Maurage et al., 2007).! All stimuli
derived from an adult female model and were standardised

1 Further information about the vocal stimuli is provided in supplemen-
tary material (see Appendix B).
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Table 1

Duration, fundamental frequency —f0 (in Hz) and intensity (in dB) of the vocal stimuli.
Emotion Mean fO Min f0O Max fO Mean dB Min dB Max dB
Angry 294.85 79.07 355.74 76.85 63.43 81.92
Happy 350.31 221.59 525.85 76.50 68.36 83.42
Neutral 191.30 181.21 194.54 76.34 70.30 78.31

for acoustic parameters including mean intensity (76 dB)
leading to a correspondent Sound Pressure Level (SPL)
of 0.13Pa, duration (700ms), recording frequency
(16,000 Hz), and rise and fall ramp times (20 ms). Acoustic
analyses were conducted using Praat sound-analysis soft-
ware (Boersma and Weenink, 2009). Acoustic properties
of the vocal stimuli are presented in Table 1. Vocal stimuli
were presented binaurally via headphones. These stimuli
are well validated in adults (Maurage et al., 2007). The
battery has high internal consistency for each emotion
set and high levels of specificity (independence between
the ratings in the different emotion sets) (Maurage et al.,
2007).

We conducted a behavioural validation study of the
stimuli in a separate community sample of 65 6-11-year-
old children (mean age=8.31 years, SD=1.55, age range
6.00-10.75 years, 31 boys). These children gave informed
written consent to participate out of a total of 97 chil-
dren initially approached via local primary schools. After
listening to one vocal stimulus at a time (Angry, Happy
and Neutral, 12 trials per emotion type), children were
asked to identify the emotion in the voice and press one of
the three keyboard buttons with the labels ‘angry’, ‘happy’
or ‘okay’ to indicate their response. The mean percent-
age of trials classified correctly was as follows: Angry:
M=82.43, SD=28.34, Happy: M=71.28, SD=33.17, Neu-
tral: 40.14, SD =21.99. Accuracy was above-chance for all
emotion types, with chance defined as 33.3% given the
three response options (data available from the authors).
There were no significant associations between age and
recognition accuracy for happy (r=.19, p>.05) and neutral
(r=-.09, p>.05) voices and a marginal significant associ-
ation between age and accuracy for angry voices (r=.26,
p<.05).

2.3. Experimental paradigm and procedure

At the beginning of the experimental session, pure
tone audiometric testing was conducted with a standard
clinical audiometer to establish whether participants’ hear-
ing threshold was within the average range defined as
25dB (see British Society of Audiology Recommended
Procedures, 2004). Children were instructed to indicate
with a button press when a test tone was present and
when it ceased to be present. This procedure was repeated
for each ear (Right/Left) and for three frequency levels
(1000, 1500, 500Hz) separately. Each participant’s hear-
ing threshold was defined as the lowest level of sound they
could hear. An average of the thresholds from the three
frequencies was derived in each ear. An average of the
thresholds from both ears was further created.

Subsequently, children participated in an emotion iden-
tification task with three response options (angry, happy

and neutral/‘ok’). After listening to one vocal stimulus at
a time, children were instructed to identify the emotion
in the voice and press one of the three keyboard buttons
with the labels ‘angry’, ‘happy’ or ‘okay’ to indicate their
response. There were 180 experimental trials (60 trials per
emotion type) presented in two blocks of 90 trials each.
There was a 5-min rest break in between the two blocks.
Children participated in 12 practice trials (four presenta-
tions of each emotion) at the beginning of the task. Button
press responses were logged on the computer via Presen-
tation software. Each trial began with the presentation of
a central fixation cross (500 ms) followed by the presen-
tation of the stimulus, followed by a blank screen until the
participants gave aresponse and a 1000 ms inter-trial inter-
val (ITI). Emotion stimulus presentation was randomised
across participants. The overall testing time, including
audiometric assessment, cap fitting and experimental test-
ing, was one and a half hours.

2.4. Electrophysiological recording and processing

EEG data were recorded from an electrode cap (Easy-
cap, Herrsching, Germany) containing 66 equidistant
silver/silver chloride (Ag/AgCl) electrodes using Neuroscan
Synamps? 70 channel EEG system. Cap electrodes were ref-
erenced to the nose. The EEG data were sampled at 250 Hz
with a band pass filter at 0.1-70 Hz using an AC procedure
and recorded from 19 sites (see Fig. 1). Analyses focused
on 15 sites at central (sites 1, 2, 4, 6, 10, 16), parietal (sites
12, 13, 14, 24, 26) and occipital (sites 37, 38, 39, 40) areas.
Selection of these sites was literature informed (Schirmer
and Kotz, 2006) and aimed at maximising the number of
artifact-free epochs. A ground electrode was fitted mid-
way between the electrode at the vertex and frontal site 32.
Vertical electro-oculogram (VEOG) was recorded from four
electrodes: two bipolar electrodes were placed directly
beneath the left and right eyes and affixed with tape, while
the two electrodes placed above the right and left eye were
included within the electrode cap. Impedances for vEOG,
reference and cap electrodes were kept below 5kS€2. The
ERP epoch was defined as 100 ms pre-stimulus to 1000 ms
post-stimulus. Each epoch had a baseline of 100 ms of pre-
stimulus activity and was filtered with a low-pass filter
down48 dBat32 Hz. Anocular artifact reduction procedure
(Semlitsch et al., 1986) based on VEOG activity was used to
remove the influence of blink and other eye movement;
epochs were rejected if amplitudes exceeded £150 WV in
any EOG or scalp site included in analyses or if participants
responded incorrectly. Average ERPs were calculated for
each emotion type (Angry, Happy, Neutral). A minimum of
20 artifact free epochs out of a total of 60 epochs for each
emotion type were used for calculating ERP averages.



G. Chronaki et al. / Developmental Cognitive Neuroscience 2 (2012) 268-276 271

Central
-3 5
-2 4
-1 4
(4] #
EEL P
3
< il
5 4
6 |
7 time(ms)
8 4
9 N100 N400
10 | 90-180 ms 380-500 ms
11 1
12

Central

Parietal
Occipital

Parietal

-2 4
-1 4 /
16{‘:‘_! ) \
24 \
3 4
4 4
5 4
6
7 4
8 4
94 N100
101  90-180 ms N400

i 380-500 ms'”,

500 600 700

Occipital

27 N100 N40O o
1] 90-180ms  380-500 ms
12 -

— Angry

— Happy
— Neutral

Fig. 1. Grand mean ERPs to angry, happy and neutral voices per scalp region. Amplitude (V) and time (ms) are marked at all regions with a pre-stimulus
baseline of —100 ms. Scale is —3 to +12 wV. On the left, below, the montage with the sites used in EEG recording (in blue the sites used in EEG recording

but not in analyses).

The mean and SD of the number of epochs included
for each emotion condition in the overall sample were
as follows: Angry: M=45.74, SD=9.32, Happy: M=45.40,
SD=9.50, Neutral: M=45.99, SD=8.91. Given the young
age of the children, we examined potential effects of age
on artifact and trial rejection by dividing our sample into
younger (6.08-8.75 years) and older (8.83-11.83 years)
children using a median split. There was a significant effect
of age on the number of correct and artifact free trials
included in analyses for happy (F (1, 54)=6.84, p<.05) and
neutral (F (1, 54)=6.98, p<.05) voices but not for angry (F
(1,54)=3.41,p>.05), with fewer trials for younger children
(Angry: M=43.35, SD=9.40, Happy: M=42.04, SD=9.60,
Neutral: M=42.80, SD=8.90) compared to older children
(Angry: M=47.90, SD=8.87, Happy: M=48.41, SD=8.47,
Neutral: M=48.82, SD=8.00). Age effects in our study are
similar to age effects reported in other developmental

ERP studies with children of similar ages (Vlamings et al.,
2010).

A baseline-to-peak mean amplitude method was fol-
lowed for the N100 (90-180 ms) and N400 (380-500 ms).
The above time windows were selected because they best
captured each ERP component identified by visual inspec-
tion. Mean amplitude was initially calculated for each
individual site and subsequently the mean amplitude for
each ERP component was calculated as a combined score
for a number of defined groups of electrode sites (‘scalp
regions’-see Fig. 1) to increase the reliability of measure-
ment (Dien and Santuzzi, 2005). Selection of electrode
groups was based on the strong statistical similarity of
the grand average ERPs for each electrode. Correlations
between ERP waveforms within each region were sta-
tistically stronger (Pearson’s r=from .63 to .95, p<.001)
compared to correlations between amplitudes of electrode
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Table 2
Mean percentage (SD) of trials classified correctly (in bold) and
misattributions.

Vocal expression  Child response

Angry Happy Neutral
Angry 92.30(9.87) 2.24(3.72) 3.21(3.65)
Happy 2.72(4.16) 91.33(9.98) 3.42(6.72)
Neutral 3.12(5.68) 5.81(7.92) 91.12(10.37)

sites belonging to different regions (Pearson’s r=from .25
to .64, p<.01).

3. Data analysis
3.1. Performance data

Raw data were transformed into measures of accuracy
according to the two-high-threshold model. Discrimina-
tion accuracy (Pr) was computed for each target emotion
using ‘hits’ (i.e., number of happy, angry or neutral
expressions classified correctly) (Corwin, 1994). Values
of discrimination accuracy (Pr) were entered in repeated
measures non-parametric Friedman’s ANOVA with emo-
tion (Angry, Happy and Neutral) as within-subject factor
and paired Wilcoxon follow up tests.

3.2. ERPdata

Preliminary correlational analyses examined associ-
ations between child age and N100 and N400 mean
amplitudes at the three scalp regions. Also, independent-
samples t-tests examined differences in N100 and N400
mean amplitude values between males and females, given
gender effects on emotional prosody perception reported
in the literature (Schirmer et al., 2002). The main analyses
examined the main effect of emotion type on amplitude
of N100 and N400 component in each scalp region. N100
and N400 ERP data were entered into a repeated mea-
sures Analysis of Variance (ANOVA) with emotion type as
the within-subject factor. Because the focus of the present
study was on the ERP correlates of vocal anger process-
ing, simple planned contrasts compared the angry voice
condition with the neutral and happy voice condition.

4. Results
4.1. Performance

In order to optimise the chances of emotional modula-
tion of ERP components the vocal stimuli were designed
to be easy to classify. As predicted, therefore, mean accu-
racy for all three emotions was high (M =91.60%, SD = 8.68%,
see Table 2). There was a significant effect of emotion
type on accuracy (x2 (2)=12.91, p<.001). Accuracy was
significantly higher for angry compared to neutral voices
(T=364.50, p<.001, r=-.51). Non-parametric Spearman’s
correlations showed that children’s mean hearing thresh-
old was not significantly associated with accuracy for angry
or happy voices (p>.05) and it was significantly associ-
ated with accuracy for neutral voices (rs=-.28, p=.036).

Childs’ age was not significantly associated with accuracy
for angry, happy or neutral voices (ps >.05).

4.2. ERP data

Fig. 1 plots the grand mean averages for the waveforms
to each vocal emotion stimuli for the three regions of inter-
est. Fig. 2 plots the grand mean averages to each vocal
emotion per individual site (see Appendix B). Distinct N100
and N400 components could be seen at the central, pari-
etal and occipital regions. On the whole, neither age nor
gender was associated with ERPs amplitude at any region
for each condition (in the range of Pearson’s r from .02 to
—.22, p>.05). The exception was for amplitudes to neutral
voices which were positively associated with child age for
the occipital N400 (r=.28, p=.034). Thus, analyses were
repeated for this region and component including childs’
age in the statistical model as a covariate.

The main analyses showed little evidence of modulation
of N100 by emotional tone of stimuli. Results are reported
with a Bonferroni correction for multiple comparisons with
an accepted alpha of .05/12=.004. There was no effect of
emotion type on N100 amplitudes for the parietal and the
occipitalregions (F(2,54)<4.04,p > 05). There was an effect
of emotion on central N100 amplitude (F (2, 108)=5.41,
p<01) with angry voices having smaller amplitudes than
happy (F (1, 54)=9.60, p<01, Angry: M=1.60, SE=.44,
Happy: M=-.27, SE=.62) and neutral (F (1, 54)=9.97,
p<01, Neutral: M= —.26, SE =.55) voices. This effect did not
survive correction for multiple testing. No other difference
reached significance (p >.05).

In contrast, there was a consistent pattern of effects
of emotional prosody on the N400 across domains which
was most obvious in occipital (F (2, 108)=10.62, p<001)
and parietal (F (2, 108)=11.83, p<001) regions (see
Fig. 1), although still significant in the central region (F
(2, 108)=6.70, p<01). In particular, the N400 was atten-
uated to angry compared to happy and neutral voices
in all regions (p<.001), although the angry-neutral con-
trast was marginally significant (p=.040) in the occipital
region. After including child age in the statistical model
as a covariate, the difference in occipital N400 amplitude
between angry and happy was rendered non-significant
while the difference between angry and neutral voices
became marginally significant (p=.055) and did not sur-
vive Bonferroni correction. All other emotion effects on
the N400 reported above survived Bonferroni correction
for multiple comparisons. We also examined the effect of
age on ERPs (N100 and N400) by dividing our sample of
6-11-year olds into younger (6.08-8.75 years) and older
(8.83-11.83 years) children using a median split. When
running the analyses separately for older and younger
children, the effects of emotion on the N400 remained sig-
nificant in both age groups (p <.005) and results regarding
the N100 did not change.

5. Discussion
The aim of the present study was to isolate the neu-

ral correlates of vocal anger processing in children. Based
on previous research in adults (Bostanov and Kotchoubey,
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2004; Schirmer et al., 2005; Toivonen and Ram4, 2009) we
identified the N400, as implicated in vocal emotion pro-
cessing. In line with previous research, the results showed
that the N400 component was easily distinguished on the
basis of grand mean averages, especially in the occipital
and parietal regions (Schirmer and Kotz, 2006). Further-
more, this component was modulated by the emotional
tone of the prosody; it was attenuated for angry compared
to happy and neutral voices across regions. In contrast
to the N400, the N100 did not show a strong pattern of
emotion effects. The N100 is thought to reflect early atten-
tional orienting to auditory stimuli (Bruneau et al., 1997;
Nddtdnen and Picton, 1987), rather than being an ‘emotion-
specific’ component. Findings of the present study suggest
that latter components (N400) rather than earlier sensory
processing mechanisms (N100) underlie emotional voice
processing in 6-11-year olds. Findings of this study regard-
ing the N400 are compatible with adult research showing
reduced N400 amplitudes to negative compared to neu-
tral emotional stimuli (Kanske and Kotz, 2007). The finding
of reduced N400 amplitudes to negative stimuli has been
replicated in a number of recent studies in healthy adults
(De Pascalis et al., 2009; Gootjes et al., 2011; Stewart et al.,
2010). Reduced N400 amplitude to negative stimuli has
been suggested to reflect facilitated processing of negative
compared to neutral words in healthy adults (Kanske and
Kotz, 2007, Stewart et al., 2010).

The current study had a number of strengths compared
with previous studies. First, the present study used a larger
sample (N=55) in contrast to previous studies with small
samples and range. Second, in contrast to previous inves-
tigations with word stimuli, this study adopted non-word
stimuli and these stimuli allowed us to examine the neural
correlates of prosody processing independently of lan-
guage processing. Third, this study used an explicit emotion
identification task while previous studies with children
employed simple passive listening (Korpilahti et al., 2007)
or complex multimodal tasks (Shackman et al.,, 2007).
Fourth, it included neutral voice as a control condition for
comparison with emotional stimuli. Finally, we targeted
both early (N100) and late (N400) components of voice pro-
cessing. Therefore, the anger modulation of the N40O0 in the
present age group is an interesting and novel finding in a
vocal emotion recognition task. These findings extend the
literature on the N400 as an electrophysiological marker of
emotional prosody comprehension by demonstrating emo-
tion modulation of the N400. Previous research on the N400
has mainly focused on adults (Bostanov and Kotchoubey,
2004; Kotchoubey et al., 2009; Schirmer et al., 2005) and
infants (Grossmann et al., 2005). This is the first study to
isolate the N400 as a neural marker of vocal anger process-
ingin 6-11-year-old children. In contrast, the N100 was not
sensitive to the emotional content of anger related vocal
stimuli in children (Korpilahti et al., 2007).

The study also had some limitations. First, this study
adopted a baseline-to-peak amplitude method, recom-
mended when the component under analysis does not
have a definite peak as was the case in this study (Fabiani
et al., 2007). A disadvantage of this method, however, is
that it may be sensitive to noise or nonlinear fluctua-
tions in the baseline time window, relative to other (i.e.,

peak-to-trough) measures (Picton et al., 2000). In addition,
one should acknowledge the limitations of the ERP sig-
nal in cases in which the component of interest appears
to be superimposed on a slow drift or slow frequency (i.e.,
delta) oscillation (see parietal N400, Fig. 1). Recent research
suggests that emotion processing may be related to delta
frequency activity. For example, unpleasant pictures pro-
voked greater delta responses than pleasant pictures in
healthy adults (Klados et al., 2009). The study did not
include ‘control’ sound categories beyond human voices to
establish the selectivity of neural responses to vocal sig-
nals. This additional element would more robustly clarify
whether the effects observed reflected vocal anger process-
ing or the acoustical differences between sound categories.
The findings cannot be generalized to all anger stimuli, such
as for example higher intensity anger stimuli. Such conclu-
sions can only be drawn with the inclusion in the study
design of varying intensity levels of anger stimuli.

Future research should replicate the present findings in
a larger sample of typically developing children. In addi-
tion, an important avenue for future research would be
to explore associations between neural markers of vocal
anger processing and childhood behaviour problems. Chil-
dren who display externalising symptoms (i.e., conduct
problems) are less accurate at recognising negative vocal
expressions (Stevens et al.,, 2001) and display a selec-
tive perceptual bias to vocal anger in particular (Manassis
et al, 2007). These children are especially susceptible
to anger and frustration (Silk et al., 2003; Morris et al.,
2002; Neumann et al., 2011) and tend to display hostile
behaviours following threat interpretations of ambigu-
ous stimuli (Barrett et al., 1996). Neurobiological models
view impairments in brain systems that function to reg-
ulate anger as a key mechanism for impulsive aggressive
behaviour (Davidson et al., 2000). Despite recent evidence
on atypical brain reactions to affective speech prosody in
children with Asperger Syndrome (Korpilahti et al., 2007),
research on the time course (ERPs) of vocal anger process-
ing in children with externalising problems is limited and
would be a promising avenue for future research.
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