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Key points:
¢ Responses to expressions of hostility by others may be altered in children with ADHD

because they have difficulties in recognising negative emotions.

e In this, the first study of its kind, we used electrophysiological methods to study brain
event-related potentials of children with ADHD in response to angry, happy and

neutral vocal expressions.

e Compared to controls, children with ADHD displayed significant N100 enhancement
and P300 attenuation to angry relative to neutral voices.

e This pattern of results provides new evidence that very early stages of emotion

processing are implicated in ADHD.

e Future research should test the hypothesis that the N100 component is a marker for

automatic hyper-orientation to vocal threat stimuli in ADHD.



Abstract

Background: Deficits in facial emotion processing, reported in attention-deficit/hyperactivity
disorder (ADHD), have been linked to both early perceptual and later attentional components
of event-related potentials (ERPs). However, the neural underpinnings of vocal emotion
processing deficits in ADHD have yet to be characterised. Here, we report the first ERP
study of vocal affective prosody processing in ADHD.

Methods: ERPs of six to eleven year old children with ADHD (n=25) and typically
developing controls (n=25) were recorded as they completed a task measuring recognition
of vocal prosodic stimuli (angry, happy and neutral). Audiometric assessments were
conducted to screen for hearing impairments.

Results: Children with ADHD were less accurate than controls at recognising vocal anger.
Relative to controls, they displayed enhanced N100 and attenuated P300 components to
vocal anger. The P300 effect was reduced, but remained significant, after controlling for
N100 effects by rebaselining. Only the N100 effect was significant when children with ADHD
and comorbid conduct disorder (n=10) were excluded.

Conclusion: This study provides the first evidence linking ADHD to atypical neural activity
during the early perceptual stages of vocal anger processing. These effects may reflect pre-

attentive hyper-vigilance to vocal anger in ADHD.

Keywords: attention-deficit/hyperactivity disorder, conduct disorder, emotion processing,

vocal, ERP, prosody.



Introduction

Studies of attention-deficit/hyperactivity disorder (ADHD) pathophysiology have typically
focused on cognitive (Konrad, Neufang, Hanisch, Fink & Herpertz-Dahlmann, 2006) and,
more recently, motivational processes (Sonuga-Barke & Fairchild, 2012). However, emotion
dysregulation is increasingly regarded as an important clinical feature of the condition (Shaw,
Stringaris, Nigg & Leibenluft, 2014). Consequently there has been a renewed interest in how
individuals with ADHD process negative emotional expressions, such as anger, in the faces
and voices of others (Uekermann et al., 2010). Such expressions of hostility may act as
triggers for negative emotional outbursts in children with ADHD and contribute to coercive
cycles of parent-child interaction (Johnston & Jassy, 2007).

Building on the body of relevant behavioural evidence (Chronaki et al., 2013; Shapiro,
Hughes, August & Bloomquist, 1993), recent electrophysiological research has
demonstrated altered neural responses to facial expressions of anger in ADHD. Both early
sensory and later attention-mediated cognitive processes have been implicated (Dennis,
Malone & Chen, 2009; Eimer & Holmes, 2007). For example, Williams and colleagues found
enhanced facial anger-related modulation of the N170 event-related potential (ERP)
component followed by an attenuated P300 in adolescents with ADHD (Williams et al., 2008).
These effects were interpreted as indicating deficits in both early perceptual and later
context-related processing of angry faces (Williams et al., 2008). In contrast to the above
findings, Ibafiez and colleagues (2011) found that controls showed modulation of the N170
component by valence but this pattern was not observed in adult ADHD patients in a task
that involved classifying the valence of facial expressions. In addition, both child (Kéchel,
Leutgeb & Schienle, 2014) and adult ADHD samples (Kdchel, Leutgeb & Schienle, 2012)
have been reported to show attenuated late positive potentials during the processing of
angry faces in an inhibitory task.

Emotional meaning in the expressions of significant others in our social environment
is not solely conveyed by facial expressions, but also by voices — both in terms of content

and also prosody, especially emotional tone (Banse & Scherer, 1996). While ADHD-related



deficits in emotion prosody recognition have been identified in behavioural studies (Chronaki
et al., 2013; Corbett & Glidden, 2000; Norvilitis, Casey, Brooklier & Bonello, 2000), there
have been no studies investigating their neural underpinnings. This is surprising given that in
everyday life vocal anger is likely to be as critical as facial anger in terms of triggering
inappropriate emotional responses in individuals with ADHD.

In healthy controls, vocal emotional expressions modulate ERPs over a range of scalp
regions in both adult (Schirmer & Kotz, 2006) and child samples (Chronaki et al., 2012). In a
similar way to that seen in face processing studies, there are emotion specific effects at both
early sensory and later attention-mediated components (Iredale, Rushby, McDonald,
Dimoska-Di Marco & Swift, 2013; Schirmer & Kotz, 2006). For instance, the N100, an index
of the initial extraction of information and sensory analysis of stimuli (Wunderlich & Cone-
Wesson, 2001), has been shown to be affected by vocal emotional content (Iredale et al.,
2013; Pinheiro et al., 2011). The auditory N100 (80-150 ms) shows a parietal distribution in
young children which displays an anterior shift in the teenage years (Pang & Taylor, 2000).
The N100 response to vocal anger, in particular, is prominent in parietal-occipital areas in 6-
11-year-old children (Chronaki et al., 2012). The P300, reflecting attentional engagement
and allocation of cognitive resources (Banaschewski & Brandeis, 2007; Nelson & McCleery,
2008), and the N400, reflecting cognitive evaluation (Schirmer & Kotz, 2006), are also
modulated by emotion, especially for negatively-valenced stimuli (Broyd et al., 2012). The
N400 to vocal emotion is evident in parietal-occipital scalp regions in healthy individuals
(Toivonen & Rama, 2009). Research using Functional Magnetic Resonance Imaging (fMRI)
has shown activation of the cuneus in medial occipital cortex in response to angry voices
(Sander et al., 2005), which was suggested to reflect vivid visual mental imagery induced by
hearing angry voices (Kosslyn & Thompson, 2003).

This paper reports the first ERP study of vocal prosody recognition in ADHD. Building on
previous findings, we hypothesized that anger prosody recognition deficits observed
behaviourally in ADHD would be reflected in ERP abnormalities, and specifically in

attenuated P300 amplitudes to vocal anger. In addition, building on the face processing



literature showing exaggerated early perceptual face-specific components (i.e., N170) to
anger, we expected increased N100 amplitudes to anger from vocal expressions in ADHD.
The above would fit with a model of rapid initial hyper-orientation to threatening (angry)
stimuli followed by deficits in later, cognitive evaluation of the emotional significance of these
stimuli (Williams et al., 2008). As vocal signals of anger normally act as signals of social
punishment, lower sensitivity to anger in children with ADHD at later, more evaluative stages
of processing, may limit their ability to appropriately modify their behaviour in social
interactions.

To test the above hypotheses we examined ERP differences between ADHD and
controls in components related to early sensory processing (N100), later attentional
engagement (P300) and cognitive evaluation (N400) in response to angry, happy and
neutral prosodic stimuli. ADHD is frequently comorbid with conduct disorder (CD;
(Biederman, 2005), and emotional dysregulation (Stringaris, Rowe & Maughan, 2012) and
alterations in emotion recognition are also reported in CD (Fairchild, Van Goozen, Calder,
Stollery & Goodyer, 2009). It is possible that difficulties in emotion processing in ADHD could
be driven by co-occurring CD. Therefore, and contrary to previous ERP research which has
not taken CD comorbidity in account (Williams et al., 2008), we sought to investigate

whether CD comorbidity contributed to our behavioural and ERP results.

Methods and Materials

Participants
Thirty typically-developing children (2 girls) and 36 children with ADHD (1 girl), aged
between 6 and 11 years, were recruited into the study. Informed written consent was
obtained from the parent(s) and written assent from the child. Children with ADHD were
recruited from local child and adolescent mental health clinics and all had a clinical diagnosis
of ADHD. They all undertook a comprehensive clinical research assessment as part of the

South Hampshire ADHD Register. This included the ADHD, CD and Oppositional Defiant



Disorder (ODD) scales of the parent version of the Diagnostic Interview Schedule for
Children- NIMH (DISC-1V; Shaffer et al., 1993), the parent and teacher version of the
Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997) to establish the
pervasiveness of the presentation and the ‘sadness’ scale of the Children’s Behaviour
Questionnaire (CBQ; Putman & Rothbart, 2006) to provide a measure of internalising
problems. Full scale 1Q was also assessed using the Wechsler Intelligence Scale for
Children (WISC-1V; Wechsler, 2004). Patients were only included if they met criteria for
ADHD on the DISC-IV. In addition, all but two scored above borderline thresholds on the
hyperactivity subscales of the SDQ-teacher report. Results did not change after excluding
these two patients. Controls were recruited from local mainstream schools. They completed
the same measures as the ADHD patients apart from the DISC-IV. They also only completed
the Block Design and Vocabulary sub-tests of the WISC-IV. General exclusion criteria were;
a) 1Q<75; b) hearing difficulties, as assessed with a clinical audiometer; and c) diagnosis of
autism spectrum disorder or a neurological condition. In addition, two control children were
excluded as they scored above borderline thresholds on the hyperactivity subscales of the
SDQ. Nine children (six ADHD, three controls) were excluded due to excessive ERP artifacts.
The final sample included 25 controls (mean age=9.04 years, SD=1.46 years, age range
6.83-11.67) and 25 children with ADHD (mean age=8.85 years, SD=1.47 years, age range
6.33-11.50). Ten children with ADHD also had a DISC-IV CD diagnosis and ten were taking
methylphenidate medication but all were asked to withdraw their medication 24 hours prior to
testing (5 half-lives). Participant characteristics are presented in Table 1. The study was
approved by the University of Southampton Ethics Committee and the National Health

Service (NHS) Research Ethics Committee.

Vocal Emotion Recognition Task
Pure tone audiometric testing was conducted at the beginning of the experimental session

with a standard clinical audiometer to establish whether participants’ hearing threshold was



within the average range defined as 25 dB following the British Society of Audiology
Recommended Procedures (2004).Task stimuli consisted of standardised and previously
validated in children (Chronaki et al., 2012) vocal prosodic stimuli (an interjection ‘ah’ sound)
developed by Maurage and colleagues (Maurage, Joassin, Philippot & Campanella, 2007).
These were angry and happy emotions (both at high intensity) along with neutral control
stimuli (Maurage et al., 2007). Vocal stimuli were the same as in our previous work (see
Table S1, Chronaki et al., 2012). To rule out stimulus-specific variation in the ERP
components, we also used two different versions of each vocal stimulus that were recorded
by different female actors. Children were instructed to identify the type of emotional prosody
by pressing one of the three response box buttons with the labels ‘angry’, ‘happy’ or ‘neutral’.
Each trial began with the presentation of a central fixation cross (500 ms), which was
replaced by a blank screen and the simultaneous presentation of the prosodic stimulus. The
screen remained blank until the participants responded and there was a 1000 ms interval
before the onset of the next trial. Button presses were logged via Presentation software
(Neurobehavioral Systems, Albany, CA). The session consisted of a practice block (12 trials
- four of each emotion) and 360 experimental trials (120 trials per emotion type/60 trials per
actor) were presented in two blocks of 180 trials. Emotional stimulus presentation order was
randomized. There was a 5-minute rest between blocks. The task lasted approximately one

hour. Children did not receive any feedback about their responses.

Electrophysiological recording and processing
Electroencephalographic (EEG) data were recorded from an electrode cap (Easycap,
Herrsching, Germany) containing 66 equidistant silver/silver chloride (Ag/AgCl) electrodes
using Neuroscan Synamps? 70 channel EEG system. Cap electrodes were referenced to the
nose. The EEG data were sampled at 250 Hz with a band pass filter at 0.1 to 70 Hz using an
AC procedure and recorded from 19 sites (see Figure S1). A ground electrode was fitted

midway between the electrode at the vertex and frontal site (number 32). Vertical electro-



oculogram (VEOG) was recorded from four electrodes: two bipolar electrodes were placed
directly beneath the left and right eyes, while the two electrodes placed above the right and
left eye were included within the electrode cap. Impedances for VEOG, reference and cap
electrodes were kept below 5 kQ. The ERP epoch was defined as 100 ms pre-stimulus to
1000 ms post-stimulus and was filtered with a low-pass filter down 48 dB at 32 Hz. An ocular
artifact reduction procedure (Semlitsch, Anderer, Schuster & Presslich, 1986) based on
VEOG activity was used to remove the influence of blinks and other eye movements; epochs
were rejected if amplitudes exceeded £150 pV at any EOG or scalp sites included in
analyses or if participants responded incorrectly. Average ERPs were calculated for each
emotion type (Angry, Happy, Neutral).

A minimum of 20 artifact-free epochs out of a total of 60 epochs for each emotion
type (and a minimum of 10 artifact free epochs per actor) were used for calculating ERP
averages for each block. The mean and SD of the number of epochs included in the
analyses for each emotion type were as follows: Controls: Angry: M=48.64, SD=7.61,
Neutral: M=49.50, SD=5.44, Happy: M=46.80, SD=8.14; ADHD group: Angry: M=40.90,
SD=11.75, Neutral: M=39.80, SD=12.94, Happy: M=38.30, SD=12.90. There was no
significant effect of emotion condition or actor on the number of correct and artifact free
epochs in the healthy controls and ADHD group (ps >.17). The groups differed in the number
of correct and artifact free epochs for angry (F(1,48)=7.60,p<.01), happy(F(1,48)=7.80,p<.05)
and neutral stimuli (F(1,48)=11.90,p<.01), with fewer artifact-free epochs for children with
ADHD than controls. However, mean amplitude is not biased by the mean number of trials
(Luck, 2010). Grand average ERP waveforms were displayed for each stimulus for the
purpose of defining each component’s latency range. A baseline-to-peak mean amplitude
method was used to calculate the N100 (80-180 ms), P300 (260-380 ms) and N400 (380-
500 ms) components. Peaks were confirmed by visual inspection and clearly visible in all
individual waveforms. In line with our earlier work (Chronaki et al., 2012) and previous
literature (Schirmer & Kotz, 2006), the ERP analyses focused on parietal (sites 12, 13, 14,
24, 26) and occipital (sites 37, 38, 39, 40) regions. To increase measurement reliability (Dien
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& Santuzzi, 2005) mean amplitudes for each ERP component were calculated as an
average for a number of defined groups of electrode sites (see Figure S1).

To examine whether any differences between the ADHD group and controls found for
later components (i.e., P300, N400) reflected differences in prior components, as altered
exogenous processing were driven by differences in earlier components (Johnstone, Barry &
Clarke, 2013), we repeated all analyses for the P300 after rebaselining the waveforms to an
N100 anchor and all N40O analyses after doing this with respect to P300. Following Luck
and colleagues (Woodman, Arita & Luck, 2009), we assessed P300 activity by rebaselining

the ERPs to the 100-ms interval overlapping with the N100 component (80-180 ms).

Data Analysis
Performance data: Discrimination accuracy was computed for each target emotion using
‘hits’ -i.e., number of angry, happy or neutral expressions classified correctly (Corwin, 1994).
Kolmogorov-Smirnov tests indicated that discrimination accuracy values were not normally
distributed — probably because of ceiling effects (p<.01). Because of this, group effects were
examined using Mann-Whitney tests. Correlations between child age, hearing, 1Q,

internalising problems and accuracy were assessed using Spearman’s Rho tests.

ERP data: Initial models were run to examine the effects of (i) actor and (ii) task period (first
half versus second half; see Figure S2). This second analysis was especially important
because the current task was run with twice as many trials in each emotion condition as the
original study using this task (Chronaki et al., 2012) because in this study we used two
actors per emotion. Effects of emotion on ERPs were only found in the first half of the task -
equivalent to the length of the whole task in our previous study (Chronaki et al., 2012). All
children in this study successfully completed the whole task; however, as our objective was
to investigate changes in prosody processing in ADHD, we restricted our analyses to the first
half of the task in which typically-developing children showed emotion effects. Pearson’s

correlations examined the relationship between ERPs and child symptoms.
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Repeated-measures ANOVA with group (ADHD, controls) as the between-subjects
factor, emotion type (angry, happy, neutral) as the within-subjects factor and child sadness
as the covariate were performed with planned contrasts comparing angry to neutral and
happy. N100, P300 and N400 amplitudes over each scalp region were the dependent
variables. Child sadness was included as a covariate because ADHD and controls
significantly differed on this measure (see Table 1). In addition, when examining correlations
in the two groups separately, we found that sadness was negatively associated with N100,
P300 and N400 amplitudes to angry and neutral voices over parietal and occipital regions
(Pearson’s r = -.40 to -.54, p<.01). Because sadness influenced the neural response to
vocal affect we added it as a covariate in the analyses. We also re-ran all analyses excluding
the 10 ADHD patients with comorbid CD. Apart from conduct problems (as expected) ADHD
patients with and without CD did not differ on background or behavioural characteristics. A

detailed comparison between these two groups is provided in the supplementary materials.

Results

Performance data

The mean accuracy for all emotions was generally high in both groups (see Table 2).
However, children with ADHD were less accurate at recognising anger compared with
controls (U=210, Z=-2.00, p=.047, r=-0.28). Children with ADHD tended to err by
miscategorising angry voices as neutral. Both controls and children with ADHD showed a
tendency to classify vocal expressions as neutral than happy (p<.05). The group difference
in accuracy did not persist when the 10 participants with comorbid CD were excluded
(U=160, Z=-.76, p>.05, r=-0.10). ADHD children with CD did not significantly differ in
accuracy from ADHD children without CD (see Table S2 for details). Age, mean hearing
threshold, 1Q, and internalising problems were not significantly associated with accuracy for

any emotion type for either group (ps > .05).
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ERP data

There were no associations between ERPs and child age, hearing threshold or 1Q
(Pearson’s r =from .03 to .25, ps > .11). Correlations between ERPs and child symptoms are
presented in the supplementary materials. ADHD children with CD did not differ significantly

with regard to any ERP components from ADHD children without CD (see Table S2).

Grand mean averages for each emotion are presented in Figure 1. The mean amplitudes for

the N100, P300 and N400 components are presented in Figures 2-4.

N100: There was no significant main effect of group on N100 amplitudes (all ps >.11).
Overall, N100 amplitudes were larger to angry than to neutral stimuli (F (1, 47) = 3.90,
p=.050, np? =.08). There was a significant group x emotion interaction effect on N100
amplitude in the occipital (F (2, 94) = 6.25, p=.003, np?=.11) and parietal (F (2, 94) = 5.22,
p=.007, np?=.10) regions; ADHD participants showed larger amplitudes to angry compared
to neutral voices compared to controls (see Table 3 and Figure 2). These effects persisted
after excluding comorbid CD cases (ps: Occipital = .007; Parietal: = .025) and, in a separate
analysis, medicated participants (ps: Occipital = .009; Parietal: = .040). There were also
larger amplitudes to happy compared to neutral voices in the ADHD group compared to
controls (see Table 3 and Figure 2) but this effect was no longer significant when the
comorbid CD cases were excluded (p=.10). Mean N100 amplitude values for ADHD children

with and without comorbid CD are provided in supplementary material (see Table S2).

P300: Occipital P300 amplitudes were larger to neutral than angry (F (1, 47) = 8.35, p=.006,
np3=.15) and happy stimuli (F (1, 47) = 9.30, p= .004, np?=.16). There was no significant
main effect of group (p >.25). There was a significant group x emotion interaction effect on
P300 amplitude in the occipital (F (2, 94) = 6.12, p=.003, np?=.11) and parietal (F (2, 94) =
6.01, p=.003, np?=.11) region. P300 amplitudes were significantly reduced to angry
compared to neutral voices in ADHD participants compared to controls (see Table 3 and

Figure 3). These effects persisted when CD cases were excluded (ps: occipital = .032;
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parietal = .023). After rebaselining for N100 amplitudes, the group x emotion interaction
effect at P300 remained significant, although it was somewhat weaker (F (2, 96) = 4.00,
p=.022, np?=.07); the P300 remained significantly reduced to angry compared to happy
voices in ADHD participants compared to controls in both the occipital (F (1, 48) = 5.47,
p=.024, np?=.10) and parietal (F (1, 48) = 4.63, p=.036, np? =.09) regions (see Figure 3).
After excluding participants on medication, these effects remained for the occipital and
parietal P300 after rebaselining (p<.01). These effects did not persist when the CD cases
were excluded (ps >.20). Mean P300 amplitude values for ADHD children with and without

comorbid CD are provided in supplementary material (see Table S2).

N400: Parietal NA0OO amplitudes were generally higher for controls than participants with
ADHD, as shown by a main effect of group (F (1, 47) = 5.01, p=.030, np?=.09). Occipital
N400 amplitudes were larger for angry (F (1, 47) = 5.36, p=.025, np?=.10) and happy (F (1,
47) = 9.30, p=.004, np? =.16) compared to neutral stimuli. Emotion effects on parietal N400
were limited to the comparison of happy versus neutral voices (F (1, 47) = 6.20, p= .016,
np?=.12). There was a significant group x emotion interaction effect on N400 amplitude in the
occipital (F (2, 94) = 5.22, p=.007, np?=.10) and parietal (F (2, 94) = 4.75, p= .011, np?=.09)
region. There were larger amplitudes to angry compared to neutral voices in ADHD
participants compared to controls (see Table 3 and Figure 3). When the 10 participants with
CD were excluded these effects persisted (ps: occipital = .050; parietal = .044). There were
no significant effects of group or group x emotion interaction effects on the N400 amplitudes
following rebaselining for P300 (ps >.15, see Figure 3). Mean N400 amplitude values for
ADHD children with and without comorbid CD are provided in supplementary material (see

Table S2).

Discussion

Here we report the first evidence of altered neural responses during vocal prosody
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processing in ADHD. The strongest and most robust group effects were found for the early
sensory N100 component for anger, with the ADHD group showing larger amplitudes to
angry relative to neutral voices whereas the control group showed no differences between
these emotions at this stage of processing. We also found attenuated P300 amplitudes and
increased N400 amplitudes to anger versus neutral stimuli in the ADHD group compared to
controls, although these effects were reduced in magnitude or rendered non-significant,
respectively, after rebaselining for earlier components suggesting that they may reflect ‘flow-
on’ effects.

While in some ways the N100 component occurs at a surprisingly early stage to
show modulation by emotional valence, there is a growing literature implicating early sensory
processes in vocal emotion processing (Bostanov & Kotchoubey, 2004; Iredale et al., 2013).
Furthermore, the N100 and other early components have previously been implicated in
emotional processing in a range of psychiatric disorders. For example, Pinheiro and
colleagues recently found abnormally enhanced N100 amplitudes during a negative relative
to positive mood induction using emotional pictures in schizophrenic patients (Pinheiro et al.,
2013). The same authors found reduced N100 for prosodic sentences with semantic content
in children and adults with Williams syndrome (Pinheiro et al., 2011). Asperger’s syndrome
(Korpilahti et al., 2007) and childhood anxiety (Hogan, Butterfield, Phillips & Hadwin, 2007)
are also associated with altered N100 responses to auditory stimuli. Interestingly, while
some researchers have suggested impairments in auditory processing of non-emotion
stimuli at the very earliest sensory stages in ADHD (Loiselle, Stamm, Maitinsky & Whipple,
1980; Zambelli, Stamm, Maitinsky & Loiselle, 1977), most studies suggest that N100
components are normal in most paradigms (Johnstone & Barry, 1996; Oades, Dittmann-
Balcar, Schepker, Eggers & Zerbin, 1996). This is consistent with the results of the current
study where alterations revealed no general deficit in the N100 component but rather an
emotion-specific increase, while amplitudes were normal for neutral stimuli. The N100
findings are consistent with the idea that angry vocal expressions by others lead to a rapid
and almost automatic hyper-orientation in children with ADHD. The auditory N100

14



component has been proposed to reflect a rapid ‘early selection’ mechanism underlying
auditory attention (Woldorff et al., 1993). The N100 in the posterior auditory cortex is
described as a preattentive gating mechanism that determines to what degree auditory
stimuli capture awareness (Jaaskelainen et al., 2004). Early sensory ERPs (e.g., N100, P50)
have been shown to reflect inhibition deficits related to vigilance to environmental stimuli
(Cullum et al., 1993) in schizophrenia (Olincy et al., 2000) and ADHD (Bruckmann et al.,
2012; D’Agati et al., 2013; Gonzalez-Trejo et al., 2011). Early hyper-vigilance to angry faces
as reflected by increased P100 amplitude has also been shown in anxiety disorders (Mueller
et al., 2009). The possibility of early pre-attentive hyper-vigilance to vocal anger in ADHD
requires further investigation.

We also found significant, but less robust, anger-specific attenuation of the P300
component in children with ADHD. Our findings are consistent with previous research using
facial stimuli showing P300 reductions to anger in ADHD (Williams et al., 2008). The P300
has been implicated consistently in both visual and vocal emotion processing as an index of
attentional allocation to emotional stimuli prior to cognitive evaluation (Banaschewski &
Brandeis, 2007; Schirmer & Kotz, 2006). Difficulties in attending to or perceiving others’
emotions and especially signals of social punishment such as vocal anger may explain
impaired social functioning in some children with ADHD. More generally, P300 abnormalities
have been shown across a wide range of both social and non-social tasks in individuals with
ADHD (Barry, Johnstone & Clarke, 2003; Johnstone et al., 2013), although these appear to
be normalized by motivational manipulations and stimulant medication (Williams et al., 2008).
Once again, no evidence for a fundamental deficit in P300 amplitudes was observed in
ADHD in this study, given that the pattern of attenuation was specific to anger prosody. This
finding of reduced P300 amplitudes to angry voices in children with ADHD mirrors to some
extent the behavioural findings showing that children with ADHD were significantly less
accurate in recognising vocal expressions of anger compared to typically developing children.
This suggests lower sensitivity to social signals of punishment (i.e., anger) in some children
with ADHD.

15



Taken together, the pattern of increased N100 amplitudes followed by reduced P300
amplitudes to vocal anger is consistent with a model of initial hyper-orientation to anger
followed by attentional gating, perhaps suggesting an emotion-specific attempt to regulate
the excitatory effects of experiencing anger from others. Whether such effects generalise to
other emotionally-arousing or threatening stimuli and situations or are instead specific to
angry voices will require further research. For instance, delayed rewards led to reduced
N100 amplitudes due to their lower emotional salience in healthy individuals (Blackburn,
Mason, Hoeksma, Zandstra & El-Deredy, 2012). It is interesting to note that while the N100
effects were robust when excluding patients with comorbid CD, the residual, and admittedly
smaller, P300 effects were partly accounted by the presence of comorbid CD although this
may be due to lack of power to detect a significant effect. Given the specific association
between CD, neuropsychological deficits and emotional lability in ADHD (Banaschewski et
al., 2012), one possibility worth investigating is that this attentional gating to anger may be
especially important in children with ADHD who are vulnerable to developing antisocial
behaviour.

While providing the first evidence of neural abnormalities to vocal anger prosody in
ADHD, further study is required in a number of areas. First, only one class of positive (happy)
and one class of negative (anger) stimuli was used. These findings could be extended in
future studies by including a wider range of emotions, male and female actors and both
social and non-sacial stimuli, to explore the specificity of the effects to anger and vocal
expressions. The ecological validity of the stimuli could be improved by using cross-modal
presentation of emotion (faces and voices), as in real life situations. In the current study,
potential physical differences between the stimuli are unlikely to have affected the anger
specific findings given the fact that ERPs in controls were similar for all emotions and only
differed in ADHD for anger. Second, longitudinal studies are required to understand the
developmental changes in ERPs. For instance, there are major developmental changes in
the N100 component (Pang & Taylor, 2000). Recent work in children has demonstrated
emotional prosody effects on the N100 in parietal-occipital areas (Chronaki et al., 2012).
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Furthermore, a number of fMRI studies have shown activation of occipital regions specifically
to anger prosody (Johnstone, van Reekum, Oakes & Davidson, 2006; Sander et al., 2005),
suggesting visual imagery processes (Sander et al., 2005). In addition, only males were
tested in this study. Future studies should include both males and females. Another
limitation of the study was that the task was not optimized to show differences in
performance between the groups but rather to have sufficient trials for ERP analyses. A final
limitation is that some demographic information was not available for the participants in this
study (i.e., parent education). Future studies should consider collecting this information in a
uniform way if the two groups are recruited from different sources.

Finally, while we were able to repeat the analyses excluding participants with
comorbid CD and show that most of the findings were independent of CD diagnosis, the
influence of externalizing comorbidity cannot be ruled out as the majority of ADHD
participants had comorbid diagnoses of oppositional defiant disorder (ODD). Further
research using a systematic approach comparing pure and comorbid ADHD and CD/ODD
cases would help clarify the extent of altered vocal emotional processing in these disorders.

From a clinical perspective our results highlight the need to take account of the way
in which patients with ADHD respond to negative affect in the voices of others and how this
might impact on their ability to listen and follow instructions. The use of a non-threatening
tone may therefore represent an important treatment goal in parent training. Furthermore,
given our evidence of very early, possibly pre-attentive, hyper-orientation to angry voices
some form of desensitization training may be called for.

In summary, we provide the first evidence for altered neural processing of affective
prosody in children with ADHD relative to typically-developing children. These effects were
most pronounced for vocal expressions of anger and were most robust during the early
stages of perceptual processing. Further research needs to establish whether these effects
are specific to vocal anger or represent a more general early hyper-orientation to cues
signalling potentially aversive and threatening social and non-social events at early stages of
sensory processing in individuals with ADHD.
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Supplementary material
Table S1. Results of the acoustic analysis of the stimuli, including fundamental frequency

(f0) in Hz and intensity in dB.

Figure S1. Montage with 19 sites used in EEG recording and sites per region.

Figure S2. Grand Averages to angry, happy and neutral voices in parietal and occipital

regions in the first half and second half of the task in controls.

Table S2. Mean accuracy and ERP amplitude values for ADHD children with and without

CD.
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Table 1. Sample Characteristics.

ADHD (n=25) Controls (n=25) Comparison
Mean S.D. Mean S.D. F p Value
Child age (years) 8.85 1.46 9.04 1.47 .20 ns
Full Scale 1Q 99.04 10.82 102.60 10.20 .00 ns
Hearing threshold (dB) 9.70 3.08 9.60 3.70 1.55 ns
Strengths and Difficulties Questionnaire
Hyperactivity 8.80 1.86 2.80 2.60 87.55 .001
Conduct Problems 6.00 2.70 1.30 1.50 57.80 .001
Emotional Problems 5.00 2.14 1.80 2.00 29.50 .001
Children’s Behaviour Questionnaire
Internalising (Sadness) 3.20 .68 2.36 .56 23.60 .001
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Table 2. Mean percentage (SD) of correct trials (in bold) and misattributions in the two groups.

Vocal Expression presented

Identified as Angry Happy Neutral
Controls
Angry 93.50(12.20) 4.20(6.80) 3.40(3.20)
Happy 3.90(10.00) 87.30(13.40) 2.40(3.00)
Neutral 2.50(2.80) 8.30(7.90) 94.20(4.30)
ADHD
Angry 84.50(18.90) 9.70(14.30) 9.20(11.67)
Happy 7.26 (9.20) 75.87(23.70) 11.90(14.95)
Neutral 8.10(10.30) 14.20(15.40) 78.90(22.80)
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Table 3. Summary of 2 (group) x 3 (emotion) effects on event-related potential amplitudes

Contrast Details F-value Significance
Occipital
N100 Avs. N ADHD:-2.40 vs. 1.30 13.40 .001
Controls:-0.60 vs. -2.70
Hvs. N ADHD:-1.60 vs. 1.30 4.60 .040
Controls:-1.80 vs. -2.70
P300 Avs. N ADHD:-0.90 vs. 8.12 9.90 003
Controls: 2.80 vs. 2.78
N400 Avs. N ADHD:0.68 vs. 8.30 730 010
Controls:1.70 vs. 0.50
Parietal
N100 Avs. N ADHD:-1.65 vs.1.30 10.70 .002
Controls:-0.20 vs -2.60
P300 Avs. N ADHD:2.36 vs. 7.86
10.30 .002
Controls:3.90 vs. 1.90
N400 Avs. N ADHD:2.00 vs. 7.98 7.00 010

Controls:2.90 vs. -0.41

Note 1: Emotion: A= Angry, H=Happy, N=Neutral. The units in the ‘details’ column represent
amplitude in V. Note 2: After rebaselining for effects at earlier ERP components, the P300

effects became weaker, whereas the N400 effects were non-significant.
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Figure captions

Figure 1. Grand Averages to angry, happy and neutral voices in occipital and parietal regions
in the two groups. Group x Emotion interactions at N100, P300 and N400, with enhanced
N100 and N400 amplitudes to angry and happy versus neutral stimuli in ADHD relative to
controls, but reduced P300 amplitudes to angry versus neutral stimuli in ADHD relative to
controls. Scale is -4 to +16 microvolts. Angry =—— Happy — Neutral

Figure 2. Bar graphs with error bars for the occipital (A) and parietal (B) N100 amplitudes to
angry, happy and neutral voices in the two groups. Group x Emotion interactions (A, B) with
enhanced N100 amplitudes to angry versus neutral stimuli in ADHD relative to controls (**p
<.01, ***p <.001). Error bars represent standard error of the mean. Topographic maps (C) for
the mean change in voltage distribution for angry, happy and neutral voices. Scalp values
represent the ends of the colour scale in yV for the N100. Dark blue=negativity, red=positivity.
The bar graphs plot the N100 in an adjusted positive scale to capture the amount of the

amplitude change per emotion and group.

Figure 3. Bar graphs with error bars for the parietal and occipital P300 and N400 amplitudes to
angry, happy and neutral voices. Group x Emotion interactions at P300 before rebaseline (A,
C) and after rebaseline (B, D) with reduced P300 amplitudes to angry compared to neutral and
happy stimuli in ADHD relative to controls. Group x Emotion interactions at N400 before
rebaseline (E, G) and after rebaseline (F, H) with enhanced N400 amplitudes to angry relative
to neutral stimuli in ADHD relative to controls before rebaselining (* p<.05, **p <.01, ***p
<.001). The bar graphs plot the N40O in an adjusted positive scale to capture the amount of
the amplitude change per emotion and group.

Figure 4. Topographic maps for the mean change in voltage distribution for angry, happy and
neutral voices. Scalp values represent the ends of the colour scale in pV for the P300. Dark

blue=negativity, red=positivity.
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