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Abstract 

Background. Large discrepancies exist among the dietary zinc recommendations set by expert 

groups. 

Objective. To understand the basis for the differences in the dietary zinc recommendations set by the 

World Health Organization, the U.S. Institute of Medicine, the International Zinc Nutrition 

Consultative Group, and the European Food Safety Agency. 

 Methods. We compared the sources of the data, the concepts, and methods used by the four expert 

groups to set the physiological requirements for absorbed zinc, the dietary zinc requirements (termed 

estimated and/or average requirements), recommended dietary allowances (or recommended nutrient 

intakes or population reference intakes), and tolerable upper intake levels for selected age, sex, and 

life-stage groups. 

 Results. All four expert groups used the factorial approach to estimate the physiological 

requirements for zinc. These are based on the estimates of absorbed zinc required to offset all 

obligatory zinc losses plus any additional requirements for absorbed zinc for growth, pregnancy, or 

lactation. However, discrepancies exist in the reference body weights used, studies selected, 

approaches to estimate endogenous zinc losses, the adjustments applied to derive dietary zinc 

requirements that take into account zinc bioavailability in the habitual diets, number of dietary zinc 

recommendations set, and the nomenclature used to describe them. 

Conclusions. Estimates for the physiological and dietary requirements varied across the four expert 

groups. The European Food Safety Agency was the only expert group that set dietary zinc 

recommendations at four different levels of dietary phytate for adults (but not for children) and as yet 

no tolerable upper intake level for any life-stage group.  

Key words: Zinc, factorial approach, physiological requirements, dietary recommendations, expert 

groups 



Background 

The factorial approach was used by the World Health Organization (WHO) [1], the Institute of 

Medicine (IOM) [2], the International Zinc Nutrition Consultative Group (IZiNCG) [3] and the 

European Food Safety Agency (EFSA) [4] as the basis for the dietary zinc recommendations in view 

of the absence of specific and sensitive biomarkers of zinc status and the nonspecific nature of the 

clinical features of mild zinc deficiency. The factorial approach is based on the estimates of the 

amount of absorbed zinc required to offset all obligatory zinc losses plus any additional requirements 

for absorbed zinc for growth, pregnancy, or lactation. These physiological requirements for absorbed 

zinc are then adjusted to yield dietary zinc requirements by taking into account the bioavailability of 

zinc in the habitual diet. Four components of dietary zinc recommendations  were compiled by 

WHO[1], IOM[2], and IZiNCG[3] for a particular life-stage and gender group: physiological 

requirements for absorbed zinc, dietary zinc requirements, recommended dietary allowances, and 

tolerable upper intake levels as shown below; EFSA[4] set the first three components, but has not yet 

set a tolerable upper intake level. The definitions used by the expert groups for each of the dietary 

zinc recommendations are similar, although there are some differences in the nomenclature as noted 

below.   

The following steps are used to compile the dietary zinc recommendations:  (1) Define the 

physiological requirement for absorbed zinc for a particular life-stage and gender group using the 

factorial approach. The physiological requirement is defined as the amount of zinc that must be 

absorbed to offset total endogenous losses plus any additional requirements for absorbed zinc for 

growth, pregnancy, and lactation, depending on the life-stage and gender group. (2) Convert the 

physiological requirement to the dietary zinc requirement. The latter is defined as the level that meets 

the dietary zinc requirement of 50% of healthy persons in a particular life-stage and gender group, 

and is termed “the Requirement” by WHO or the “Estimated Average Requirement” (EAR) by IOM 



and IZiNCG. EFSA use the term “Average Requirement” (AR).  (3) Define the daily dietary intake 

level sufficient to meet the requirements of almost all (97–98%) of  healthy persons in a particular 

life-stage and gender group. This is termed the Recommended Nutrient Intake (RNI) by WHO, and 

the Recommended Dietary Allowance (RDA) by both IOM and IZiNCG.  These committees have 

calculated this value from the EAR+2SD EAR.   EFSA use the term Population Reference Intake (PRI) 

and have calculated the value from the AR for adults with a body weight at the 97.5th percentile for 

reference body weights for men and women based on European reference values.  (4) Define the 

tolerable upper intake level. This level is defined as the highest intake likely to pose no risks of 

adverse health effects, and is termed the upper limit by WHO and the Tolerable Upper Intake Level 

(UL) by both IOM and IZiNCG. EFSA has not yet derived a UL. 

 

Estimating the physiological zinc requirements for adults  

The first step in deriving the dietary zinc recommendations is to define the physiological requirement 

for absorbed zinc for adults. The physiological requirement comprises both non-intestinal and 

intestinal endogenous losses, as shown in Table 1, measured initially by conventional balance 

studies, and later by radioactive or stable isotope studies of participants fed diets with a zinc 

bioavailability representative of their habitual diets.  Non-intestinal endogenous losses include losses 

of zinc from urine, the integument (skin, hair, nails, and sweat), menstrual flow (in women of child-

bearing age), and semen in men, all of which are assumed to be constant over the range of zinc 

intakes consumed in habitual diets (i.e., 4 to 25 mg Zn/day)[2]. In contrast, intestinal endogenous 

losses are not constant, and instead are positively correlated with the quantity of zinc absorbed over a 

wide range of zinc intakes and a major variable in the maintenance of zinc homeostasis.  Table 1 

compares the adult estimates for the components of non-intestinal losses together with the intestinal 



endogenous losses derived by WHO, IOM, IZiNCG, and EFSA. The sources of the discrepancies in 

these estimates across expert groups are discussed in more detail below. 

 

Intestinal endogenous losses  

A major factor in the maintenance of zinc homeostasis is the excretion of intestinal endogenous zinc.  

In 1996 WHO based their estimates for total intestinal endogenous zinc losses for adult males and 

females on measurements from one study in men (n=8) [5] and another in women (n=5)[6], both 

consuming very low zinc intakes. Hence the values were subsequently inflated by 40% to account for 

the reduced excretion of zinc with very restricted zinc intakes [7].   IOM [2], however, adopted a 

different conceptual approach, later also adopted by IZiNCG, to estimate intestinal endogenous zinc 

losses. IOM [2] noted that the quantity of intestinal endogenous  zinc is positively correlated with the 

quantity of absorbed zinc over a wide range of absorbed zinc (0.8 to 5.5 mg/d). As a consequence, 

the IOM[2] applied linear regression to analyze the relationship between intestinal (i.e., fecal) losses 

of endogenous zinc (EFZ) and total absorbed zinc (TAZ) using radio-active or stable-isotopic data 

generated from 10 whole-day diet studies conducted on men in Europe or North America. The 

relationship between intestinal endogenous zinc losses and total absorbed zinc was assumed to be 

similar for women by IOM in the absence of data. The relationship was then adjusted to yield total 

endogenous losses for males and females (i.e., their physiological requirements) by adding the 

constants for non-intestinal endogenous losses for adult males and females (shown to be independent 

of dietary zinc intakes) to the corresponding estimates for intestinal endogenous losses.   

Although IZiNCG [3] applied a linear regression approach, similar to that of IOM, to estimate 

intestinal endogenous losses, they expanded the database to include an additional nine studies (i.e., 

19 studies in total) of both men and women, irrespective of age and nationality, who consumed 

whole-day mixed diets based on common foods; studies using synthetic diets or zinc supplements 

were excluded.  Hence IZiNCG were able to examine the relationship between total absorbed zinc 



and intestinal endogenous zinc losses for men and women separately, weighting by sample size to 

account for the expectation that larger samples would produce greater precision, a procedure not 

practiced by IOM.  From this, IZiNCG calculated the minimum amount of zinc that must be absorbed 

to offset the total endogenous losses for men and women; calculated values are shown in Table 1. In 

the IZiNCG example displayed in Fig.1, the line of perfect agreement indicates where total 

endogenous zinc losses would be equal to the amount of absorbed zinc (i.e., the physiological 

requirement for absorbed zinc).  The intercept between the line of perfect agreement and the gender-

specific lines for total endogenous losses is then used to determine the minimum quantity of absorbed 

zinc required to replace total endogenous losses for men and women (i.e., their physiological 

requirements). In this example, the calculated average total minimal quantity of absorbed zinc and 

thus the physiological requirement is 2.69 mg Zn/d for men ( i.e., 1.15 mg to match non-intestinal 

endogenous zinc losses and therefore 1.54 mg/d (2.69 – 1.15 mg) to match intestinal endogenous 

losses).The corresponding physiological requirement for women is 1.86 mg/d (0.80 to match non-

intestinal zinc losses and therefore 1.06 mg (1.86 – 0.80 mg) to match intestinal endogenous losses).  

A different approach was used by EFSA to estimate physiological requirements from the 

endogenous loss data presented in Table 1. EFSA used data from 10 stable isotope studies (either 

compartmental modeling or fecal isotope dilution) that included 85 participants (31 male and 54 

female) to measure intestinal endogenous zinc (EFZ).  All of the studies were undertaken in the 

USA, Europe, and China, with dietary zinc intakes ranging from 0.8 to 29 mg per day from both 

conventional foods and semi-purified diets. Multiple regression analysis was used to examine the 

relationship between TAZ and total endogenous losses.  This revealed that the main predictor of TAZ 

was body size, expressed as weight, height, BMI and surface area, with R2 values of 0.46, 0.42, 0.37 

and 0.47 respectively. Differences in sex were accounted for by the body size covariate.  The 

equation resulting from the least squares fit linking TAZ to body weight and total endogenous zinc 

losses was as follows:  



TAZ [mg/d] = 0.642 + 0.038 × body wt [kg] + 0.716 × (TAZ – total endogenous zinc losses [mg/d]) 

The physiological requirement (PR) is equivalent to TAZ when the difference between absorbed zinc 

and total endogenous zinc losses equal zero at a given body weight. Therefore, the equation for 

estimating the PR is as follows: 

Physiological zinc requirement (PR) [mg/day] = 0.642 + 0.038 × body weight [kg]  

Thus, PR for a man of reference weight 72.7 kg is 3.4 mg Zn/day and for women of reference weight 

59.1 kg is 2.9 mg Zn/day, which differs slightly from the simple sum of the endogenous loss 

components shown in Table 1.  

 

Urine   

In 1996 WHO derived this estimate from data based on two balance studies performed in young adult 

men [5, 7] and one study in adult women [6] consuming diets very low in zinc (0.8 to 3.6 mg/d), and 

then inflated their original estimate by 40% to account for the reduced urinary excretion presumed to 

occur in response to very low zinc intakes. In 2001 IOM [2] based their estimate of urinary zinc 

losses on a larger number of studies in adult men (n=10) and women (n=10) with zinc intakes within 

the range in which urinary zinc excretion is constant (i.e., 4 to 25 mg/d), and hence likely to reflect 

more accurately the physiological requirement. These same estimates for urinary zinc losses for men 

and women were adopted by IZiNCG in 2004 [3]. EFSA [4] estimated urinary losses from the 

averages of 53 reported values (22 men and 31 women) from the 85 individuals in the included 

studies (Table 1).    

 

Integument  

WHO [8] based their estimate of surface losses on a single study of adult men (n=8) whose surface 

losses declined dramatically when receiving a dietary zinc intake that decreased from 8.3 to 3.6 mg 



Zn/day. Presumably surface losses for women were derived by extrapolation from data for men 

adjusted for differences in body surface area, although this is not stated. In contrast, IOM 

[2] applied data from a later study of 11 adult males in which there was no evidence of a reduction in 

surface losses of zinc with dietary zinc intakes ranging from 1.4 to 10.3 mg Zn/d for 28 to 35 days  

[9]. Surface losses for women were based on the estimate for men adjusted for the different average 

body surface area of women.  IZiNCG [3] used the same data [9] from the study of 11 adult males to 

estimate surface losses, although they chose to adjust the surface zinc losses in relation to body size 

for both men and women rather than body surface area, assuming the NCHS/CDC/WHO reference 

body weights of 65kg and 55kg for an adult man and women, respectively.   

EFSA [4] used published studies to estimate integument and sweat losses from men [5, 9, 

10].  The estimate for women was calculated by multiplying the value for men by the female to male 

ratio of sweat zinc losses and whole body sweat rates [11–16].  

    

Semen and menstrual flow 

These losses were not specifically considered by WHO [1, 8] in their calculation of the adult 

physiological requirements for absorbed zinc. In contrast, IOM, IZiNCG and EFSA included seminal 

zinc losses using data for seminal zinc from two studies of adult males [9, 17], one [9] being used to 

estimate surface losses. In this latter study there was no change in the concentrations of seminal zinc 

irrespective of zinc intake, although losses were lowest (0.09 mg/d) at the lowest dietary zinc intake 

level.  IOM [2] chose to use a single figure of 0.1 mg Zn per day for seminal zinc based on a mean 

ejaculate volume of 2.8 mL and a weekly mean of 2.45 ejaculations [9,17]. IZiNCG [3] and EFSA 

[4] adopted the same value for daily seminal zinc loss in view of the absence of any additional data. 

IOM [2] used 0. 1 mg/d to account for average menstrual losses based on data from one study 

that calculated the mean zinc content of menstrual fluid to be 2.8 µg Zn/g and an average menstrual 



flow excretion during a single period of 60 g [18].  However, this estimate was incorrect as the data 

of Hess et al. [18] yields a menstrual loss of 5.6 µg Zn/d (168 µg/Zn per period per month).  

 IZiNCG recognized this error and concluded that the estimated loss of zinc from menstrual flow 

(i.e., 6 µg/d) was negligible and therefore could be ignored. ESFA [4] applied a figure of 10 µg/d to 

account for average daily menstrual zinc losses.  

 

Estimating the physiological zinc requirements for infants, children, and 

pregnant or lactating women 

The physiological requirements for absorbed zinc for these life-stage groups represent the summation 

of the total endogenous losses plus any additional requirements for absorbed zinc for growth, 

pregnancy, or lactation. 

 

Normal birthweight infants aged 0 to 6 months  

WHO applied the factorial approach to derive the physiological requirements for absorbed zinc for 

normal birthweight infants aged 0 to 6 months [1,8].  Their estimates were based on total endogenous 

losses, extrapolated from adult data based on a metabolic rate of 0.57 µg Zn/basal kcal, plus the 

additional amount of absorbed zinc that is incorporated into newly synthesized tissues for growth. 

Higher estimates for endogenous losses were applied by WHO/FAO/IAEA [8] for infants fed 

formula or mixed solid/liquid feeds compared to those fed exclusively breast milk (i.e., 40 µg Zn/kg 

body weight per day vs. 20 µg Zn/kg body weight per day) [19,20]. For newly synthesized lean and 

adipose tissue for infants 0 to 6 months WHO assumed a zinc concentration of 30 µg Zn/g [8]. The 

physiological requirements for absorbed zinc for breastfed infants aged 0 – 6 months set by WHO 

ranged from 0.7–1.3 mg/day, depending on age and gender.  

 



In contrast, IOM [2], IZiNCG [3], and EFSA [4] did not set a physiological requirement for 

absorbed zinc for this age group in view of the paucity of data on zinc homeostasis. Instead IOM [2] 

set an “Adequate Intake” based on the average maternal zinc supply for exclusively breastfed normal 

birthweight infants in view of the evidence that breast milk zinc content appears adequate for full-

term, normal-birthweight, exclusively breastfed infants until about 6 months of age [21]. The average 

maternal zinc supply was derived from data on the zinc concentrations in human milk during the first 

six months of lactation [22–25] together with the figure for the average volume of breast milk, 

assumed to be 0.78 L by IOM [2]. The latter proposed a single average value for the zinc transfer in 

breast milk (i.e., 2.0 mg Zn/d) for infants 0 to 5 months, even though breast milk zinc concentrations 

decline during the first few months post-partum. IZiNCG [3] and EFSA [26] adopted the same 

approach used by IOM for the majority of normal birthweight breast-fed infants aged 0 to 6 months, 

although EFSA assumed an average volume of breast milk of 0.80 L and a single average value of 

2.5 mg Zn/L for the zinc transfer in breast milk [27]. For non-exclusively breast-fed infants, IZiNCG 

estimated the amount of absorbed zinc needed as 1.3 and 0.7 mg/d for infants aged 0 to 3 months and 

3 to 5 months, respectively.  

  

Infants 6 to 12 months and children 1 to 18 years 

 

WHO, IOM, IZiNCG, and EFSA [1–4] all adopted the factorial approach to estimate the 

physiological requirements for absorbed zinc for older infants and during childhood. The estimates 

for total endogenous losses for these age groups were extrapolated from measured values from either 

adults (≥19 y) or younger infants, with the exception of intestinal endogenous losses for older infants, 

which the IOM, IZiNCG and EFSA [24] estimated from empirical data from breastfed infants aged 2 

to 4 months [23]. WHO [8] adjusted the adult values based on metabolic rate, whereas the 

corresponding adjustments made by IOM, IZiNCG and EFSA [2–4] were based on reference body 



weights. For the latter, both WHO [1,8] and IZiNCG [3] adopted the NCHS/CDC/WHO reference 

body weights, whereas IOM [2] applied reference growth data adapted from the third US National 

Health and Nutrition Examination Survey. EFSA [4] applied reference body weights for infants and 

young children based on the more recent WHO Multicentre Growth Reference Study [27]. For older 

children, data from van Buuren et al. [28] were used.  

There were also differences in the estimates for the amount of zinc required for synthesis of 

new tissue. IOM, IZiNCG, and EFSA [2–4] used 20 µg Zn/g for tissue accretion across the entire age 

range, irrespective of whether the gain was lean or adipose tissue because of the absence of more 

precise data on age-related changes in the body composition of infants and children. This estimate 

was based on data generated by Widdowson and Spray [29] that suggested that the concentration of 

zinc in the fat-free body tissue of whole fetuses of varying gestational ages was constant. In contrast, 

WHO [8] applied a figure of 30 µg Zn/g wet weight for new tissue for infants and children less than 

aged 10 y and 23 µg Zn/g wet weight for adolescents based on the assumption that there is an 

increase in fat tissue with a lower zinc content in older compared to younger children. The average 

amounts of new tissue gained were estimated to be 13 g/d, 6 g/d, 7 g/d and 10 g/d for older infants 

aged 7–12 mo, children aged 1–3 y, 4–8 years, and 9–18 y, respectively by both IOM [2] and IZiNCG 

[3].  EFSA [4] assumed a daily weight gain of 11.5 g per day for infants in the second half-year of 

life, which is based on observed weight increments of infants in the Euro-Growth Study [30].  For 

older infants and children, daily weight gains were also calculated from the same study, by 

subtracting the median weight at the lower boundary of the age group from that at the higher 

boundary of the age group and dividing this by the number of days in that age interval.  As a result of 

these discrepancies, there were some differences in the physiological requirements for absorbed zinc 

for older infants and children among the four expert groups, as shown in Table 2.  

 

Pregnant women 



Estimates for the additional requirements for absorbed zinc during pregnancy differed across the four 

expert groups.  WHO [1] provided an estimate for each trimester based on the calculated zinc 

retention of 100 mg throughout pregnancy [31]. No allowance was made by WHO for any adaptive 

response during pregnancy by increasing the efficiency of absorption or decreasing the endogenous 

loss of zinc. The source of the data used by IOM [2], IZiNCG [3], and EFSA [4] for the additional 

requirements for absorbed zinc imposed by the three trimesters of pregnancy [32] was the same as 

that used by WHO, although there were slight differences in the final additional requirements for 

absorbed zinc set by WHO and IOM across the three trimesters of pregnancy. In contrast, IZiNCG 

and EFSA set only one value to represent the additional needs throughout pregnancy. IZiNCG [3] 

used a value of 0.70 mg per day that reflected the additional needs during the third trimester, 

recognizing that this would be an overestimate of the average needs during the first and second 

trimester. EFSA [4] estimated an average daily rate of zinc accumulation over the four quarters of 

pregnancy that resulted in a value of 0.4 mg/day for the whole pregnancy.  In all cases, the estimates 

for the additional requirements for absorbed zinc imposed by pregnancy were added to the total 

endogenous losses of absorbed zinc for adolescent girls or women, as appropriate to yield the 

physiological requirements, based on the assumption that intestinal endogenous losses are unchanged 

during pregnancy.  

 

Lactating women 

When deriving the additional physiological requirements imposed by lactation, each expert group 

took into account the decline in breast milk zinc concentrations which occurs irrespective of maternal 

dietary zinc intakes or status during lactation, as well as the redistribution of tissue zinc from the 

postpartum involution of uterine tissue and the decrease in blood volume that occurs during the first 

month.  Data from three studies were used by WHO for estimates of breast milk zinc concentrations 

at 4, 12, and 16 weeks lactation [20,32,33], whereas IOM [2] and IZiNCG [3] used data from twelve 



studies for their age-specific estimates at 4, 8, 12, and 24 weeks lactation. EFSA [4] used data 

collated in a comprehensive review [34], which included 63 studies undertaken globally.  The 

estimates of breast milk volume differed across the expert groups. IOM [2] based their average value 

of 0.78 L/day on test-weigh data derived from full-term infants of US women during the first year 

post-partum.. In contrast, IZiNCG [3] used breast milk volume for women from low income 

countries compiled in a review by Brown et al. [35] in view of their longer duration of breastfeeding 

compared to US women and the changes in breast milk volume with child’s age. The physiological 

requirements for absorbed zinc were then based on the summation of the additional requirements 

imposed by lactation and the total endogenous losses for either adolescent girls or adult women. 

WHO[1] provided three physiological requirement estimates for absorbed zinc from 0–3 mo, 3–6 

mo,  and 6–12 mo lactation whereas IOM, IZiNCG, and EFSA [2–4] derived a single average value 

for throughout lactation, as shown in Table 2.  

 

Conversion of physiological to dietary Zn requirements 

The estimated average requirement (EAR), termed the ‘Requirement’ by WHO [1] and average 

requirement (AR) by EFSA [4], was defined by all expert groups as the level of dietary zinc that 

meets the requirement of 50% of healthy persons in a particular life-stage and gender group. To 

convert the physiological requirements to the dietary zinc requirements it is necessary to account for 

the proportion of dietary zinc that is absorbed by the intestine (i.e., fractional zinc absorption, FAZ), 

a step that is dependent on both the characteristics of the habitual diet and the physiological state 

(e.g., lactation). To achieve this conversion, the mean amount of absorbed zinc was regressed against 

total zinc intakes from diet types that differed in their composition. All expert groups used zinc 

absorption data from available published studies of radioactive or stable-isotopes of zinc.  



The source of these data was not identified by WHO [1,8], although for the diet types 

considered to represent a relatively high level of zinc absorption, 12 sets of studies based on whole-

day diets containing no known sources of zinc inhibitors were used. For the diet types corresponding 

to those of moderate and low zinc absorption, however, a combination of isotopically labeled single-

meals, individual foods, as well as whole-day diet studies were used. This distinction is important 

because in the single meal studies an average correction factor for intestinal endogenous losses must 

be applied to yield an estimate of zinc absorption. Moreover, single meal studies may exaggerate the 

effect of absorption modifiers, as noted for non-heme iron [36]. The criteria used to classify the diets 

as having a high, moderate, or low level of zinc absorption were based on compositional data as well 

as evidence from studies on non-human species; more details are available in WHO [8].    

In contrast only whole-day diet studies were selected by both IOM [2] and IZiNCG [3] to 

examine the relationship between the mean amount of absorbed zinc and the total zinc ingested from 

the diet being tested.  IOM selected seven whole-day diet studies in only men consuming North 

American or European mixed or semi-purified formula diets (including the use of zinc supplements), 

whereas IZiNCG [3] selected whole-day diet studies (n=11) of  both men and women from all 

nationalities; semi-purified formula diets or those using zinc supplements were excluded.  IZiNCG 

[3] categorized the diets into mixed or refined vegetarian diets with phytate:Zn  molar ratios 4–18 

(n=10) and an unrefined vegetarian diet (n=1) with a phytate:Zn molar ratio > 18; further details 

justifying this classification are given in Brown et al.[3]. The amount of total dietary zinc for each 

diet type needed to provide an amount equivalent to the physiological requirement for zinc, was then 

derived by regression analysis. This amount of total dietary zinc represents the EAR for the 

respective diet type.  Using the conceptual approach applied by IZiNCG [3] as an example, assuming 

the physiological requirement of absorbed zinc for an adult male = 2.69 mg/d absorbed zinc (based 

on factorial approach: see Table 1), then the total intake of dietary zinc (i.e., the EAR) likely to meet 



this requirement is 10.4 mg zinc/day for a diet with a phytate:Zn molar ratio of 24, and 15.0.mg 

zinc/day for a diet based on a phytate : Zn molar ratio of 24, as shown in Fig 2.  

Fractional zinc absorption for each diet type was then calculated as the percentage of the 

physiological requirement relative to the total dietary zinc intake. The estimates for FAZ for the diet 

types examined by WHO [8], IOM [2], and IZiNCG [3] and calculated in this way are shown in 

Table 3, and also in Fig. 2 for the IZiNCG two diet types for adult men.  Note that WHO [8] 

assumed the FAZ of zinc from breast milk was 80% whereas both IOM [2] and IZiNCG [3] assumed 

a value of 50% [37]. For non-exclusively breastfed infants, WHO [8] proposed the use of 30%, 

unless infants were receiving phytate-rich vegetable protein formula or complementary foods based 

on non-fermented whole grain cereals, when a FAZ of 15% was recommended.  IOM [2] assumed 

FAZ from complementary foods to be 30% and applied this same value to estimate the dietary zinc 

requirements (i.e., EARs) for all children 1–8 y, after which the adult figures were used. EFSA [4] 

assumed this same value for FAZ (i.e., 30%) from a mixed diet, but applied this figure for all 

children from aged 1–17 y. IZiNCG [3], however, applied their mean absorption figures generated 

for adults for each diet type (see Table 3) to all children aged 1–18 y, arguing that the figure used by 

IOM was only based on two single-meal studies in infants and young children [38, 39]. 

No allowance for an adaptive response to meet the additional physiological demands for zinc 

during pregnancy or lactation was made by WHO [8] in view of the paucity of data at that time. 

Subsequently, IOM [2], IZiNCG [3], and EFSA [4] adjusted the figure for FAZ during lactation (but 

not pregnancy) based on more recent data [40–43]. As a consequence,  FAZ for lactating women was 

estimated as 37% by IOM [2] (sum of 27% for non-lactating women plus 10% increase) and 45% by 

EFSA [4], whereas the figures set by IZiNCG [3] for FAZ in lactating women were 44% (34 % plus 

10%) for women (≥19 y) consuming mixed or refined vegetarian diets  and 35% (25% plus 10%) for 

those (≥19 y) consuming unrefined, cereal-based diets (see Table 3).  For lactating women aged 14–



18 y, the corresponding estimates set by IZiNCG [3] were lower, 40% and 32% respectively, in view 

of their likely lower zinc intakes.  

As phytate has been identified as the most important inhibitor of zinc absorption in adult 

human diets, EFSA used a trivariate model [44,45] to examine the relationship between TAZ, total 

dietary zinc (TDZ), and the phytate content (Fig.3).  The relationship between TAZ and TDZ is most 

appropriately fitted with saturation response modeling (Fig.4), which was therefore used as the 

theoretical framework for the trivariate model (Fig.3).  Data selected were extracted from whole-day 

isotope studies of true zinc absorption in healthy adults that reported measurements of TDZ and total 

dietary phytate.   A total of 72 data points, reflecting 650 individual measurements, reported in 18 

publications were used to generate predictions of TAZ as a function of TDZ at six different levels of 

dietary phytate, ranging from 0 to 3000 mg/d (Fig. 4).   The amount of dietary zinc needed to meet 

the physiological requirement at the different phytate levels can then be determined in the same way 

as described above and illustrated in Fig. 2, for a physiological requirement of 3.4 and 2.9 for men 

and women respectively (Table 2).   

 

Derivation of Recommended Dietary Allowances  

The third step is to derive the daily dietary intake level sufficient to meet the requirements of almost 

all (97–98%) of healthy persons in a particular life-stage and gender group.  By definition this level is 

defined as the EAR + 2 SD EAR and is termed the RNI by WHO [1] and the RDA by both IOM [2] 

and IZiNCG [3], as noted earlier. Hence to calculate this level, an estimate of the individual variation 

in dietary zinc requirements for men and women is required. This was assumed to be 25% by WHO 

[1,8], 10% by IOM [2], and 12.5 % by IZiNCG [3]. The WHO estimate of 25% was based on the 

assumed variation in protein requirements (i.e., 12.5%) plus an additional 12.5% to include the 

estimated variation in requirements for absorbed zinc [8]. In contrast, the coefficient of variation 



(CV) for zinc requirements of 10% chosen by IOM [2] was the figure adopted for all nutrients when 

no information on requirement distributions existed.  IZiNCG [3] adopted a CV of 12.5% for men 

and women, arguing that any variation in protein digestibility was already covered by the WHO CV 

of 12.5%, making any additional 12.5% to account for variation in zinc absorption unjustified.  Based 

on these differing CVs, the RNI for WHO is 150% of the EAR, whereas the RDA’s for IOM and 

IZiNCG are 120% and 125% of the corresponding EARs, respectively. This level of the dietary zinc 

recommendations is used to evaluate the adequacy of the zinc intake of an individual within a 

particular life-stage and gender group.  

EFSA [4] have adopted an alternative approach to derive the PRI for non-pregnant and non-

lactating adults.  Multiple regression analysis revealed that body weight was a strong determinant of 

the zinc requirement; therefore this committee has estimated the PRI as the zinc requirement of 

individuals with a body weight at the 97.5th percentile for reference body weights for men and for 

women [46]. This approach was considered to have less uncertainty than the mathematical 

application of a CV of between 10 and 20%, and is equivalent to CVs for the ARs of between 10 and 

14%.  For the additional requirement of zinc for pregnant and lactating women, and for the 

requirements for children, EFSA applied a CV for zinc requirements of 10% in view of the paucity of 

data on the variation in zinc requirements for these age and life-stage groups. 

 

Derivation of Tolerable Upper Intake Levels 

The tolerable upper intake level (UL) is defined by WHO [1], IOM [2], and IZiNCG [3] as the 

highest level of daily nutrient intake that is likely to pose no risks of adverse health effects for almost 

all individuals.  The data used to derive the tolerable upper level were from studies reporting adverse 

effects of high doses of supplemental zinc (50 mg Zn/d) on copper status indices, notably reductions 

in the activity of erythrocyte copper-zinc superoxide dismutase (Cu-SOD) [47,48]. WHO [1] set an 



upper limit of intake of 45 mg/day for adults ≥19 y assuming a 20% variation in intake, and 

extrapolated this figure to other age groups based on differences in basal metabolic rates. This 

adjustment yielded upper limits for children ranging from 23 to 28 mg Zn/day. In contrast, IOM [2] 

based their UL on the Lowest Observed Adverse Effect Level (LOAEL), a figure of 60 mg Zn/d (50 

mg Zn/d from supplement and 10 mg/d from diet) [48], and an uncertainty factor of 1.5 to account 

for individual variation in the response. This was extrapolated to a No Observed Adverse Effect 

Level (NOAEL) of 40 mg/d for the UL for male and female adults. For children, the IOM [2] 

estimates for the UL were based on one study in which no changes in copper status were found when 

infants were fed for six months a zinc-fortified infant formula containing 5.8 mg Zn/L or an 

unfortified formula with1.8 mg Zn/L. As a result, a NOAEL of 5.8 mg Zn/L was set for infants 0 to 6 

months of age, which yielded a NOAEL of 4.5 mg Zn/d when an average breast milk intake of 0.78 

L/day was assumed. Based on an uncertainty factor of 1.0, a UL of 4.0 mg/d was set for infants aged 

0 through 6 months which was adjusted for older infants and children based on relative body weight 

(Table 5).   

IZiNCG [3] adopted the IOM value for the UL for adults but did not set a UL for children in 

view of the paucity of data for this age group and the fact that US children often have zinc intakes 

greater than the IOM UL with no observed adverse effects as a result of their consumption of zinc 

fortified formulas and/or ready-to-eat breakfast cereals [498,50].  Instead, IZiNCG provided a 

NOAEL for young children as shown in Table 5, based on an Indonesian study in which infants aged 

6 months were supplemented with 10 mg zinc or a placebo for 6 months, with no apparent change in 

plasma copper levels [51]. 

 

Conclusions and recommendations 



Differences exist among the estimates for the dietary zinc recommendations set by WHO [1], IOM 

[2], IZiNCG [3] and EFSA [4]. The source of these differences include the data used for reference 

body weights, with WHO and IZiNCG using the NCHS/CDC/WHO reference body weight for 

children and adults; the IOM the most recent US reference growth data; and EFSA using the WHO 

Multicenter Growth Reference Study Group for children, and European reference body weight data 

for adults. There are also discrepancies across the four expert groups in the selection and application 

of the studies used to provide the empirical data for both the estimates of endogenous zinc losses and 

fractional zinc absorption from the differing habitual diets. The WHO estimates of endogenous zinc 

losses were based on extrapolation from limited balance study data on adults receiving very low zinc 

intakes. In contrast, both IOM and IZiNCG adopted a new conceptual approach to estimate intestinal 

endogenous zinc losses in view of their positive correlation with the quantity of absorbed zinc. They 

also considered a larger number of stable isotope studies based on whole-day diets and performed a 

back-calculation of absorbed zinc from the regression of endogenous zinc losses on TAZ. However, 

the statistical modeling used to examine this relationship differed: only IZiNCG applied the 

regression analysis with data weighted by sample size. EFSA examined the relationship between total 

endogenous zinc losses and TAZ using multiple regression analysis. As a result of these 

methodological differences, the estimates for the physiological requirements for zinc vary across the 

expert groups. In addition, the dietary requirements for zinc were not consistent across particular life-

stage and gender groups, attributed largely to differences in the proportion of zinc absorbed from the 

habitual diets, which was governed mainly by their phytate content, at least among adults. Indeed 

EFSA set dietary zinc requirements for adults at four levels of dietary phytate intake. Unlike WHO 

and IOM, IZiNCG did not set a UL for young children but instead provided an estimate for the 

NOAEL on the basis that the UL set by IOM for this age group may be too low. EFSA has not yet 

derived a UL for any life-stage group  



A dietary indicator based on the prevalence of inadequate intakes of dietary zinc has been 

recommended by WHO/UNICEF/IAEA/IZiNCG for assessing zinc status at the population level and 

evaluating nutrition interventions designed to combat zinc deficiency [52]. Clearly such prevalence 

estimates will depend in part on the dietary zinc recommendations applied, emphasizing the need to 

harmonize the dietary zinc recommendations for international use. We suggest that the factorial 

method should continue to be used as the basis for setting the dietary zinc recommendations. 

However, we recommend that the measurement of endogenous fecal zinc losses should be derived 

from stable isotope studies of men and women consuming whole-day diets based on conventional 

foods and semi-purified diets, irrespective of nationality.  Further, the physiological requirements 

should be estimated from the endogenous losses using the approach adopted by EFSA whereby the 

covariate body weight is used in the regression equation describing the relationship between total 

absorbed zinc and total endogenous losses.   

The marked impact of high-phytate plant-based diets on the level of dietary zinc needed to 

meet the zinc requirements for adults prompted EFSA to adopt the trivariate model of Miller et al. 

[44] to examine the relationship between total absorbed zinc, total dietary zinc, and the dietary 

phytate content.  However, in many low-income countries, diets are plant-based diets with a very 

high phytate content. Hence, for international use, we recommend that more studies based on very 

high dietary phytate levels should be incorporated into the trivariate model so that dietary zinc 

requirements for adults with phytate intakes above 1200 mg/day can be developed.  Moreover, 

because of the paucity of empirical data on the coefficients of variation in dietary zinc requirements 

coupled with the EFSA observation that body weight is a strong determinant of the dietary zinc 

requirement [4], we recommend that the zinc RDAs for non-pregnant and lactating adults correspond 

to the zinc requirements of individuals with a body weight at the 97.5th percentile for the 

NCHS/CDC/WHO reference body weights. Finally, to select the appropriate dietary zinc 

recommendation for calculating the prevalence of inadequate intakes among adult populations in low 



income countries, data on the phytate content of indigenous plant-based foods prepared with local 

food preparation and processing practices are urgently required. 

To date, EFSA has not derived a UL for any life-stage group. However, new evidence 

supports the suggestion that the current UL for zinc for children needs to be re-examined based on 

the finding that sensitive biomarkers of copper status were unchanged by supplementation with 5, 10 

or 15 mg zinc daily for 4 months in healthy boys in a double-blind, placebo-controlled randomized 

trial  [53]. 
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FIG 1. Graphical representation of the model used by IZiNCG to estimate intestinal endogenous zinc 
and total endogenous losses for men and women when the amount of absorbed zinc is sufficient to 
offset all zinc losses (i.e., physiological requirement). From [3] 
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FIG 2. Derivation of the IZiNCG estimated average requirements for men and the critical level of 
zinc absorption for mixed/refined vegetarian diets (phytate:zinc (P:Z) molar ratios of 11) and 
unrefined cereal-based diets (phytate:zinc (P:Z) molar ratios of 24) based on the association between 
total zinc intake and absorbed zinc for each diet type and the physiologic requirements for men (2.69 
mg Zn/d). From [3]  
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FIG.3. Three dimensional representation of the trivariate model describing the relationship between 
total absorbed zinc, dietary phytate and dietary zinc. From [4] 
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FIG.4. Saturation response model predictions of total absorbed zinc (TAZ) for selected levels of 
dietary phytate. From [4] 



 
TABLE 1. Total endogenous losses (mg/day) in adult men and women as estimated by  
WHO, IOM, IZiNCG, and EFSA 
  

Male WHO 
[8] 

IOM 
[2] 

IZiNCG 
[3] 

EFSA 
[4] 

Reference body weight, kg 65 75 65 72.7 

      Urine, mg 0.30 0.63 0.63 0.54 

      Integument, mg 0.30 0.54 0.42 0.50 

      Semen, mg - 0.10 0.10 0.10 

Total non-intestinal losses, mg 0.60 1.27 1.15 1.14 

       Intestinal endogenous losses, mg 0.80 2.57 1.54 2.40 

Total endogenous losses, mg 1.40 3.84 2.69 3.54 

Female     

Reference body weight, kg 55 65 55 59.1 

       Urine, mg 0.30 0.44 0.44 0.32 

       Integument, mg 0.20 0.46 0.36 0.30 

       Menstrual flow, mg -- 0.10 0 0.01 

Total non-intestinal losses, mg 0.50 1.00 0.80 0.63 

       Intestinal  endogenous losses, mg 0.50 2.30 1.06 2.30 

Total endogenous losses, mg 1.00 3.30 1.86 2.93 

 



 
TABLE 2. Estimated physiologic requirements for absorbed zinc (mg/d) during childhood by age group and sex and during pregnancy and 
lactation by WHO, IOM, IZiNCG and EFSA  
 

WHO [8] IOM [2] IZiNCG [3] EFSA [4] 

Age, sex 
Ref 

weight 
(kg) 

Physiol. 
Req 

(mg/d) 
Age, sex 

Ref 
weight 

(kg) 

Physiol. 
Req 

(mg/d) 
Age, sex 

Ref 
weight 

(kg) 

Physiol. 
Req (mg/d) Age, sex Ref weight 

(kg) 
Physiol. 

Req (mg/d) 

6-12 mo 9 0.84 7-12 mo 9 0.84 6-11 mo 9 0.84 7-11 mo   

1-3 y 12 0.83 1-3 y 13 0.74 1-3 y 12 0.53 1-3 y 11.9 1.074 

3-6 y 17 0.97 4-8 y 22 1.20 4-8 y 21 0.83 4-6 y 19.0 1.390 

6-10 y 25 1.12       7-10 y 28.7 1.869 

10-12 y, M 35 1.40 9-13y 40 2.12 9-13 y 38 1.53    

10-12 y, F 37 1.26          

12-15 y, M  48 1.82       11-14 y M 44.0 2.635 

12-15 y, F 48 1.55       11-14 y F 45.1 2.663 

15-18 y, M 64 1.97 14-18 y, M 64 3.37 14-18 y,M 64 2.52 15-17 y M 64.1 3.544 

15-18 y, F 55 1.54 14-18 y, F 57 3.02 14-18 y, F 56 1.98 15-17 y F 56.4 2.969 
Additional 
req for  
1st,2nd, 3rd  tri. 

- 0.1, 0.3, 
0.7 

Additional 
req for 

1st,2nd, 3rd  tri. 
- 0.16,0.3

9,  0.63 
Additional 

req for 
pregnancy 

- 0.70a 
Additional 

req for 
pregnancy 

 0.40a 

Additional  
lactation req 
0-3, 3-6, 6-12 
months 

- 1.4, 0.8, 
0.5 

Additional 
req for 

lactation 
 

- 
1.35b 

 
 

Additional 
req for 

lactation 
 

- 1.0b 
Additional 

req for 
lactation 

 
 1.1b 

a. A single estimate for additional requirements is applied throughout pregnancy 
b. A single estimate for additional requirements is applied throughout lactation   

Adapted from [3] and [4]. 
 



TABLE 3. Estimates of fractional zinc absorption from selected diet types examined by WHO, IOM, and IZiNCG 
 

 Diet categories Phy:Zn molar ratio Zn absorption (as %) 

WHO [1] Three categories: M+F <5a  
5-15ab   
>15 abc 

50%  
30% 
15% 

IOM [2] One for M + F Mixed dieta but not 
defined by phy:Zn molar 
ratios 

 
41% M; 46% F 

IZiNCG [3] Two each for M & F 4-18: mixed or refined 
vegetarian dieta  
 
> 18: unrefined cereal-
based dieta 

26% M: 34% F 
 
 
18% M; 25% F 

a.whole day diets; b. single meals; c. Additional criteria used to define the three diet types are described in [1] 
 WHO, IOM, and IZiNCG: No adjustment for fractional zinc absorption for pregnancy 
IOM: For women outside the reproductive cycle, fractional zinc absorption was assumed to be 27%   
IOM and IZiNCG applied a 10 % increase in fractional zinc absorption during lactation. 
 



TABLE 4. Estimated average requirements (EAR) for zinc (mg/d) by selected life-stage and diet types defined by WHO, IOM,  IZiNCG and 
EFSA 

 
Ref Wt: Reference weight; EAR: Estimated Average Requirement 
Calculated from average normative requirements for zinc (µg/kg/d) based on WHO reference body weight specified by WHO/FAO[1] 
 a. High bioavailability (50%); b. Moderate bioavailability (30%); c. Low bioavailability (15%)[1] 
Assumes a fractional absorption of zinc of 0.3 in infants, children and pregnant women or 0.45 during lactation [4]. 

WHO/FAO/IAEA [8] IOM [2] IZiNCG [3] EFSA [4] 

Age, sex Ref 
Wt 
(kg) 

Requirement (mg/d) 
 

  Higha         Modb       Lowc 

Age, sex Ref 
Wt  
(kg) 

EAR 
(mg/d) 

Age, sex Ref  
Wt 
(kg) 

EAR 
Mixed 

EAR      
unrefined 

Age, sex Ref  
Wt 
(kg) 

Average 
requirement 
(mg/d)*** 

7-12 mo 9 0.6 0.6 0.6 7-12 mo 9 2.2 6-11 mo 9 3 4 7-11 mo  2.4 

1-3 y 12 1.66 2.76 7.45 1-3 y 13 2.2 1-3 y 12 2 2 1-3 y 11.9 3.6 

4-6 y 17 1.94 3.23 6.46 4-8 y 22 4.0 4-8 y 21 3 4 4-6 y 19.0 4.6 

7-9 y 25 2.25 3.73 7.48        7-10 y 28.7 6.2 

10-12 y, M 35 2.80 4.66 9.35 9-13y 40 7 9-13 y 38 5 7 11-14 y, M 44.0 8.9 

10-12 y, F 37 2.38 3.96 7.95        11-14 y, F 45.1 8.9 

12-15 y, M 48 3.65 6.05 12.14           

12-15 y, F 48 3.07 5.14 10.32           

15-18 y, M 64 3.90 6.53 13.12 14-18 y, M 64 8.5 14-18 y, M 64 8 11 15-17 y, M 64.1 11.8 

15-18 y, F 55 3.08 5.12 10.29 14-18 y, F 57 7.5 14-18 y, F 56 7 9 15-17 y, F 56.4 9.9 

Pregnancy 
 

- - - - Pregnancy 
14-18 y 
19-50 y 
 

 
- 
- 

 
10.5 
  9.5 

Pregnancy 
14-18y 
>19 y 
 

 
- 
- 

 
9 
8 

 
12 
10 

Pregnancy 
additional 
AR 

  1.3 

Lactation - - - - Lactation 
14-18 y 
19-50 y 

 
- 
- 

 
11.6 
10.4 

Lactation 
14-18 y 
>19 y 

 
- 
- 

 
8 
7 

 
9 
8 

Lactation 
additional 
AR 

 2.4 



TABLE 5. Estimated Recommended Daily Allowances for zinc (mg/d) by life-stage and diet types defined by WHO, IOM,  IZiNCG and EFSA 

a. High bioavailability (50%); b. Moderate bioavailability (30%); c. Low bioavailability (15%) 
d..Exclusively breastfed infants:  breast milk zinc bioavailability assumed to be 80%; e. Not applicable to exclusively breastfed infants 

WHO/FAO [1] IOM [2] IZiNCG [3] EFSA [4] 

Age, sex Ref 
Wt 
(kg) 

RNI (mg/d) 
 

 Higha          Modb     Lowc 

Age, sex Ref 
Wt 
(kg) 

RDA 
(mg/d) 

Age, sex Ref  
Wt 
(kg) 

RDA 
Mixed 
(mg/d) 

RDA 
Unrefined 
(mg/d) 

Age, sex Ref Wt 
(kg) 

PRI 
 (mg/d) 

7-12 mo 9 0.8d; 2.5e 4.1 8.4 7-12 mo 9 3.0 6-11 mo 9 4 5 7-11 mo  2.9 

1-3 y 12 2.4 4.1 8.3 1-3 y 13 3.0 1-3 y 12 3 3 1-3 y 11.9 4.3 

4-6 y 17 2.9 4.8 9.6 4-8 y 22 5.0 4-8 y 21 4 5 4-6 y 19.0 5.5 

7-9 y 25 3.3 5.6 11.2        7-10 y 28.7 7.4 

10-18 y, M 49 5.1 8.6 17.1 9-13 y M/F 40 8 9-13 y 38 6 9 11-14 y M/F 44.0/45.1 9.4 

10-18 y, F 47 4.3 7.2 14.4 14-18 y, M 64 11 14-18 y, M 64 10 14 15-17 y, M 64.1 12.5 

19-65 y, M 65 4.2 7.0 14.0 14-18 y, F 57 9 14-18 y, F 56 9 11 15-17 y, F 56.4 10.4 

19-65 y, F 55 3.0 4.9 9.8           

65+y, M 65 4.2 7.0 14.0 >19 y, M 76 11 >19 y, M 65 13 19 

≥ 18 y M   300 
Level of     600 
phytate      900 
mg/day: , 1200  

68.1 9.4,  
11.7,  
14.0,  
16.3 

65+y, F 55 3.0 4.9 9.8 >19 y, F 61 8 >19 y, F 55 8 9 

≥ 18 y F    300 
Level of     600 
phytate      900 
mg/day: , 1200 

58.5 7.5, 
9.3,  
11.0,  
12.7 

Pregnancy 
1st trimester 
2nd trimester 
3rd trimester 

  
3.4 
4.2 
6.0 

 
5.5 
7,0 

10.0 

 
11.0 
14.0 
20.0 

Pregnancy 
14-18 y 
19-50 y 
 

 
- 
- 

 
13 
11 

Pregnancy 
14-18y 
>19 y 
 

 
- 
- 

 
11 
10 

 
15 
13 

Pregnancy  + 1.6 

Lactation 
0-3 mos 
3-6 mos 
6-12 mos 

-  
5.8 
5.3 
4.3 

 
9.5 
8.8 
7.2 

 
19.0 
17.5 
14.4 

Lactation 
14-18 y 
19-50 y 

 
- 
- 

 
14 
12 

Lactation 
14-18 y 
>19 y 

 
- 
- 

 
10 
   9 

 
11 
10 

Lactation  + 2.9 



TABLE 6. Upper limits or no observed effects level (NOAEL)  
for zinc intake by life-stage as defined by WHO, IOM and IZiNCG 
 
 
 
 

WHO/FAO [1] IOM [2] IZiNCG [3] 

Age, sex Upper limit 
(mg/d) Age, sex Upper limit 

(mg/d) Age, sex 
No observed 
effect levela 

(mg/d) 

0-6 mo - 0-6 mo 4 0-5 mo - 

7-12 mo 13 7-12 mo 5 6-11 mo 6a 

1-3 y 23 1-3 y 7 1-3 y 8a 

4-6 y 23 4-8 y 12 4-8 y 14a 

7-9 y 28     

10-12 y, M 34 9-13y 23 9-13 y 26a 

10-12 y, F 32     

12-15 y, M 40     

12-15 y, F 36     

15-18 y, M 48 14-18 y, M 34 14-18 y, M 44a 

15-18 y, F 38 14-18 y, F 34 14-18 y, F 39a 

18 – 60+ y, M 45 >19y, M 40 >19 y, M 40b 

18-60+y,F 35 >19 y, F 40 >19 y, F. 40b 

 
b.Represent upper limits. 

 
 
 


