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ABSTRACT 

Alzheimer’s disease (AD) is a scourge of longevity that will drain enormous resources from 

public health budgets in the future. Currently, there is no diagnostic biomarker and/or 

treatment for this most common form of dementia in humans. AD can be of early familial-

onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and 

neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. 

Inflammation may be caused by a local central nervous system insult and/or by peripheral 

infections. Numerous microorganisms are suspected in AD brains ranging from bacteria 

(mainly oral and non-oral Treponema species), viruses (Herpes simplex type I) and yeasts 

(Candida species). A causal relationship between periodontal pathogens/non-oral Treponema 

species of bacteria has been proposed via the amyloid-beta and inflammatory links. 

Periodontitis constitutes a peripheral oral infection that can provide the brain with intact 

bacteria and virulence factors and inflammatory mediators due to daily, transient 

bacteraemias. If and when genetic risk factors meet environmental risk factors in the brain, 

disease is expressed, in which neurocognition may be impacted, leading to the development of 

dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic 

treatment for AD, there is an initial need to solve the etiological puzzle contributing to its 

pathogenesis. This review therefore addresses oral infection as the plausible aetiology of late 

onset AD (LOAD).  

___________________________________________________________________________ 
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Alzheimer’s disease (AD) is a neurodegenerative disease and the most common example of a 

group of diseases that manifest as dementia. It is associated with atrophy and specific 

neuronal death particularly in the hippocampal region of the brain (1).  Research into AD 

pathogenesis, has flagged two main categories of the disease: the familial onset presentation 

accounts for around 2% of all AD cases and the sporadic form of late-onset AD also referred 

to as LOAD constitutes approximately 98% of the cases. LOAD displays genetic 

susceptibility traits of which the well-known risk factor is inheritance of the apolipoprotein 

(APOEɛ4) gene allele (2) and, appears to require an environmental factor for disease 

expression. For example a pathogen-host interaction can exacerbate neurocognition in some 

elderly individuals who if in their 80+ years likely become diagnosed with LOAD (3, 4). The 

rationale for this review therefore is to try to explain the aetiology in the vast proportion of 

LOAD cases that relies upon common risk factors. Several scientists have proposed, one of 

these to be peripheral infections (5-11), and the accompanying systemic and local 

inflammatory mediators (11-13). Of these, the plausible risk from oral infection is the main 

focus of this review. 

   

PREVALENCE OF AD 

AD is a burden of longevity resulting from the superior quality of health care provision for all. 

This factor is likely to contribute to quadrupling of AD subjects living in our society during 

the next 40 years (14). It is estimated that by 2050 about 13-14 million people are likely to 

suffer from AD in the USA with a rise in the total costs estimated to be more than $1 trillion. 

The odds of having a diagnosis of AD when over 85 years of age exceed 1:3 (15). One in six 

people over 80 years in the UK has dementia (16). Estimates for the prevalence of AD in the 

USA indicate that more than 5 million individuals who are 65 years or older currently suffer 

from AD (1, 15). About 200,000 subjects have been diagnosed with the early-onset familial 
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AD form and health care costs for this disease are about $200 billion per year (1). It is clear 

that AD is fast becoming a major health challenge in the USA and around the globe that will 

financially drain public health budgets and care giver services. 

 

NEUROPATHOLOGICAL CHARACTERISTICS OF THE AD BRAIN 

The AD brain is characterized by several neuropathological features of which two seminal 

hallmarks (Fig. 1) arise from proteostasis of the ongoing neurodegenerative processes and are 

essential for a definitive diagnosis of the disease post mortem (17). One of the hallmark 

proteins is made up of fibrils in the form of extracellular, insoluble plaques and consists 

primarily of amyloid-beta (Aβ) (18). These peptide deposits in variable sizes depend upon the 

secretase enzymes (α-, β- and ϒ-secretases) that cleave it from the longer amyloid precursor 

protein (APP). Initial reports suggested fibrillar Aβ to be neurotoxic (19) as it has been shown 

to kill all types of cells by apoptosis induction (20). However, there are two known insoluble 

fibrillar Aβ amyloid peptides comprised of Aβ40 and Aβ42 amino-acid residues which exhibit 

distinct physiological states within the human brain. There is a general consensus among 

scientists that the larger (Aβ42) peptide is the neurotoxic form as the ageing brain of cognitive 

intact individuals also displays Aβ plaques. However, in the cognitively intact brain they are 

fewer in number and usually of the diffuse Aβ40 type that appears not to bear any, as yet 

known, pathological significance. In addition there are the soluble monomeric, dimeric and 

the multimeric forms of Aβ (21). The relative neurotoxicity of these isoforms remains unclear 

(22).  

More recently, the fibrillary forms of the Aβ(40/42) peptides released in the AD brain were also 

recognized as “defensin” or innate immune defense molecules that act to protect the host 

against infection (23). For example, both of the aforementioned amyloidogenic peptides can 
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bind to bacterial membranes and in that way lyse bacterial cells. Although Aβ is acting as an 

antimicrobial peptide (AMP), it may be a part of the brain’s ancient/modern innate immune 

defense mechanism. AMPs are potent, broad-spectrum, pore-forming agents targeting Gram-

negative and Gram-positive bacteria, enveloped viruses and protozoans (23), thereby 

supporting the hypothesis that AD has an infectious origin.  

 

Furthermore, the senile plaques (Aβ42) are recognized as triggers that stimulate activation of 

microglial cells and initiate local immune responses (24). Activated microglia are the most 

important contributors of inflammation in the central nervous system (CNS) (25). They 

secrete a number of proinflammatory cytokines (24-26) and recognize pattern associated 

molecular patterns (PAMPs) on bacteria and their cellular debris (27-30) in response to CNS 

infection.  

The other pathological characteristic of AD is an accumulation of intracellular 

hyperphosphorylated tau and heat shock proteins constituting the neurofibrillary tangles 

(NFTs). Hyperphosphorylated tau protein alters the polymerization and stability of 

microtubules compromising their function (31). NFTs in AD reflect the severity of disease; 

however, the significance of pathogen-host interaction to the occurrence of NFTs in the AD 

brain is poorly understood. Current genetic evidence is pointing to aberrant innate immune 

responses (32, 33) and cholesterol lipid genes (34) having greater significance in AD 

pathogenesis. A dysfunctional immune system and predisposition to hyperlipidaemia also 

support the role of reduced blood flow due to the vascular lesions and inflammation, Aβ 

deposition and microorganisms in AD.   

In advanced AD pathology, synaptic dysfunction is another structural defect associated with a 

decline in memory (35-37). Although a circular argument, malnutrition plays a role in the 

gradual loss of synapses and fewer teeth during life is a known risk factor for AD (38). 
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Neurons are capable of responding to injury by expressing multiple neurotransmitters. In AD, 

selective loss of cholinergic neurons in the basal forebrain (39) also correlates with the loss of 

cognitive function (18, 35).  

 

THE AMYLOID CASCADE HYPOTHESIS  

Several hypotheses have been advanced regarding the development of AD. The amyloid 

cascade hypothesis serves as a model particularly for the familial form of AD (40) which is a 

disease caused by mutations involving the amyloid- protein precursor, located on 

chromosome 21 and presenilin 1 and 2 on chromosomes 14 and 1 respectively that enhance 

the APP gene processing towards Aβ deposition (41, 42). The model, which was first 

proposed by Glenner and Wong (43), maintains that the neurodegenerative disease is due to 

an imbalance between the generation and clearance of Aβ. Genome wide association studies 

(GWAS) highlighted the complement receptor 1 (CR1) gene playing a role in AD 

pathogenesis (44). One recognized role of CR1, a membrane bound regulatory protein, is its 

ability to bind C3b opsonins (Fig. 2). It is abundantly expressed especially on erythrocyte 

membranes and as such participates in immune complex clearance by transporting waste to 

the liver and the spleen. As the CR1 gene is a risk factor for LOAD, this suggests loss of 

function as a possibility for the defective clearance of Aβ in the brain. Other tentative 

explanations suggest variation in CR1 protein isoforms (longer and shorter forms) (45), 

whereby the longer form is less involved in the disease process via its ability to bind more 

C3b and facilitate more effective clearance of Aβ in the brain (46). This is a process that 

inevitably fails favoring disease expression with more Aβ proteostasis buildup and 

complement pathway activation. The amyloid hypothesis has been modified several times, 

particularly due to the finding that soluble oligomers of Aβ may contribute to early preclinical 
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stages of the disease that initiate the cascade leading to synaptic dysfunction, atrophy and 

neuronal loss (47).  

 

THE INFLAMMATORY HYPOTHESIS  

The intrinsic model 

Currently there are two models of the inflammatory hypothesis of AD, an intrinsic and an 

extrinsic. The intrinsic inflammation model accounts for the intact “blood-brain barrier” 

(BBB) restricting entry of neurotoxic immune molecules and systemic lymphocytes to the 

brain.  As a consequence, the brain glial cells are able to generate a local and complete innate 

immune system when challenged by foreign agents (26, 48-50). Historically, 

neuroinflammation has largely been viewed as being a downstream consequence of the 

amyloid hypothesis, whereby the presence of amyloidogenic peptides result in the activation 

of microglia initiating pro-inflammatory cascades and the release of potentially neurotoxic 

substances resulting in degenerative changes in neurons. GWAS now implicates innate 

immune genes (44, 51) as being a risk factor and supports a primary role for the inflammatory 

elements of AD pathology via inappropriate activation of the complement system (52-54) in 

association with Aβ plaques and NFTs (55).  

 

The extrinsic model 

The extrinsic model accounts for communication of the glial cells with the immune challenges 

presented via the blood vascular system using the circumventricular organs and the choroid 

plexus that are devoid of the BBB (56). The cells from this region of the brain are fully 

equipped with the CD14 receptor and the toll-like receptor 4 (TLR 4) to recognize LPS from 

the peripheral blood circulation (27, 28). Hence, elements of systemic infections such as those 



8 
 

originating from Gram-negative, highly virulent oral pathogens, bronchopneumonia and 

urinary tract infections (3, 4, 7, 57, 58) reach all organs including the CNS.  Bacterial 

products entering the bloodstream trigger the  innate immune responses of host cells via 

pattern recognition receptors (PPR) and TLRs   that alert local and distant cells to the 

infectious threat by secreting immune mediators (cytokines) to confine and defeat the foreign 

agents. Increased risk of dementia in the elderly following multiple infectious episodes has 

been reported (4). In addition, systemic infections appear to contribute towards delirium in 

some clinically diagnosed AD patients and such episodes can exacerbate a premorbid 

cognitive status (3). Holmes et al. proposed that since cytokines are primary mediators 

released by the host to defend against infection, such secondary stimuli (IL-1β and TNF-α) 

may mediate their effect on the brain and indirectly contribute to cognitive decline (3, 57).  

 

NON-ORAL BACTERIA RELATED TO AD 

Honjo et al. (59) using Bradford Hill’s criteria for assessing the relationship between bacteria 

and disease found Chlamydophila pneumoniae to be a likely infectious agent related to the 

pathogenesis of AD. Maheshwari and Eslick (60) reported a strong correlation between C. 

pneumoniae and AD, and according to Shima et al. (61) C. pneumoniae is currently the most 

plausible of all infectious agents proposed to be involved in AD. Lim et al. (62) suggested that 

the pro- and chronic inflammatory states in AD pathogenesis may in part be due to C. 

pneumoniae infection of monocytes. C. pneumoniae antibodies from typical intracellular and 

atypical C. pneumoniae antigens have been identified both in the frontal and temporal cortices 

of brains from AD patients (63). Amyloid deposit and NFTs were detected in the same 

regions in apposition to one another suggesting that C. pneumoniae infection is involved in 

the development of AD pathology. 



9 
 

Using various techniques Balin et al. (9) found C. pneumoniae in 80-90% of LOAD brain 

tissue specimens. C. pneumoniae infection was correlated with the APOEɛ4 allele expression. 

The same researchers subsequently demonstrated that astroglia, microglia, neurons, 

endothelial cells and monocytes in the LOAD brain are permissive to this bacterium. The 

mechanisms of pathogenesis differ between actively- and persistently-infecting chlamydiae 

and it is in the persistent state that these organisms cause chronic disease (64, 65). C. 

pneumoniae was cultured from two AD brain samples after one or two passages in HEp-2 

cells (66). Interestingly, the study indicated that brain isolates were more related to respiratory 

than to vascular/atheroma strains of C. pneumoniae. This suggested that C. pneumoniae 

infection of the brain was secondary to bronchopneumonia and at the end stages of LOAD. 

It has been suggested that the phages phiCPAR39 and phiCPG1, associated with C. 

pneumoniae, may enter mitochondria of the bacterial host and work as slow viruses initiating 

AD (67). These authors hypothesized that mitochondrial recruitment by C. pneumoniae 

phages may be the primary initiating event in the pathogenesis of neurodegenerative 

disorders. 

In a meta-analysis based on 25 relevant, primarily case-control studies Maheshwari and Eslick 

(60) found a statistically significant association between AD and detectable evidence of 

infection caused by C. pneumoniae or spirochetes. They reported over a ten-fold increased 

occurrence of AD when there was evidence of spirochetal infection (OR: 10.61; 95% CI: 

3.38-33.29) and over a four-fold increased occurrence of AD with a conservative risk estimate 

(OR: 4.45; 95% CI: 2.33-8.52). There was a five-fold increase in occurrence of AD with C. 

pneumoniae infection (OR: 5.66; 95% CI: 1.83-17.51). Accordingly, a strongly positive 

association between bacterial infection and AD was shown for both types of bacteria, but it 

was strongest for spirochetes. 
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It is generally accepted that the syphilis spirochete Treponema pallidum can cause chronic 

neuropsychiatric disorders including dementia as well as other neurodegenerative disorders 

(11). T. pallidum causes brain atrophy and Aβ deposition in the atrophic form of general 

paresis (68, 69) and is a strong indication for involvement of spirochetes in AD pathogenesis. 

Chronic diseases such as syphilis are frequently associated with deposition of amyloid (68, 

69). Amyloid is an integral component of spirochetes which may contribute to amyloid 

deposition in AD (70).  Spirochete accumulation in the cerebral cortex in the context of 

syphilis will also lead to formation of senile plaques, NFTs and granulovacuolar degeneration 

(71).  

Miklossy (68, 69) analyzed data on the ability of spirochetes to induce pathological and 

biological hallmarks of AD in vitro following Koch’s and Hill’s postulates and demonstrated 

a plausible causal relationship between neurospirochetosis and AD. The data revealed a 

statistically significant association between spirochetes and AD (P = 1.5 x 1017, OR = 20, 

95% CI = 8-60, N = 247).  When mammalian cells were exposed to spirochetes, the 

pathological and biological hallmarks of AD were reproduced in vitro (68, 69).  Historical 

observations supported the conclusion that chronic spirochetal infections can cause dementia 

and reproduce the neuropathological hallmarks of AD (72). According to Miklossy (72), these 

observations represent further evidence in support of a causal relationship between various 

spirochetal infections and AD. 

Another spirochete also implicated in AD is Borrelia burgdorferi, the causative agent of 

Lyme disease which is transfected to humans via tick vectors . There are great similarities in 

the clinical and pathological manifestations of syphilis and Lyme disease (72, 73). The 

occurrence of B. burgdorferi in the brains of AD patients was first reported by MacDonald 

and Miranda (74) and was confirmed later by MacDonald (75, 76), Riviere et al. (5) and 

Miklossy et al. (77). Interestingly, Bu et al. (78) found that the infectious burden consisting of 
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B. burgdorferi, C. pneumoniae, Helicobacter pylori, cytomegalovirus and Herpes simplex-1 

(HSV-1) is associated with AD. In contrast, Gutacker et al. (79) and Pappolla et al. (80) found 

no evidence for an association between B. burgdorferi and AD. 

Among other bacterial species, H. pylori (monoinfection) has been found to be related to AD 

(59). These authors suggested that AD pathology can be initiated and exacerbated by some 

microorganisms with inflammatory and oxidative responses which may affect the brain 

continuously and gradually over time. However, the H. pylori status was not associated with 

AD in a study from Japan, probably due to the high prevalence of the organism in controls 

(81). This was refuted by Kountouras et al. (82) who had previously found that successful 

eradication of  H. pylori infection was associated with significantly lower mortality risk in AD 

patients [HR (95% Cl)=0.287 (0.114-0.725), p=0.008] (83). 

 

ORAL BACTERIA RELATED TO AD 

The oral cavity harbors an impressive range of bacterial phylotypes (84). Molecular 

identification methods have detected close to 900 different predominant bacterial species of 

which 35% cannot yet be cultured (85). The oral microbiome profiles appear to be 

individualized (86), meaning that bacterial microbiomes can vary both qualitatively and 

quantitatively between individuals, although there are also significant overlaps. Each 

individual can  harbor up to 200 different bacterial taxa in their mouth and there is a large 

variation in the microbiota in different oral sites (84, 87). Furthermore, the composition of the 

oral microbiota irrespective of being indigenous or pathogenic in the oral cavity keeps 

changing in view of major oral diseases (caries, gingivitis, aggressive and chronic 

periodontitis, periodontal-endodontic lesions, peri-implantitis and mucositis) (88-94). 

Particularly plaque-induced oral diseases such as periodontitis are associated with a change in 
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the oral microbiota. There is a predominance of anaerobic bacteria in the oral cavity. Many of 

the major periodontal microorganisms are anaerobic, e.g., Porphyromonas gingivalis, 

Treponema denticola and Tannerella forsythia. The abundance of anaerobes tend to increase 

with the development of plaque-induced oral diseases.  

 

Periodontal bacterial pathogens are related to AD 

Major pathogens of chronic periodontitis such as P. gingivalis, T. forsythia and T. denticola 

are implicated in the development of several inflammatory diseases at remote organ sites. 

Except for T. forsythia, all three of the above-named organisms of which T. denticola 

represents a spirochete, have been found in the AD brain (5, 8). Spirochetes are strongly 

neurotropic. They can spread along nerve fibers and via lymphatics (67, 68) and have been 

detected in the trigeminal nerve and trigeminal ganglia (95). Spirochetes and their antigens as 

well as DNA have been found associated with AD and are strongly implicated as the 

causative agents leading to dementia (68, 69). In 14 studies spirochetes were detected in AD 

by different authors in different laboratories and countries by means of different techniques 

(for reviews see Miklossy (68, 69). Riviere et al. (5) demonstrated the presence of seven 

different oral Treponema species in 14 out of 16 AD brain specimens (Fig. 3). Spirochetes 

were even cultivated from the brains of AD patients indicating that they were viable in the 

brain (67, 68, 77). Miklossy suggested a co-infection by several spirochetes in AD including 

the oral varieties (T. socranskii, T. pectinovorum, T. denticola, T. medium, T. amylovorum and 

T. maltophilum) as demonstrated by Riviere et al. (5). Spirochetes reproduced the biological 

and pathological hallmarks of AD after exposure of mammalian neuronal and glial cells in 

organotypic cultures (68, 69). 
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It  was demonstrated that LPS from periodontal bacteria can access the AD brain during life 

while detection in corresponding controls, with equivalent or longer postmortem interval was 

absent (8). This study supports the literature on elevated antibodies to periodontal disease-

associated bacteria such as P. gingivalis, being found in AD patients (7). Furthermore, in 

2,355 people 60 years and over, the third NHANES study found associations between 

periodontitis and cognitive impairment and between measures of immunoglobulin to P. 

gingivalis and cognitive test performance (96, 97). In this study all participants were 

cognitively intact at baseline. Those who went on to develop AD had higher levels of serum 

antibodies to periodontal pathogens at baseline. The study  suggested a temporal relationship 

in that the periodontal disease came before AD.   

Other important periodontal pathogens related to AD are Fusobacterium nucleatum and 

Prevotella intermedia. In the NHANES study antibody levels to these organisms were 

significantly increased (α = 0.05) at baseline serum in patients with AD compared to controls 

(97). The results were significant after controlling for baseline age, Mini-Mental State 

Examination score, and allele APOEɛ4 status. Noble et al. (98) found that a high anti-

Actinomyces naeslundii titer (> 640 ng/ml, present in 10% of the subjects) was associated 

with increased risk of AD (HR = 2.0, 95% CI: 1.1-3.8). This association was stronger after 

adjusting for other significant titers (HR = 3.1, 95%CI: 1.5-6.4) and confirmed that periodontal 

pathogens may be associated with AD. 

 

Possible consequences to the brain carrying oral bacterial pathogens  

The fact that inflammation is sustained in the AD brain suggests that local immunogenic 

hallmark proteins and/or peripheral infections are key perpetrators. This is supported by 

reports highlighting microorganisms and their toxic products as well as DNA in brain tissue 
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of AD patients and experimental animals (see  below). Bacteria activate pathways that include 

the integrin receptor CR3 (CD11b/CD18) and TLR signalling (99) and the complement 

cascade (100). The NF-κB signalling pathway for cyto/chemokine release (TNF-α, IL-8) 

(101) produces free radicals, nitric oxide triggers and apoptosis (102). The oral cavity, lungs 

and gastrointestinal and urinary tracts are plausible sources of brain microorganisms. The 

likely passage of the microorganisms of interest from their original sites to the brain is 

described below. 

Infections with spirochetes can cause cerebral hypoperfusion (103), cerebrovascular lesions 

and a severely disturbed capillary network (68, 69).  Chronic spirochetal infections can also 

induce slowly progressive dementia, cortical atrophy, chronic inflammation and Aβ 

deposition,  indistinguishable from that occurring in AD brains (for reviews see 68, 69, 72). 

Furthermore, cultured neuronal cells exposed to spirochetes produce Aβ (104). Spirochetes 

are also able to form plaque-, tangle- and curly fiber-like lesions (72, 105). They induce a 

latent and slowly progressive infection by evading host defenses. This promotes their 

survivial and proliferation in the brain by blocking the complement cascade. Spirochetes may 

even survive and proliferate in hosts that are immune-competent. Interestingly, the remarkable 

ability of T. pallidum to evade clearance from the immune system has earned it the 

designation “stealth pathogen” (106). The activated complement cascade following spirochete 

infections (11) may be used as a non-specific marker of CNS inflammation. Spirochete-host 

interactions initiate and sustain chronic inflammation triggering various immune responses 

that activate the innate and adaptive immune system, free radical production, apoptosis and 

amyloid deposition typically seen in AD brains (107).  

P. gingivalis has been designated as one of the “keystone” periodontal pathogens because it is 

able to establish and maintain the periodontal disease-associated “inflammophillic” 

microbiota (108). It is able to perform this task as it possesses an awesome variety of 
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virulence factors, recently reviewed by Singhrao et al. (109), to evade the host immune 

defenses, thus serving two major functions: initial survival of P. gingivalis itself via a 

sustainable inflammatory milieu and  sustainment of nutritional sources by eliminating 

microbial competitors (108).  

The P. gingivalis endotoxin LPS demonstrates differences in the number of phosphate groups 

together with both the amount of lipid A fatty acids and their specific position. The presence 

of multiple lipid A structures makes it more difficult for the innate host responses to  

recognize the molecule thereby aiding the virulence of P. gingivalis (110). The consequences 

of finding P. gingivalis LPS in the host’s body, e.g. the brain (8), include priming of immune 

cells for differential activation of the TLR-mediated NF-κB signalling pathway (111) leading 

to cytokine liberation, complement activation and maintenance of intracerebral inflammation. 

P. gingivalis evades circulating phagocytes by adhering to erythrocytes (112). An active 

invasion of P. gingivalis and infection-induced complement activation with bystander neural 

injury was detected in the brains of ApoE-/- mice (113). This supported previous notions that 

bacterial infections can contribute to the development of AD pathology via mechanisms 

involving acute phase proteins such as cytokines and the complement cascade where neurons 

would be attacked.  

 

ORAL VIRUS RELATED TO AD 

Herpes simplex virus (HSV) is present in more than 70% of the population after 50 years age 

(114-116). It persists latently in the peripheral nervous system and is periodically reactivated. 

Characteristically, HSV-1 has been designated as the enemy within (10). Herpes viruses, 

including Epstein-Barr virus and cytomegalovirus, are found in high copy counts in 

aggressive periodontitis, and may interact synergistically with periodontopathic bacteria in the 
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pathogenesis of this disease (117). Periodontal infections activated by Herpes virus may 

impair local host defenses and thus increase the aggressiveness of resident periodontopathic 

bacteria. The bacteria, in turn, may augment the virulence of the herpes viruses.  

High proportions of viral-associated proteins in amyloid-containing plaques and/or NFTs 

corroborate with the involvement of HSV-1 in AD pathology (118). Notably, De Chiara et al. 

(119)  reported an association between Aβ accumulation in the brain and HSV infection. 

Itzhaki et al. (120) suggested that not only does HSV-1 produce the main components of 

amyloid plaques and NFTs (i.e. Aβ and hyperphosphorylated tau), but it also interferes with 

the autophagic events that prevent degradation of these proteins and eventually leading to 

their accumulation in the AD brain.  Further, in vitro and in vivo investigations  in murine 

models following HSV-1 infections  demonstrated Aβ accumulation (121).  

A number of scientists have suggested that there is imbalance between production and 

clearance of β-amyloid in the brain, a premise first proposed by Wisniewski et al. (122) based 

on the discovery of soluble species of this protein and later confirmed by Zlokovic et al. 

(123).  It is now widely accepted that defective clearance of this protein is  a hallmark of AD 

brains  leading to its accumulation in the form of insoluble Aβ40/42 plaques. Although HSV 

and cytomegalovirus have been detected in the brains of older adults with and without AD 

(124-126), HSV-1 viral DNA is present in a higher proportion of AD patients (127). It is 

particularly seen in the temporal and frontal cortices which are the brain regions that are most 

damaged in AD (128, 129). The relevance of this association is still under investigation; 

however a plausible role for the HSV-1 viral DNA could be associated with the plaque 

maturation process. Jamieson et al. (127) found that the virus was absent from the brains of 

most young people, probably because it enters the brain during old age either  with immune  

senescence (130) or the virus itself is initially responsible for weakening the host’s immune 

defenses. This latter explanation is likely and is supported by us and others (131).  
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HSV-1 is a strong risk factor for AD in the brains of those with the APOEɛ4 allele (125, 132). 

This virus is not only a dormant passenger but can persist in the latent form in neurons or 

replicate at a very low level in neuroglia (133). During persistence it may release toxic 

products continuously and induce pro-inflammatory cytokines at low levels which become an 

additional burden to a host already challenged by age, poor diet, restricted exercise as well as 

any genetic susceptibilities. Itzaki and Wozniak (10) suggested that stress or peripheral 

infection can reactivate the virus periodically from latency in the brain. This may cause an 

acute but presumably localized infection, and subsequent damage modulated by the APOɛ 

gene can lead to formation of Aβ plaques and NFTs. 

The presence of anti-HSV IgM, a sign of reactivated infection, almost doubled the risk for AD 

while anti-HSV IgG did not influence the risk (134). Kobayashi et al. (135) suggested that the 

anti-HSV-1 Ig antibody avidity index could be a useful biomarker for early diagnosis of 

anamnestic mild cognitive impairment, which is prodromal to AD, as well as for AD 

sufferers. 

Reactivation of HSV seropositivity is highly correlated with incident-AD (136). Letenneur et 

al. (136) speculated that AD pathology starts many years before frank dementia and recurrent 

reactivation of HSV can act as a potent stimulus to brain microglia, increasing cytokine 

levels, and triggering a positive feedback cycle leading to increasing accumulation of 

neurohistopathological changes. In other words, infection, followed by local CNS 

inflammatory reaction is the likely primary stimulus wheras proteostasis is a consequence of 

the primary event leading to the development of AD. 

Hill et al. (137) suggested a role for HSV-1-induced miRNA-146a in the evasion of HSV-1 

from the complement system which is a major first-line host defense mechanism, and the 
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activation of key elements in the arachidonic acid cascade known to contribute to AD-type 

neuropathological changes. 

 

ORAL YEASTS RELATED TO AD 

Oral yeast infection represents a secondary opportunistic infection  particularly involving 

Candida albicans, but increasingly non-albicans species, e.g. Candida glabrata. With a 

growing population of elderly, severe systemic fungal infections have increased dramatically 

in this age group during the last 30 years (138, 139). Oral yeasts can be found in periodontal 

pockets, in root canals, on the mucosae and underneath dentures (denture stomatitis) (140-

142). Denture stomatitis is prevalent in elderly wearing dentures that are heavily contaminated 

with yeasts which can be a source of systemic mycosis. Disseminated mycoses have recently 

been reported in AD patients (143, 144). Fungal molecules including proteins and 

polysaccharides [(1,3)-β-glucan] were detected in peripheral blood serum, and fungal proteins 

and DNA were demonstrated by PCR in brain tissue of AD patients. Chitin-like fungal 

structures have also been found in the AD brain (145) and chitinase activity has been 

proposed as a powerful biomarker of AD (146).  In AD brains, cytoplasmic material in a 

small number of  cells  was targeted by antibodies with immunoreactivity to yeast cells (147). 

These findings were consistent with the idea that neurons can be infected by fungi. 

Interestingly, antifungal treatment reversed the clinical symptoms of some AD patients (148, 

149). 

 

HOW DO ORAL MICROORGANISMS REACH THE BRAIN? 

Blood stream dissemination 
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The most likely pathway for dissemination of oral microorganisms to the brain is through the 

blood stream (150). Dental treatment as well as brushing, flossing, chewing and use of tooth 

picks in a patient with periodontitis will release a bacteraemia (151). This can occur several 

times during the day and has been estimated to last for up to 3 hours for oral bacteria (152). 

The bacteraemia is usually  contained by immune cells of the body. However, in people with 

reduced immune defense, e.g. older individuals, bacteria may  localize to crevices of the oral 

cavity and vascular channels (150).  

The blood- brain barrier 

An intact blood-brain barrier (BBB) prevents microorganisms in the blood from accessing the 

brain. However, aging favors overgrowth of oral microorganisms, particularly anaerobic 

bacteria and facultative yeasts that established earlier in life and provoked pro-inflammatory 

responses that weakened the BBB (16). Notably, magnetic resonance imaging (MRI) 

confirmed loss of BBB integrity in a mouse model of disseminated candidosis (153). Loss of 

integrity allows microorganisms to spread through the blood stream and quietly contribute in 

the pathogenesis of AD. During immunosenescence, the innate immune system gradually 

takes over for the acquired immune system. This contributes to a rise in circulating 

proinflammatory cytokines such as TNF-α (16).  Indeed, proinflammatory mediators can 

cross the BBB (3, 7, 154). APOEɛ4, TNF-α  and perhaps Ephrin Type-A Receptor 1 (EphA1) 

may influence BBB integrity and thus be important for penetration of bacteria, LPS and other 

toxic bacterial products as well as yeasts into the brains of AD patients (16).  APOEɛ4 affects 

the integrity of the BBB by activating the cyclophilin A matrix metalloproteinase MM-9 

pathway (155). 

 It is also plausible to suggest that the permeability of the BBB increases with age and thus 

promotes AD pathogenesis making the brain accessible to microorganisms. Mice with a 

mutation in the amyloid precursor protein gene which is related to early-onset AD in man, 
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showed increased permeability of the BBB and increased formation of senile plaque as 

compared to control mice (156). The changes increased with age.  

 

Circumventricular organs and perivascular spaces 

Circumventricular organs (permit polypeptide hypothalamic hormones to leave the brain 

without disrupting the BBB) are not dependent on the BBB (56) and may act as another entry 

portal to the brain for bacteria (157).  Poole et al. (8) postulated that bacteria and their 

products may also directly access the brain via the systemic circulation through the 

perivascular spaces.  

     

The olfactory hypothesis 

The “olfactory hypothesis” suggests the olfactory tract as a potential route for pathogenic 

bacteria to enter the brain and thereby trigger the production of Aβ and NFTs (158). The 

olfactory and trigeminal nerves are known to be used by periodontal pathogens to bypass the 

BBB for direct passage to the CNS (5, 150, 159, 160). Identification of oral treponemes in the 

trigeminal ganglia supports such a route of dissemination (5). Further, spirochetes may spread 

along the fila olfactoria and tractus olfactorius (68, 69).  

Olfactory unsheathing cells (OECs) engulf bacteria and migrate towards TNF-α released by 

activated astrocytes (161). Therefore, OECs could be a vehicle for transporting live bacteria to 

the brain (i.e., Trojan horse). The olfactory bulb was the first area where NFTs and Aβ 

deposition were detected in the neuropathological trajectory of AD in humans (162) and in 

mouse models of AD (163). 
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GENETIC, NUTRITIONAL AND ENVIRONMENTAL FACTORS PROMOTING AD 

While early-onset AD is genetically determined, LOAD is thought to result from interaction 

between genetic and environmental factors (12). Several mutated genes are associated with 

the familial AD, such as the amyloid beta (Aβ) precursor protein (AβPP) gene and the 

presenelin-1 (PSEN-1) and PSEN-2 gene (164-166). A major risk factor for LOAD is 

polymorphism in the APOɛ4 allele (2). Also cytokine-related genes seem to be involved in the 

susceptibility to inflammation in both LOAD (167, 168) and periodontitis (169-171). Thus, 

polymorphisms that increase TNF-α also increase the risk of both AD and periodontitis (172, 

173). Lambert et al. (174) found that 20 different loci can increase host susceptibility to AD 

including polymorphisms in genes associated with interleukin-1 (IL-1) (71, 175-178) and 

TNFα (71, 172, 179-181). The APOɛ4 gene which is one of these 20 loci is highly correlated 

with AD (182) but it is also a risk factor for infection and increases the expression of 

inflammatory mediators (11). Recently, genetic overlap between AD, C-reactive protein 

(CRP) and plasma lipids was demonstrated by using summary statistics from GWAS of over 

200,000 individuals (183). There may also be interplay between genetic risk and 

environmental risk factors such as toxins and or bacterial, viral and fungal pathogens in 

LOAD reflecting its complex and multifactorial etiology (1). 

Diet with its content of essential B-vitamins, phospholipids and other micronutrients are 

important for forming new nerve synapses (184). Nutritional deficiencies are common both in 

elderly and in dementia subjects as briefly discussed by Singhrao et al. (150). 

 

ASSOCIATION BETWEEN CHRONIC PERIODONTAL DISEASE AND AD 

There is increasing evidence for an association between chronic periodontitis and LOAD 

(185). Cross-sectional and longitudinal studies have demonstrated that gingival bleeding, loss 
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of periodontal attachment, periodontal probing depth, alveolar bone loss and antibodies to 

periodontal pathogens are significantly associated with lower cognitive function and decline 

after adjustment for co-variates (for a review see (12)). Acute phase proteins, including 

cytokines are possible indirect links between periodontal pathogens and/or their virulence 

factors (12, 13). Elderly often show neglect of oral hygiene which can stimulate recurrent 

chronic oral infection (150). This again promotes inflammation which can lead to confusion 

and dementia (3, 4, 154). In 152 subjects 50-70 years of age who were followed for 20 years, 

greater levels of periodontal inflammation correlated with lower cognitive levels (186). 

Furthermore, gingival bleeding and loss of periodontal attachment were significantly 

associated with cognitive impairment in a cohort of 5,138 people aged 20-59 years (187). In 

144 nuns, those encoding APOEɛ4 and who had fewer teeth experienced more rapid cognitive 

decline than those with neither or either of these risk factors (188). Clinical and 

epidemiological studies showed that loss of teeth is associated with poor memory (6, 96, 187, 

189). In another study of 597 community dwelling men followed for 32 years, tooth loss, 

increasing periodontal pocket depths and progression of alveolar bone loss were associated 

with impaired cognition particularly in those over 45 years of age (190). Recently, de Souza 

Rolim et al. (191) found that periodontal infections were more frequent in patients with mild 

AD than in healthy subjects. Another interesting feature related to the pathogenesis of AD is 

the low level of infection by “commensals on the loose” (16). These “immuno-tolerated” 

bacteria may silently multiply in sites outside of their primary niche and an ongoing infection 

at their secondary location may have significant deleterious effects upon the health of the 

elderly or demented host with an existing immunocompromised status.  

 

PUTATIVE TREATMENT AND PROPHYLAXIS OF AD 
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There is no effective treatment or prophylaxis yet for AD, but several approaches have been 

proposed. Efforts in this respect are important. If we could delay onset of dementia by only 2 

years we might lower the prevalence of AD by more than 22 million cases over the next 40 

years (14). Notably, the inheritance of the APOEɛ4 allele in the very old (90+) age group, 

appears to confer protection (192), having bypassed a period of being at risk around 85+ years 

of age. 

If periodontal disease is implicated in AD, periodontitis prophylaxis  could be of help. It 

would be interesting to see if this has any effect on the initiation and aggravation of AD but 

an observation period of decennia is probably needed. 

In a study of subjects with mild to moderate AD, a 3-month course of doxycycline and 

rifampicin reduced cognitive deterioration during a 6 months’ follow-up interval  (193). It 

was concluded that use of antibacterial compounds may not have had any effect on the 

treatment of C. pneumoniae but had a beneficial effect on cognitive decline in AD (193). This 

might be related to prevention or attenuation of a number of peripheral infections or 

dampening down the proinflammatory cytokine response. Minocycline was found to correct 

early, pre-plaque neuroinflammation and inhibit the APP cleaving enzyme 1 (BACE-1) in a 

transgenic model of Alzheimer's disease-like amyloid pathology (194). It was suggested that 

interfering with inflammation could be a useful therapeutic approach in early, pre-plaque 

stages of AD-like amyloid pathology. 

Anti-inflammatory drugs given for at least 2 years before the onset of dementia delayed the 

disease process (195-197). It may also be beneficial to combine anti-inflammatory agents with 

antibacterials (193). Examination of several available Non-steroidal Anti-Inflammatory Drugs 

(NSAIDs) showed that only a few of them had any useful Aβ-modifying or other activity of 

therapeutic use in LOAD (for a review see (1)).  
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Itzhaki and Wozniak (10, 198) suggested that antiviral therapy and perhaps vaccination 

against HSV-1 in early life could be useful. If HSV-1 is implicated in AD, vaccination could 

prevent the excessive accumulation of Aβ in the brain. Vaccination with mixed HSV 

glycoproteins prior to HSV infection protected against viral latency in mouse brains (199). 

Also Mori (200) maintained that antiviral approaches including chemotherapy and 

vaccination are promising for prevention and treatment of AD and remain to be validated. 

Furthermore, Carter (118) suggested that vaccination or antiviral agents and immune 

suppressants may be considered as therapeutic options before or during the early stages of 

AD. Interestingly, exposure of HSV-1-infected cell cultures to intravenous immunoglobulin 

acting via anti-β-amyloid antibodies reduced the accumulation of Aβ and phosphorylated tau 

(201).  

Angiotensin-converting enzyme (ACE) from Stigmatella aurantiaca may cleave the Aβ 

peptide similar to human ACE and may be used as a novel form of treatment against AD 

(202). Furthermore, Chiarini et al. (203) maintained that calcilytics could halt AD progression 

and preserve the patients' cortical neurons, cognitive abilities, and eventually life if given at 

minimal cognitive impairment or at earlier stages. Studies using mice suggested the use of tau 

aggregation inhibitors as potential drugs for the treatment of AD and other tauopathies (204).  

Resveratrol is a polyphenol present in red wine. Its capability of directly interfering with the 

toxic β-amyloid protein aggregation in AD has recently been shown (205). Resveratrol was 

found to reduce Aβ-induced toxicity in a Caenorhabditis elegans model of AD by targeting 

specific proteins involved in proteostasis and thereby reducing the amount of aggregated Aβ 

(206). This is in concert with our previous finding that the effect of a drinking pattern of 2-7 

times per week reduced the risk of myocardial infarction among men who had a history of 

tooth extractions due to periodontal/dental infection (207). 
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Potent inhibitors of Aβ oligomer formation or Aβ-induced cell toxicity have proven to be 

attractive means for therapeutic intervention of AD.  Song et al. (208) found that the anti-

Alzheimer effects of centipedegrass, which contains several C-glycosyl flavone constituents, 

occurred through inhibition of neuronal cell death by intervening with oligomeric Aβ 

formation and reducing beta-site amyloid precursor protein cleaving enzyme 1 activity. The 

authors suggested that Maysin, a major flavonoid of corn silk, in centipedegrass could be an 

excellent therapeutic candidate for the prevention of AD. 

Active immunization against important domains of Alzheimer tau eliminated tau aggregation 

and neurofibrillary pathology (209). The AD type of tau hyperphosphorylation was abolished 

in transgenic mice by vaccination across a wide range of AD phospho-epitopes. Kontsekova 

et al. (209) demonstrated that active immunization of rats with a tau peptide encompassing the 

epitope revealed by monoclonal antibody DC8E8 led to elimination of all major hallmarks of 

neurofibrillary pathology involving a 95% reduction in the AD-type hyperphosphorylation of 

tau. 

 

CONCLUSIONS 

LOAD which is the predominant form of AD, does not seem to have a single cause. On the 

contrary, a multitude of factors may be involved and they may act in concert. Among others 

both genetic and environmental factors may be involved. Even among microorganisms, 

cooperation may occur since the brain can hardly differentiate between different microbial 

insults which collectively contribute capacity for enhancing inflammation. Irrespective of the 

cause, systemic inflammation may predict the onset of dementia. Organisms such as 

spirochetes, P. gingivalis, C. pneumoniae, H. pylori, Herpes simplex type I virus and Candida 

are among the prime candidate pathogens  in AD brains. In the cascade of events causing AD, 
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oral microorganisms may play a role, particularly anaerobic bacteria such as treponemes, P. 

gingivalis, Prevotella spp., Fusobacterium and Actinomyces, but also facultative anaerobic 

Candida species. It is important to recognize that infection can occur decades before the 

manifestation of dementia. The most convincing evidence for a causal relationship between 

oral bacteria and AD is noted for spirochetes which are both neurotropic and motile. It is 

likely that oral infection can be a risk factor for Alzheimer’s disease but it is not the only one. 

Experiments in humans may require long exposure time to disclose key events and 

mechanisms of AD. There is, as yet, no cure for AD despite concerted efforts and investment 

by industry. Prevention of AD through long-term use of antibiotics may be impractical and 

could select for resistant bacteria. This is  worrisome as the prevalence of AD and the public 

expenses related to its management are expected to increase greatly in the next decade. If 

anaerobes of periodontitis have a major role in AD, dental hygiene and treatment will provide 

the AD prophylaxis from an early age as periodontitis is modifiable. However, improving oral 

hygiene and treating periodontal disease in the AD patient can be challenging since patients 

are often uncooperative. There is also need for training care-givers to assist with oral care in 

such patients.  

Vaccination against key organisms and important domains of AD has had some beneficial 

effect. Also several agents interfering directly with the pathogenesis of AD have been tested. 

In order to find a cure, there is a need for clinical diagnostic information and knowledge of 

the causal agents for AD so that specific treatment options targeting these organisms  can be 

developed. As for diagnostic biomarkers, increased antibody levels to specific oral pathogens 

in particular to P. gingivalis may be used as a monitoring tool years before clinical 

manifestation of AD. This is important because treatment will probably have to start early.  
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Figure legends 

 

Fig. 1. The pathological hallmarks of AD, numerous extracellular amyloid-Aβ plaques 

and intra-neuronal neurofibrillary tangles (NFTs). Although there are several NFTs, 

only one is picked out in boxes at x 10 and x 40 objective lens magnification. 
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Fig. 2. Immunofluorescence labelling (green dots) of hippocampal CA neurons 

opsonised by iC3b following monoinfection with P. gingivalis at 24 weeks of APOɛ 

gene knockout (ApoE−/−) mice. This is indirect evidence of an oral infection having 

affected the host’s brain. 

 

 

Fig. 3 Section of pons area of Alzheimer's disease brain from an 84-year-old female 

subject (from ref. 5 with permission), demonstrates metabolically active Treponema 

pectinovorum oral bacteria (arrows) stained dark blue following immunostaining with 

anti-T. pectinovorum  using the avidin-biotin peroxidase method. 
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