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ABSTRACT

We compare common star-formation rate (SFR) indicators in the local Universe
in the GAMA equatorial fields (~ 160 deg?), using ultraviolet (UV) photometry from
GALEX, far-infrared (FIR) and sub-millimetre (sub-mm) photometry from H-ATLAS,
and Ha spectroscopy from the GAMA survey. With a high-quality sample of 745
galaxies (median redshift (z) = 0.08), we consider three SFR tracers: UV luminosity
corrected for dust attenuation using the UV spectral slope 8 (SFRyv corr), Ha line
luminosity corrected for dust using the Balmer decrement (BD) (SFRuq,corr), and the
combination of UV and IR emission (SFRuv4ir). We demonstrate that SFRuv corr
can be reconciled with the other two tracers after applying attenuation corrections by
calibrating IRX (i.e. the IR to UV luminosity ratio) and attenuation in the Ho (derived
from BD) against 5. However, 5 on its own is very unlikely to be a reliable attenuation
indicator. We find that attenuation correction factors depend on parameters such as
stellar mass (M,), z and dust temperature (Tqyst), but not on Ha equivalent width
(EW) or Sersic index. Due to the large scatter in the IRX vs § correlation, when
compared to SFRyv iR, the B-corrected SFRyv corr exhibits systematic deviations as
a function of IRX, BD and Tygust.
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1 INTRODUCTION

The distribution functions of star-formation rates (SFR) at
different cosmic epochs (or more commonly its integrated
form, the evolution of the cosmic star-formation rate den-
sity) provide fundamental observational tests for theoretical
models of galaxy formation and evolution (e.g., Hopkins &
Beacom 2006; Madau & Dickinson 2014). Observationally,
one can use a variety of indicators at different wavelengths to
measure the level of star-formation activity in galaxies. The
rest-frame ultraviolet (UV) non-ionising stellar continuum
luminosity, where newly formed massive stars emit the bulk
of their energy, is often used as a direct SFR indicator, espe-
cially at high redshift. Ho nebular recombination emission
line luminosity, which probes the hydrogen-ionising photons
produced by the most massive and short-lived stars, is an-
other commonly used SFR indicator when spectroscopy is
available.

One of the most significant challenges when using UV or
Ha line emission as a direct star-formation tracer is the effect
of dust attenuation as the process of star formation takes
place in dense, cold and often dusty molecular gas clouds.
Indeed, some of the most intensely star-forming galaxies are
extremely UV-faint, e.g., those selected in the sub-millimetre
(sub-mm). To overcome this problem, various empirical or
semi-empirical correction methods have been developed to
determine the amount of dust attenuation in a galaxy. For
example, the power-law spectral slope of the rest-frame UV
continuum 8 (f* o< A?), or its proxy the FUV - NUV colour,
has been widely used as a practical method for estimating
the global attenuation corrections (e.g., Meurer et al. 1995,
1997, 1999; Burgarella et al. 2005; Laird et al. 2005; Reddy
et al. 2006; Salim et al. 2007; Treyer et al. 2007; Wijesinghe
et al. 2011). However, the spectral slope 8 shows a wide
dispersion with varying dust properties, dust/star geometry
and redshift (e.g., Witt & Gordon 2000; Granato et al. 2000;
Oteo et al. 2014). In addition, 8 is sensitive to the intrinsic
UV spectral slope (determined by properties such as age of
the stellar populations, star-formation history, metallicity,
etc.) and as such is dependent on a number of parameters
that are not solely related to dust attenuation (e.g., Kong
et al. 2004; Buat et al. 2005).

Another independent method to correct for dust is to
use Balmer decrement ratio measurement (i.e. the observed
flux ratio of the Hao and Hj nebular emission lines) to esti-
mate the amount of dust attenuation at Ha (e.g., Kennicutt
1992; Brinchmann et al. 2004; Moustakas et al. 2006; Garn &
Best 2010). However, Balmer decrement measurements are
generally only available for bright H II regions within the
galaxies, and so can be problematic when applying to the
whole galaxy. Also, HS is considerably weaker than Ha. The
Balmer decrement method is also found to be a poor estima-
tor for dust attenuation in dusty starbursts (e.g., Moustakas,
Kennicutt & Tremonti 2006).

From an energy conservation point of view, one can also
derive SFR from dust emission as dust absorbs the UV and

* E-mail: 1.wang@sron.nl

optical light from newly formed stars and re-emit predom-
inantly in the far-infrared (FIR) and sub-mm. The main
advantage of inferring SFR from the IR emission is that it
is not affected by dust attenuation. However, some of the IR
emission could be caused by heating from the old/evolved
stellar populations or AGN and thus is not related to recent
star formation (e.g., Helou 1986; Popescu et al. 2000; Bell
et al. 2003; Natale et al. 2015).

The aim of this paper is to take advantage of the Galaxy
and Mass Assembly (GAMA)! survey (Driver et al. 2009,
2011; Liske et al. 2015) and associated multi-wavelength sur-
veys to carefully examine some of the most commonly used
SFR indicators. GAMA provides a large sample of galaxies
in the local Universe where photometric information in the
UV and IR as well as measurements of key spectral lines
such as Ha and Hf are available. The paper is organised as
follows. In Section 2, we describe the various surveys and
derived data products used in our analysis. In Section 3,
we give a brief overview of the three SFR indicators inves-
tigated in this paper and our selection criteria in the UV
bands, optical emission lines, and IR and sub-mm bands. In
Section 4, we study in detail the properties of our galaxy
samples selected at different wavelengths and construct a
joint UV-Ha-IR sample. Then focusing on the joint sample,
we examine the dust attenuations derived using different
methods, and the correlations between various SFR indi-
cators as a function of galaxy physical parameters such as
stellar mass, redshift, UV continuum slope, Balmer decre-
ment, IRX (i.e. the total IR to UV luminosity ratio), Sérsic
index, Ha emission line equivalent width, and dust tempera-
ture. Finally, we give conclusions and discussions in Section
5. In an upcoming GAMA paper (Luke et al., in prep.), 12
SFR metrics are examined and calibrated to a mean rela-
tion. In this paper, we focus on just three commonly used
SFR indicators and inter-compare them using a very high
quality galaxy sample. With random statistical errors min-
imised, we investigate the influence of different systematic
errors on these SFR indicators.

Throughout the paper, we assume a flat ACDM cos-
mological model with Q) = 0.3, Qx = 0.7, Hy = 70 km
s~! Mpc~!. Flux densities are corrected for Galactic ex-
tinction using the E(B — V) values provided by Schlegel,
Finkbeiner & Davis (1998). We use the AB magnitude scale
and the Kroupa (Kroupa & Weidner 2003) initial mass func-
tion (IMF) unless otherwise stated.

2 SAMPLE SELECTION

2.1 Spectroscopic & multi-wavelength
photometric data

GAMA is an optical spectroscopic survey of low-redshift
galaxies, mainly conducted at the Anglo-Australian Tele-

1 http://www.gama-survey.org
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scope. GAMA covers three equal-sized fields to an appar-
ent SDSS DR7 (Sloan Digital Sky Survey - Data Release
7) Petrosian r-band magnitude limit of r» = 19.8 mag: G009,
G12 and G15 (centred at a right ascension of ~9, 12, and
14.5 hours, respectively), on the celestial equator. We in-
clude all GAMA II main survey targets (SURVEY_CLASS
>=4) with reliable AUTOZ redshifts (nQ >= 3; Baldry et
al. 2014) from the tiling catalogue version 45 (Baldry et al.
2010). We impose a lower redshift limit of 0.01 which is used
to remove stars and galaxies for which peculiar motion would
overwhelm the Hubble flow, leading to highly uncertain dis-
tances based upon recession velocities alone. We also impose
an upper redshift limit of 0.5 as there are very few GAMA
galaxies above this redshift. After applying these cuts and
restricting galaxies to areas with both GALEX and Herschel
coverage, we are left with a total of 128,170 galaxies which
forms our parent sample in this paper.

In addition to the spectroscopic survey, GAMA has also
assembled imaging data from a number of independent sur-
veys in order to generate multi-wavelength photometric in-
formation spanning the wavelength range from 1 nm to 1
mm. Below we summarise the two main imaging surveys
that are relevant to this paper.

2.1.1 GALEX

The Galaxy Explorer Mission (GALEX, Martin et al. 2005)
conducted a number of major surveys and observer mo-
tivated programs, most notably the all-sky imaging sur-
vey (AIS) and the medium imaging survey (MIS). A ded-
icated programme (the GALEX guest investigator pro-
gramme GALEX-GAMA) provided further GALEX obser-
vations in GAMA fields to MIS depth (1500s). The final
collated data provides near-complete NUV and FUV cover-
age of the primary GAMA II regions. In the three equato-
rial regions, coverage is at the 90% level in both FUV and
NUV bands. The GAMA-GALEX ultraviolet catalogue is a
combination of archival data and pointed observations on
equatorial GAMA fields. The archival data have been used
to extend the ultraviolet coverage of the GAMA regions as
much as possible. In this paper, we use the GAMA GALEX
catalogue described in Liske et al. (2015).The full width at
half maximum (FWHM) of the point spread function (PSF)
is ~ 4.2 and 5.3 arcsec in the FUV and NUV, respectively.
As the resolution of the GALEX observations is significantly
lower than that of the SDSS data, a variety of methods are
employed to address the source blending issue and derive the
FUV and NUV fluxes for every GAMA galaxy. For more de-
tails, we refer the reader to Liske et al. (2015).

2.1.2 H-ATLAS

The Herschel (Pilbratt et al. 2010) Astrophysical Terahertz
Large Area Survey (H-ATLAS) survey (Eales et al. 2010)
conducted observations of the three equatorial fields also ob-
served in the GAMA redshift survey. H-ATLAS images were
obtained using Herschel's fast-scan parallel mode, where the
spacecraft is moving at 60” per sec, with Photometric Array
Camera and Spectrometer (PACS; Poglitsch et al. 2010) ob-
serving simultaneously at 100 and 160 pm and Spectral and
Photometric Imaging Receiver (SPIRE; Griffin et al. 2010)

at 250, 350 and 500 pm. The FWHM of the PSF of the
telescope is 9, 13, 18, 25 and 35 arc sec at 100, 160, 250,
350 and 500 pm, respectively (Ibar et al. 2010; Griffin et al.
2010). The total area covered by H-ATLAS in the GAMA
09, 12 and 15 fields is approximately 160 deg®. Details of
the map-making process can be found in Valiante et al. (in
prep).

The PACS and SPIRE photometry are derived from the
PACS/SPIRE maps by measuring the flux in the appropri-
ate optically defined aperture convolved with the appropri-
ate PACS/SPIRE PSF. Where objects overlap care is taken
to divide the flux between the two objects following the pre-
scription outlined in Appendix A of Bourne et al. (2012) and
Driver et al. (2015). The process also involves measuring flux
through a range of randomly located apertures for a range of
aperture sizes, and fitting a simple parametric function (2nd
order polynomial) to the median flux as a function of aper-
ture area. This contaminating flux level is then subtracted
from the target flux to provide a background corrected flux.
The final error in these bands is then half of 1-0 quantile
range (from 16% to 84%) of the flux as a function of aper-
ture. This implicitly assumes that the dominant error is the
subtraction of contaminating flux (see Driver et al. 2016 for
more details).

In addition to the forced sub-mm photometry at known
optical source positions, in Appendix A, we also consider
the blind H-ATLAS source catalogue matched with GAMA
galaxies through the likelihood ratio (LR) technique. We
show that the use of the LR-matched GAMA/H-ATLAS
catalogue does not change our conclusions.

2.2 Properties of GAMA galaxies

The GAMA team has produced a number of catalogues of
galaxy physical properties derived from the amassed multi-
wavelength photometric and spectroscopic datasets. Below
we summarise the properties of the two catalogues which we
make use of in this paper.

The stellar masses (Mstar) in GAMA (Taylor et al.
2011) are estimated based on SED fitting of aperture
(AUTO) photometry in the the rest-frame wavelength range
between 3000 and 11000 A (approximately u through Y
using a grid of synthetic spectra. The spectra are gener-
ated by assuming exponentially decaying star-formation his-
tory, the Bruzual & Charlot (2003) stellar evolution mod-
els with the Chabrier (2003) IMF and the Calzetti et al.
(2000) dust extinction law. In order to be consistent with
SFR calculations in this paper which assumes the Kroupa
IMF, we apply a correction to the stellar masses using
MG = MEEPTer /0.94.

A single-Sersic (1-component only) fit is performed
across all passbands in the SDSS (ugriz), the UKIRT In-
frared Deep Sky Survey Large Area Survey (UKIDSS-LAS;
Lawrence et al. 2007) (Y JHK) and VISTA Kilo-degree In-
frared Galaxy survey (VIKING) (ZY JHK) surveys. Galaxy
single-Sersic modelling is achieved using SIGMA v1.0-2
(Structural Investigation of Galaxies via Model Analysis)
(Kelvin et al. 2012). SIGMA is a wrapper around several
contemporary astronomy tools such as Source Extractor
(Bertin & Arnouts 1996), PSF Extractor (Bertin & Delorme,
priv. comm.) and GALFIT 3 (Peng et al. 2010). GALFIT
is the workhorse fitting algorithm used within SIGMA. It
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Figure 1. The difference in the S estimates (AS = Bat — Beolour)
as a function of redshift for galaxies with S/N > 5 in both NUV
and FUV and at least two broad-band filters in the rest-frame
UV with which to derive Bg¢. The blue dashed line corresponds
to Bat = Beolour- The red vertical lines mark z = 0.185 (where
the SDSS wu-band shifts into the rest-frame UV) and z = 0.273
(where the FUV band shifts out of the rest-frame UV and so the
only common band between SBgy and Beolour is the NUV band).

Table 1. The 16th, 50th and 84th percentile in A8 = Bt —Beolour
in three redshift bins. We also examine the impact of S/N in the
FUV and NUV on AB.

S/N =5 S/N > 10

z = [0.01,0.185] -0.17, -0.09, 0.29  -0.17, -0.08, 0.18

z=1[0.185,0.273] -0.28,-0.01, 0.72 -0.23, -0.06, 0.38

z =[0.273,0.5] -1.85, -0.55, 0.94  -1.78, -0.60, 0.64

uses a simple downhill minimisation in order to minimise
the global x? of the model.

3 DUST CORRECTED SFR INDICATORS

There are many methods to derive the SFR of a galaxy. Most
of them rely on simple linear conversions from luminosi-
ties at a given wavelength. In this paper we consider three
SFR indicators widely used in the literature, i.e., UV con-
tinuum luminosity corrected for dust attenuation using the
UV spectral slope (SFRuv,corr), Ha emission line luminos-
ity corrected for dust attenuation using the Balmer decre-
ment (SFRHa,corr ), and combination of the escaped and dust
re-processed emission by adding together UV and infrared
continuum luminosity (SFRuv+ir). We examine the overall
statistical correlations between SFRyviir and SFRuv corr
as well as between SFRuv41r and SFRua,corr. Then, we in-
vestigate the ratios between different SFR indicators as a
function of various galaxy physical parameters.

z=[0.273, 0.5] I
/N =10, z=[0.273, 0.5] :
41|33 s/n=5,2=[0.185, 0.273]
10, z=[0.185, 0.273]
— z=[0.01, 0.185]

/N=10, z=[0.01, 0.185]

Normalised PDF

=25 -2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15

ﬁﬁtfﬁcolour

Figure 2. The normalised histogram of AS = Bgt — Beolour 1N
three redshift bins (blue: 0.01 < z < 0.185; red 0.185 < z < 0.273;
green: 0.273 < z < 0.5) for galaxies with at least two filters
in the rest-frame UV. The solid histograms correspond to S/N
> 5 in FUV and NUV. The dashed histograms correspond to
S/N > 10 in FUV and NUV. The vertical dotted line is where
Beolour = Bat- 1t is clear that above z = 0.273, there is a large
systematic difference as well as a large scatter in AS.

3.1 SFR from UV continuum emission

To estimate the dust attenuation correction in the FUV us-
ing the observed FUV-NUV colour, we use the empirical
relation in Hao et al. (2011)

Aruv = 3.83 X [(FUV — NUV)ops — 0.022]. (1)

This relation is based on calibrating the total IR to FUV
luminosity ratio (IRX) and the attenuation in Ha line lumi-
nosity (derived from Balmer decrement) against the FUV -
NUYV colour using a nearby normal star-forming galaxy sam-
ple (Moustakas & Kennicutt 2006), which was designed to
cover the full range of optical spectral characteristics present
in the local galaxy population. For a detailed discussion
on the range of applicability of this relation and compar-
ison with other Apyyv—IRX relations in the literature (e.g.,
Meurer et al. 1999; Kong et al. 2004; Buat et al. 2005; Bur-
garella et al. 2005), please refer to Hao et al. (2011). To
estimate dust attenuation in the NUV, Anuvy, we use the
Calzetti et al. (2000) attenuation law, which yields a ratio
Aruv/Axuv = 1.245. While Hao et al. (2011) parameterised
the dust attenuation using broad-band GALEX colour, we
will also consider an equivalent parametrisation later using
the power-law slope of the UV continuum, 3, which we de-
rive using two methods.

The first method relies on the colour relation from Kong
et al. (2004):

B = (log fauv — log fiuv)/(log Aruv — log Axuv) (2)

with fayyv and fRuyy referring to the monochromatic flux
(or flux density) per unit wavelength interval, and effective
wavelengths Apyv = 1528 A and Anuv = 2271 A. If us-
ing flux densities per unit frequency interval, then 3 can be
derived as

B = (log fruv — log fXuv)/(log Aruv — log Anuv) — 2. (3)
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We refer hereafter to this estimate derived using Eq. 2 or
Eq. 3 as Beolour- We can replace (FUV — NUV),ps with £ in
Eq. 1 using Eq. 2 or Eq. 3:

Aruv = 1.65 x B + 3.22. (4)

As our galaxy sample spans a considerable range in red-
shift, it is necessary to apply K-corrections to the observed
FUV-NUV colour, (FUV — NUV)gps. K-corrections as de-
rived from Loveday et al. (2012) using KCORRECT v4.2
(Blanton & Roweis 2007) are applied in the GALEX bands.
We also consider another estimate of 8 by directly fitting the
available photometric data with f* oc A\? (or equivalently
f¥ oc A*T2) in the rest-frame UV range (1200 < A < 3000
A). This enables us to use all the available data, and the
relevant constraints on 3 at a given redshift. For instance,
at z > 0.185, the SDSS u band (3557 A) will be used in the
power-law fit and above z = 0.273, the GALEX FUV band
will move out of our fitting window. We refer hereafter to
this estimate as Bat. In this paper, we prefer Bar over Beolour
as no K-corrections are needed in the derivation of fat. As
a result, Bgt should not be affected by the uncertainties in
the K-corrections in the UV bands.

Fig. 1 shows the difference in the two [ estimates,
AB = Bt — Beolour, as a function of redshift. We only show
galaxies with signal-to-noise (S/N) > 5 in both the NUV
and FUV bands and at least two broad-band filters in the
rest-frame UV with which to derive Bg;. Below z ~ 0.185,
the two estimates are similar to each other but there is a
small systematic difference. As the same photometric infor-
mation is used in deriving By and Beolour at z < 0.185,
the small systematic difference is only due to the the differ-
ence between the UV spectral shape used in KCORRECT
and the power-law approximation used in deriving Bgt. At
z 2 0.185, the u-band shifts into the rest-frame UV caus-
ing further scatter around the systematic difference seen at
z < 0.185. At z 2 0.273, the FUV band shifts out of the
rest-frame UV and so the NUV band is the only common
filter used in both types of B estimates, which clearly causes
even larger scatter and a large systematic difference between
Bcolour and ﬁﬁb

To see this more clearly, Fig. 2 shows the normalised
histogram in AS in three redshift bins for galaxies with
at least two broad-band filters in the rest-frame UV. We
also investigate the impact of S/N in the FUV and NUV
on AB. The solid histograms correspond to galaxies with
S/N > 5 in FUV and NUV, while the dashed histograms
correspond to galaxies with S/N > 10 in FUV and NUV.
In the lowest two redshift bins, i.e. z = [0.01,0.185] and
z = [0.185,0.273], there is a small systematic difference be-
tween Bat and Beolour. Beolour Systematically overestimates
the UV continuum slope compared to g¢, which means that
the inferred dust correction will be systematically higher
than using Bgt. The scatter in AfS in the medium redshift
bin z = [0.185,0.273] is larger than the lowest redshift bin
z = [0.01,0.185] which is understandable as the u-band is
used in deriving B¢ at z > 0.185. The agreement in the two
B estimates improves for galaxies selected at higher S/N in
the UV bands. In the highest redshift bin z = [0.273,0.5],
there is a much larger systematic difference as well as a much
larger scatter. In Table 1, we list the 16th, 50th, and 84th
percentile in AS in the three redshift bins, z = [0.01, 0.185],
[0.185,0.273], and [0.273, 0.5]. For galaxies at z < 0.273, the

median systematic difference between the two 8 estimates is
small (< 0.1). In contrast, the median systematic difference
in AS is very large (> 0.5) for galaxies at z > 0.273. There-
fore, we do not consider those galaxies above z = 0.273 any
further in this paper.

In the following sections, we define a UV-selected
sample by selecting galaxies in the redshift range z =
[0.01,0.273] detected in both FUV and NUV at a S/N of
10 or greater and with at least two broad-band filters in the
rest-frame UV with which to derive Bg¢. This UV-selected
sample contains a total of 16,920 galaxies, i.e. 19.5% of the
parent sample defined in Section 2.1 (after excluding galax-
ies in the parent sample at z > 0.273). The median statisti-
cal error (due to measurement error of the flux density) on
B (Bst or Beolour) of this sample is 0.2, which is very sim-
ilar to the nearby star-forming galaxy sample (Moustakas
& Kennicutt 2006) studied in Hao et al. (2011). In Section
4.1, we define a joint sample by applying the UV, Ha, and
IR selection criteria together. The median statistical error
on B (Bat or Beolour) for the joint sample is considerably
smaller, 0.1. However, we point out that the statistical error
on Beolour 1 likely to be underestimated for our high S/N
sample, as we have ignored the uncertainties introduced in
applying K-corrections in the UV bands.?

With GAMA spectroscopic redshifts, we can derive
both FUV and NUV luminosities, as vL,, from the GALEX
photometry and correct them for dust attenuation,

LUV,corr = 100'4XAUVLUV7 (5)

where UV is either FUV or NUV. Using these dust corrected
luminosities, we derive SFR using the calibrations in Hao et
al. (2011), Murphy et al. (2011) and summarised Kennicutt
& Evans (2012),

SFI:{FUV,corr/]\JQyr_1 =172 x 10_10LFUV,corr/L®7 (6)
and
SFRNUV, corr/Mayr™' = 2.60 x 107" Lvuv,corr/ Lo, (7)

which assumes the Kroupa IMF. The statistical errors on
the UV-based SFRs are calculated by simply propagating
the statistical errors on the FUV and NUV flux and the
statistical error on Beolour Or Bt -

3.2 SFR from Ha emission line

As outlined in Hopkins et al. (2003) and Gunawardhana et
al. (2013), in order to measure SFR for the whole galaxy
using the Ha recombination line luminosity, corrections for
the underlying Balmer stellar absorption, dust obscuration
as well as the aperture sampled by the fibre are required,

Lita,corr (Watts) = (EWga + EW,) x 10704341 (g)

3x 10 Fro/Fus\>%
[6564.61(1 + z)]2 2.86 ’

2 Some studies (e.g., Rosario et al. 2016) do not apply K-
corrections in the UV bands as they are expected to be small
(< 30% out to z = 0.15). We note that for our high S/N sample,
K-corrections actually dominate over pure measurement error.
However, as K-corrections in the UV are very uncertain, it is not
clear which approach is better.
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where EWgo and EW, are the positive (i.e. emission) Ha
equivalent width and the constant equivalent width correc-
tion, M, is the absolute r-band magnitude, Fro/Fmg is the
Balmer decrement. Briefly, the Ha-based SFRs used in this
investigation are based on EW 4. A correction for the miss-
ing flux due to the size of the fibre aperture is applied to
each galaxy using their r—band absolute magnitudes to es-
timate the continuum luminosity at the wavelength of Ha.
As this approach to applying aperture corrections, described
in detail in Hopkins et al. (2003), relies on the assumption
that the r—band continuum traces the distribution of He
emission within a galaxy, the correction can overestimate or
underestimate the line luminosity. Based on a large sample
of GAMA galaxies with z < 0.05 that has also been ob-
served with the SAMI (Sydney-AAO Multi-object Integral-
field spectrograph) instrument (Croom et al. 2012; Bryant
et al. 2015), Richards et al. (2016) demonstrated that the
SERs corrected for aperture effects following the method
described in Eq. 8 tend to on average overestimate SFRs
by ~ 0.1 dex. This is in agreement of Brough et al. (2013)
who found that the SFRs derived based on Eq. 8 can be
overestimated on average by a factor of 1.26, based on ob-
servations of 18 GAMA galaxies using the SPIRAL optical
integral field unit (IFU) on the Anglo-Australian Telescope.
The aperture effect, of course, reduces with increasing red-
shift, and the median redshift of our joint UV-Ha-IR sample
defined in Section 4.1 is 0.08 (around 25% of our joint sam-
ple is at z < 0.05). In the paper, we do not attempt to apply
a size-dependent aperture correction due to the large scatter
in the correction itself. A constant correction (EW, = 2.5
A) for the underlying Balmer stellar absorption in Hoe EWs
is incorporated®. Balmer line fluxes (e.g. Ha and Hp) are
used in the calculation of dust obscuration corrections for
the Ha luminosities. For galaxies with Fro/Fug < 2.86,
no attenuation correction is applied (i.e. Fro/Fug is set to
2.86). Some of the galaxies in the sample have Balmer decre-
ments less than 2.86, which can result from intrinsically low
reddening combined with stellar absorption and flux cali-
bration and line flux measurement errors (e.g., Kewley et
al. 2006). Furthermore, the theoretical case B value can be
lower than 2.86 for galaxies hosting high temperature HII re-
gions (e.g., Lépez-Sénchez & Esteban 2009). The Ha-based
SFRs, corrected for dust attenuation using the measured
Balmer decrement, is derived using the following calibration
(Hao et al. 2011; Murphy et al. 2011; Kennicutt & Evans
2012),

SFRHa,corr/Moyr ™' = 2.07 x 10™® Lita.corr /Lo (9)

based on the Kroupa IMF. Compared to SFRuq,corr values
published in Gunawardhana et al. (2013) which uses the
Kennicutt (1998) calibration and the Salpeter IMF (Salpeter
1955), the new calibration in Kennicutt & Evans (2012) is
a factor of 0.68 lower.

We exclude galaxies dominated by emission from AGNs
from this analysis as their Ha SFRs based on EWs can
be contaminated by the AGN emission. The strong optical
emission line (e.g. [N 11] A6584/Ha and [O 111] A5007/Hp) di-

3 See Gunawardhana et al. (2013) for a discussion on the impact
of the assumption of constant stellar absorption corrections on
the Ha line luminosities.

0.100 f e
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Figure 3. Example SED fit of a randomly chosen galaxy from
the IR-selected sample in the observed frame. The filled dots and
errors bars correspond to the measured flux densities and errors
at WISE 22 pm and Herschel wavelengths (100, 160, 250, 350 and
500 pm). The different coloured lines are the best-fit SED from
different libraries.

agnostics (BPT; Baldwin, Phillips & Terlevich 1981) and the
theoretical AGN and star-forming/composite discrimination
prescription of Kewley et al. (2001) can be used to identify
AGNs. The more conservative discrimination prescription of
Kauffmann et al. (2003) can be used to further identify pure
star-forming galaxies from the star-forming/composite pop-
ulation identified with the Kewley et al. (2001) method. In
the cases of galaxies where one or more of the four optical
emission lines necessary for this type of diagnostic are not
available, the two-line diagnostics are used to identify AGNs.
The galaxies that cannot be classified as either AGN, com-
posite or SF remain in the sample, as a galaxy with detected
Ha emission but without an [N 11] A6584 or [O 111] A5007 mea-
surement is more likely to be star-forming than AGN (Cid
Fernandes et al. 2010).

The GAMA emission-line sample spans 0 < z < 0.34.
Above z = 0.34, the Ha feature is either at the end of the
spectral range (and so can be erroneous) or is redshifted
out of the spectrum. In the following sections, we define
an Ha-selected sample by requiring S/N > 15 for both Ha
and HS emission lines for all star-forming galaxies using the
Kauffmann et al. (2003) classification. This is similar to the
selection criteria used in Hao et al. (2011). To match the
redshift range of the UV-selected sample in Section 3.1, we
select galaxies at z = [0.01,0.273]. Additionally, we remove
all galaxies in the 0.15 < z < 0.17 range from the sam-
ple. Over this redshift range, the redshifted Ha emission
line overlaps with the atmospheric Oz band, which in some
cases can lead to an overestimated Ha measurements. This
Ha-selected sample contains a total of 5,171 galaxies, which
is 6.7% of the parent sample defined in Section 2.1 (after
excluding galaxies in the parent sample at 0.15 < z < 0.17
and z > 0.273).

9102 ‘22 AInc uo Aruqiay L e /Bio'sfeulnolpioixoseluw//:dny wouy papeojumoq


http://mnras.oxfordjournals.org/

16 {{& =s DH - MBB
LDP - MBB
14 H51\\E CE - MBB
= Ds - MBB

12+

10+

._l.".UE........

--:‘H‘H‘H‘H‘H'H‘i'

?Immmr

- ;‘J."J.“.I."d."d.":- P

Normalised PDF

1
s
LI}

E
L]
0 e B o o 1

-0.3 -0.2 -0.1 0.0 O.Il 0.2
Difference in log LIR

Figure 4. The normalised histogram of the difference in the in-
frared luminosity (in unit of L) for the IR-selected sample esti-
mated from SED fitting using different SED libraries. The dashed
line is where there is no systematic difference. The systematic dif-
ferences in L1 arising from different libraries is relatively small.

Table 2. The 16th, 50th and 84th percentile in the difference of
the total infrared luminosity estimates A log Lir using different
SED libraries. In the MBB library, we use a default value of § = 2.
We also examine Alog Lig with and without the addition of the
WISE 22 pm photometry. The median difference in Alog Lig is
very small in all cases (< 0.1 dex).

No 22 pm With 22 pm

DH- MBB  0.03,0.08 0.12  0.07, 0.09, 0.11

LDP - MBB  -0.05, -0.00, 0.06  -0.06, 0.02, 0.08

CE-MBB 001, 0.05 0.10  0.04, 0.08, 0.12

DS - MBB -0.13, -0.04, 0.03  -0.12 0.01, 0.09

3.3 SFR from adding UV and IR emission

We can derive the total SFR of a galaxy by adding together
the unobscured star formation traced by the observed UV
continuum emission and the obscured star formation traced
by the infrared dust emission. This method is built on an en-
ergy balance consideration which argues that all the starlight
absorbed at UV and optical wavelengths by interstellar dust
grains is re-emitted in the IR and sub-mm (e.g., Popescu
et al. 2000; Tuffs et al. 2004; Bianchi et al. 2008; Baes et
al. 2010, 2011; Holwerda et al. 2012; De Looze et al. 2012,
2014). However, there are also limitations with this method,
e.g. the contribution of the old stellar populations and asym-
metric star/dust geometries (e.g., Bell 2003). These effects
may average out for a large statistical sample.

The infrared luminosity Lir is defined as the integrated
luminosity from rest-frame 8 to 1000 pm. To estimate the
Lir of our GAMA galaxies, we have performed SED fitting
to WISE 22 um and Herschel photometry from 100 to 500
pm. There are many suites of empirical models and tem-
plates that describe the IR SEDs of galaxies. In this paper,
we consider five different SED libraries, the Chary & El-
baz (2001; CE) templates, the Dale & Helou (2002; DH)

templates, the Lagache, Dole & Puget (2003; LDP) tem-
plates, the Smith et al. (2012; DS) templates and the mod-
ified blackbody (MBB) templates. The CE library contains
105 template SEDs of different luminosity classes generated
to reproduce the observed correlation between mid-infrared
and far-infrared luminosities (from 7 to 850 pm) for local
galaxies. The DH library contains 64 locally calibrated tem-
plates for normal star-forming galaxies, differing in the slope
of the power law distribution of dust mass and dust emis-
sivity as a function of the radiation field intensity. The LDP
library contains 92 template spectra of starburst and normal
star-forming galaxies, which are constructed and optimised
to reproduce statistical quantities like number counts, red-
shift distributions and the cosmic infrared background. The
LDP templates for normal star-forming galaxies all have the
same shape and are only scaled in luminosity. The DS li-
brary is based on a sample of 250 um selected galaxies at
z < 0.5 from the H-ATLAS survey. It is worth noting that
the CE and DH libraries are constructed from IRAS-selected
samples which favour galaxies with a larger warm dust com-
ponent. In comparison, the H-ATLAS based DS library in-
cludes star-forming galaxies that are much colder. For the
MBB templates, we follow the parameterisation in Hall et
al. (2010). We assume that the IR SED is a greybody at low
frequencies, and a power law at high frequencies, i.e.

Ov) = v’ B.(Ty),v < 1o (10)
and
OWw)=v ", v > (11)

where f is the dust emissivity index and B, is the Planck
function with an effective dust temperature Ty. These two
functions (Eq. 10 and Eq. 11) are joined at frequencies v
that can be solved from

dln [vg B, (Ta)]

dlnv - (12)
with v = 2 (Hall et al. 2010). We also fix § = 2 (Draine &
Lee 1984; Mathis & Whiffen 1989)*.

Within each SED library, we select the best-fit tem-
plate by finding the one with the lowest x? value, allowing
for rescaling of the template. The error on the Lig derived
using the MBB templates is calculated by marginalising over
the effective dust temperature T,; parameter. The MBB li-
brary is the only one out of the five considered here which
has a continuous parameter (T;) characterising the shape of
the SED. The other four libraries (i.e., CE, DH, LDP and
DS) have discrete templates which make it difficult to derive
marginalised error on the Lir. For this reason and also the
fact that the MBB library has a larger IR colour range than
the other libraries, we choose the Lir values derived using
the MBB library as our default in the following sections. It is
worth pointing out that the lack of polycyclic aromatic hy-
drocarbons (PAH) emission features in the MBB templates
can potentially cause Lir to be systematically underesti-
mated. Shipley et al. (2013) estimated that the median ra-

4 We have also tried lower 8 values, 3 = 1.5 and 8 = 1.2 (e.g.,
Dunne & Eales 2001; Planck Collaboration et al. 2011). We find
that the difference in the resulting Lir is very small. The mean
value of log Lig (8 = 2) — log Lig (8 = 1.5) and log Lig (8 = 2) —
log Lir (8 = 1.2) is -0.03 dex and -0.05 dex, respectively.
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Figure 5. Top: The fraction of galaxies selected at different wave-
lengths (blue filled dots: UV: green asterisks: Ha; red diamonds:
IR) compared to the parent sample (defined in Section 2.1) as
a function of redshift. Bottom: The fraction of selected galax-
ies compared to the parent sample as a function of stellar mass
over 0.01 < z < 0.273. For the Ha selected sample, galaxies with
0.15 < z < 0.17 in the parent sample are excluded.

tio of PAH luminosity (the sum of emission features at 6.2,
7.7,8.6,11.3, 12.7 and 17.0 pm) to Lir is 0.09 for a sample
of star-forming IR-luminous galaxies. However, the distribu-
tion of Lpau/Lir is quite wide. In some galaxies, Lpau/Lir
could be as high as over 20% or as low as 0%.

To match the UV-selected sample in Section 3.1, we
construct an infrared-selected sample in the redshift range
between z = [0.01,0.273] by requiring galaxies detected at
WISE 22 and Herschel SPIRE 250 pum at a S/N of 3 or
greater. In addition, we require a Herschel PACS detection
with S/N > 3 at 100 or 160 pum. So, we have a good sampling
of the dusty SED in the MIR, close to the peak, and in the
Rayleigh-Jeans tail. This IR selected sample contains a total
of 5,182 galaxies, i.e. 6.0% of the parent sample defined in
Section 2.1 (after excluding galaxies z > 0.273). The median
statistical error on log Lir (due to measurement error of the
flux densities) for this selected sample is 0.05 dex. For the
same sample, the median error on log Lir is 0.07 dex without
the WISE 22 pm constraint. For the joint UV-Ha-IR sample
defined in Section 4.1, the median statistical error on log Lir
is 0.03 dex.

In Fig. 3, we show an example SED fit of a randomly
chosen galaxy from the infrared-selected sample described

above. The different coloured lines correspond to the best-
fit SED from the different SED libraries. Fig. 4 shows the
normalised histogram of the difference in log Lir between
various libraries for the IR-selected sample. In Table 2, we
list the 16th, 50th and 84th percentile in Alog Lig. It is
clear that the systematic differences in Lir arising from dif-
ferent SED libraries is relatively small. The median value
in Alogy, . is < 0.1 dex with or without adding the WISE
22 pm constraint. As mentioned above, the CE and DH li-
braries are biased towards galaxies which contain large warm
dust content. As a result, the Lig values derived from the
CE and DH libraries are systematically higher than the val-
ues derived from the MBB library. It is also clear from Table
2 that the lack of PAH features in the MBB templates is not
the main cause of the systematic difference between the CE
(or the DH) library and the MBB library as the other two
libraries (LDP and DS) also have PAH emission features.

Now we can add the obscured star formation traced by
infrared emission and the unobscured/escaped star forma-
tion traced by UV emission to form an estimate of the total
SFR of a galaxy. Using the calibrations in Hao et al. (2011)
and Kennicutt & Evans (2012), we have

SFRruv4ir/Moyr™' = 1.72x 107 °[Lruv/Le

+ 0.46 x Lir/Le], (13)
and
SFRyuv4m/Meyr ' = 2.60 x 10 ""[Lyuv/Le

+ 0.27 x Lir/Leo], (14)

based on the Kroupa IMF. We emphasise that the Lruv
and Lyuv in Eq. 13 and 14 are the observed luminosity not
corrected for dust attenuation.

4 CORRELATION BETWEEN DIFFERENT
SFR INDICATORS

4.1 Properties of the selected samples

In the top panel in Fig. 5, we compare the fraction of the
selected samples at different wavelengths with the parent
sample as a function of redshift. The construction of the
parent sample is described in Section 2.1. The selection cri-
teria of the UV, Ha and IR samples are summarised in Table
3. The blue dots correspond to galaxies in the UV sample
by requiring S/N > 10 in both FUV and NUV and at least
two filters in the rest-frame UV over 0.01 < z < 0.273. The
green dots correspond to galaxies in the selected Ha sample
by requiring S/N > 15 in both Ha and HS emission lines
for all star-forming galaxies over 0.01 < z < 0.273 using
the Kauffmann et al. (2003) classification. The red dots cor-
respond to galaxies in the selected IR sample by requiring
galaxies 0.01 < z < 0.273 detected at S/N > 3 at 22 and 250
pm and S/N > 3 at either 100 or 160 pm. The UV selected
sample contains more objects compared to the IR or the Ha
selection. Both the UV and the Ha samples preferentially
select lower-redshift objects, while the IR selected sample is
better at picking up objects at higher redshifts compared to
the UV or Ha selection. In the bottom panel in Fig. 5, we
show the fraction of the selected samples as a function of
stellar mass. It is clear that the UV and Ha selected sam-
ples preferentially select low-mass galaxies (related to the
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Table 3. The sample selection criteria in different wavebands. Applying all selection criteria in the UV, Ha and IR leaves us a total

sample of 745 objects.

Wavelength  Selection Criteria

Number of galaxies

uv z =1[0.01,0.273], S/N > 10 in FUV &NUYV, at least 2 broad-band filters in the rest-frame UV 16,920

Ha z =[0.01,0.15] or [0.17,0.273], S/N > 15 in Ha & Hp, star-forming galaxies 5,171

IR z =[0.01,0.273], S/N > 3 at 250 and 22 pm, and S/N > 3 at either 100 or 160 pm 5,182
80 3.0

Number of galaxies

0.10 0.15 0.20
Redshift z

50

Number of galaxies

9.5 10.0
log Mstar

Figure 6. Top: The redshift distribution of the UV-Ho-IR joint
sample of 745 objects. The median redshift is z = 0.077. Most
objects in our sample are at z < 0.15. Bottom: The stellar mass
(in unit of Mg) distribution of the joint sample. The median
stellar mass is log,, = 10.13Mp.

fact that the UV and Ha selection favour galaxies at lower
redshifts), while the completeness fraction of the IR-selected
sample has a peak in the middle and declines toward both
the low-mass and high-mass end. This peak can be explained
by limited sensitivity in the IR (so the completeness at low
mass, i.e. low SFR, is low) and increasingly higher passive
fraction at high masses.

In the following sections, we will use a joint sample
by applying the UV, Ha and IR selection criteria together,
which contains a total of 745 objects. Fig. 6 shows the full
redshift distribution and stellar mass distribution of the UV-
Ha-IR joint sample. We can see that the vast majority of

== Hao etal. (2011)
This study .
.

254+ . .

A(Ha) (mag)

i Kong et al. (2004) for starbursts
Meurer et al. (1999)

3H == Haoetal (2011)
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=== This study § ™ -

log [L(IRYMBB/L(FUV)]
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Figure 7. Top: Attenuation in Ha line derived from the Balmer
decrement ratio A(Ha) vs UV spectral slope St for galaxies in
our joint UV-Ha-IR sample. The blue dashed line is the bisector
fitting used in Hao et al. (2011). The red solid line is the bisector
fitting to our sample. The black error bars indicate the median
errors of the x- and y-axis. Bottom: IRX (i.e. log,q Lir/Lruv)
vs Bat. The blue dashed line is from Hao et al. (2011). The green
dotted line is derived for star-forming galaxies in the Herschel
Reference Survey from Boquien et al. (2012). The magenta dash-
dot line is derived for the SINGS sample from Mufioz-Mateos et
al. (2009). The thin yellow solid line is the relation for starburst
galaxies from Meurer et al. (1999). The thick cyan dotted line is
the best-fit relation for starbursts from Kong et al. (2004). The
thick red solid line is the best fit to our sample. The black error
bars indicate the median errors of the x- and y-axis. The median
statistical error on A(Hea), 8 and IRX is 0.14, 0.12 and 0.04,
respectively.
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Figure 8. log[L(FUV)+0.46xL(IR)] vs log[L(NUV)+0.27«L(IR)]
for galaxies in our joint UV-Ha-IR sample. The correlation is very
tight. The red line is the expected correlation based on matching
the SFR prescriptions (i.e. Eq. 13 and Eq. 14).

our sources are at z < 0.15. The median redshift of the
joint sample is z = 0.077 and the median stellar mass is
logys,,. = 10.13Mg.

4.2 Dust attenuation

Before we proceed to examine the correlation between dif-
ferent SFR indicators, we can look at the relation between
different estimates of dust attenuation, i.e., the observed
FUV - NUV colour or equivalently the UV spectral slope
B, the total infrared to FUV luminosity ratio IRX (i.e.
IRX= log[Lir/Lruv]), and the attenuation in the Ha line
based on the measured Balmer decrement ratio.

In the top panel of Fig. 7, we show the attenuation in
Ha line based on the Balmer decrement ratio Ape vs the
UV spectral slope 8. The blue line is the bisector fitting to
the Moustakas & Kennicutt (2006) sample used in Hao et
al. (2011),

Ano = 0.88 4 1.6, (15)

or equivalently as a function of the observed FUV-NUV
colour,

Atia = 1.86(FUV — NUV)gps — 0.04. (16)

Hao et al. (2011) used the correlation between [ (or the
observed FUV-NUV colour) and An. to empirically de-
termine the unattenuated power-law slope of the UV con-
tinuum or equivalently the intrinsic (dust-free) FUV-NUV
colour, (FUV-NUV)int. From Eq. 16, when Ape = 0, (FUV-
NUV)int = 0.022. However, we find that the Hao et al. re-
lation is not a good description of our sample. Instead, the
red line is the bisector fitting to our sample in this paper,

Atta = 0.9885¢ + 1.62. (17)

So, when setting Anq to 0, the dust-free (FUV-NUV)in, =
0.15 for our sample. If using Beolour instead of SBgy, then

Ata = 0.91Bcotour + 1.49, (18)

and the dust-free (FUV-NUV)in; = 0.16.
In the bottom panel of Fig. 7, the total infrared to FUV

luminosity ratio IRX (i.e. IRX= log[Lir/Lruv]) is plotted
against . The blue line is from Hao et al. (2011),

. [100.45FUV[(FUV7NUV)ObS7(FUV7NUV)im] _ 1]

IRX = lo .(19)

aruv

where the slope of the UV part of the attenuation curve
sruv = 3.83 and the fraction of the total infrared luminosity
due to recent star formation arpyv = 0.46. For comparison,
the green line is from Boquien et al. (2012) which studied
the IRX-S relation on sub galactic scales in star-forming
galaxies selected from the Herschel Reference Survey. The
magenta line is the best-fit IRX-f3 relation for normal star-
forming spiral galaxies in the SINGS sample from Mufioz-
Mateos et al. (2009). The yellow line is well-known Meurer
et al. (1999) relation for starburst galaxies. The cyan line is
best-fit IRX-/ relation for nearby starbursts in Kong et al.
(2004). The red line is the best-fit (of the functional form
defined in Eq. 19) to our sample with spuv = 3.67 and
arpuy = 0.46. If using Beolour instead of B¢, then we find
sruv = 3.55 and apyv = 0.46 for our sample. Note that
in our fitting procedure, we have fixed aruv at 0.46. This
is because the correlation between IRX and g is relatively
poor so it is advantageous to minimise the number of free
parameters. In addition, we believe aryv = 0.46 is suitable
value for our sample, i.e. it corresponds to approximately the
correct fraction of the total infrared luminosity that is pro-
duced by recent star formation. For example, Fig. 8 shows
log[L(FUV)+0.46 * L(IR)] is extremely well and tightly cor-
related with log[L(NUV) 4 0.27 « L(IR)] for galaxies in our
joint sample. Further evidence comes from the good correla-
tion between the UV + IR based SFR indicator and the Ha
based SFR indicator (see Fig. 13 in Section 4.3). To further
understand the differences in the IRX-S relation between
the Hao et al. (2011) study and this paper, we investigate
in detail the galaxy samples used in both studies in Ap-
pendix B. We show that the difference between the the Hao
et al. (2011) relation based on a nearby star-forming sample
and the new relation derived in this paper is due to the dif-
ference in the galaxy samples. In addition to being at higher
redshifts, our galaxy sample corresponds to much lower sur-
vey flux limits (by more than an order of magnitude) in the
IR and UV and therefore contains many more quiescent star-
forming galaxies with redder UV spectral slopes and lower
IRX values.

Following Hao et al. (2011), the FUV attenuation can
be estimated from the observed (FUV-NUV) colour using

Aryuv = SFUv[(FUV — NUV)ObS — (FUV — NUV)int)}. (20)

So substituting the values for spyv and (FUV — NUV )in)
for our joint UV-Ha-IR sample into Eq. 19, we have

Aruv = 3.67[(FUV — NUV)ops — 0.15], (21)
or equivalently as a function of the UV spectral slope £,
Apuy = 1.58 x Bge + 2.62. (22)
If using Beolour instead of Bg¢, then

Aruv = 1.53 X Beolour + 2.50. (23)

4.3 SFR correlations

First of all, we examine how the observed UV luminosities
(FUV and NUV) and the He line luminosity, both uncor-
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Figure 9. Top: The linear combination of the observed FUV
luminosity and total infrared luminosity vs the observed FUV
luminosity (uncorrected for dust attenuation), colour-coded by
galaxy counts. The black solid line is the predicted relation from
matching the SFR prescriptions (i.e. Eq. 6 and Eq. 13). The green
dashed lines mark the 25th, 50th and 75th percentile. Bottom:
The linear combination of the observed NUV luminosity and to-
tal infrared luminosity vs the observed NUV luminosity (uncor-
rected for dust attenuation), colour-coded by galaxy counts. The
black solid line is the predicted relation from matching the SFR
prescriptions (i.e. Eq. 7 and Eq. 14). The green dashed lines mark
the 25th, 50th and 75th percentile.

rected for dust attenuation, compare with the linear combi-
nation of the observed UV luminosity and the total infrared
luminosity. Fig. 9 compares the linear combination of the ob-
served UV luminosity and the total infrared luminosity with
the observed UV luminosity (without correction for dust at-
tenuation). The solid line in each panel is the predicted re-
lation based on matching SFR prescriptions. As expected,
the FUV band suffers more from dust attenuation than the
NUYV. However, in the luminosity range probed by our sam-
ple, we do not see a significant difference in the amount of
attenuation with changing UV luminosity. Fig. 10 compares
the linear combination of the observed UV luminosity and
the total infrared luminosity with the observed Ha line lu-
minosity (without correction for dust attenuation). Again,
the solid line in each panel is the predicted relation based on
matching SFR prescriptions. The effects of dust obscuration
is less severe in the optical emission lines than in the UV. We
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Figure 10. Top: The linear combination of the observed FUV
luminosity and total infrared luminosity vs the observed Ha line
luminosity (uncorrected for dust attenuation), colour-coded by
galaxy counts. The black line is the predicted relation from match-
ing the SFR prescriptions (i.e. Eq. 9 and Eq. 13). The green
dashed lines mark the 25th, 50th and 75th percentile. Bottom:
The linear combination of the observed NUV luminosity and to-
tal infrared luminosity vs the observed He line luminosity (un-
corrected for dust attenuation), colour-coded by galaxy counts.
The black line is the predicted relation from matching the SFR
prescriptions (i.e. Eq. 9 and Eq. 14). The green dashed lines mark
the 25th, 50th and 75th percentile.

see a similar amount of attenuation in the observed Ha line
luminosity in the top and bottom panel, as expected. Un-
like Fig. 9, here we do see some evidence that more actively
star-forming galaxies suffer more from dust attenuation.
Now we can examine how different SFR indicators com-
pare after applying corrections for dust attenuation. Starting
with the UV SFR indicators, we apply dust correction fac-
tors based on the UV spectral slope 8 (or equivalently the
observed (FUV-NUV) colour) using Eq. 4 in Section 3.1. In
Fig. 11, we show comparisons between SFRuv corr (based
on dust corrected UV luminosity using 8) and SFRuvtir.
There is a good correlation (linear and tight) between
SFRuv,corr and SFRuv41r, but there is a large overall shift
(around 0.3 dex). SFRuv corr gives systematically higher val-
ues than SFRuv4ir. The offset is likely to be caused by an
incorrect Apuv-0 relation. We have demonstrated in Section
4.2 that the Hao et al. (2011) Aruv-S relation does not pro-
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Table 4. The 16th, 50th and 84th percentile in the difference of SFR indicators ASFR = SFRyy jgmMe — SFRUV corr, where UV
means either FUV or NUV. The dust attenuation correction applied to the UV SFR indicator is based on the UV spectral slope 8. We
compare the difference in SFR indicators using Bat¢ or Beolour- We also compare the difference between applying the Hao et al. (2011)
Apyv-B relation and applying the new Apyvy-3 relations (Eq. 22 and Eq. 23) derived in this paper.

Hao et al. relation

New relation in this paper

SFRpuv 1rMEB - SFREUV corr, By, -0.4,-0.2, 0.0 -0.2, 0.0, 0.2
SFRpuy41rMEB - SFREUV corr, fupone 055 -0.3, 0.0 -0.2, 0.0, 0.2
SFRy v 4rMBB - SFRNUV, corr, 85, -0.4,-0.3, -0.1 -0.2,-0.1, 0.1
SFRyyv41rMBB - SFRNUV corr -0.5, 0.3, -0.1 -0.3,-0.1, 0.1

»Beolour

vide a suitable description for our sample. So, we apply the
new Apuv-f relation (i.e. Eq. 22) to derive SFRuv,corr which
are plotted in Fig. 12. It is clear that large offset between
SFRuUV,corr and SFRuvir has now gone away. In Table 4,
we list the 16th, 50th and 84th percentile in the difference
between SFRyv corr and SFRyv41r, where UV means either
FUV or NUV. We compare the difference in ASFR using Bat
or Beolour- We also compare the difference between applying
the Hao et al. (2011) Aryvy-f relation and applying the new
Aruv-0 relations (Eq. 22 and Eq. 23) derived in this paper.
The percentiles are similar regardless of using Bt or Beolour
and regardless of using the FUV or NUV band. There is
still a small offset (around 0.1 dex) between SFRNUV,corr
and SFRNuvtir, using either Bat or Beolour- This is likely
due to the assumption made on the relation between Aruvy
and Anuv (see Section 3.1).

In Fig. 13, we show comparisons between SFRHa,corr
and SFRuviir. The dust attenuation corrections applied
in SFRHa,corr are based on the Balmer decrement mea-
surements. Again, the correlations are similar whether us-
ing FUV or NUV. SFRHq,corr gives systematically higher
values than SFRuv4imr. In Table 5, we list the 16th, 50th
and 84th percentile in the difference of SFR indicators
ASFR = SFRuv+ir — SFRHa,corr- We compare the differ-
ence between using the infrared luminosity Lir derived from
the modified blackbody (MBB) template library and using
Lir derived from the Dale & Helou (2002) (DH) template
library. It is clear that the small systematic offset between
SFRHa,corr and SFRuv1r see in Fig. 13 can be entirely ex-
plained by systematic error in Lir®. The offset could also be
due to other systematic errors of a similar scale in the Ha-
based SFR tracer, e.g., optical depth effects in the Balmer
corrections, systematic error in Balmer line absorption cor-
rections or aperture effects, etc.

In Appendix C, we further compare the three empirical
SFR indicators considered in this paper, i.e., SFRuv corr,
SFRHa,corr and SFRyuvyir, with SFRs from Grootes et al.
(2013) which are derived using the radiative transfer models
of Popescu et al. (2011).

5 Rosario et al. (2016) report excellent agreement between Ha-
based SFR and SFRyvy4ir using their SDSS-Herschel matched
sample. They use the Dale & Helou (2002) library in deriving
LiRr.

Table 5. The 16th, 50th and 84th percentile in the difference
of SFR indicators ASFR = SFRyv41r — SFRuq,corr, Where UV
means either FUV or NUV. The dust attenuation correction ap-
plied to the Ha SFR indicator is based on the Balmer decrement.
We compare the difference between using the infrared luminosity
Lig derived from the modified blackbody (MBB) template li-
brary and using Ligr derived from the Dale & Helou (2002) (DH)
template library.

SFRpyvimrmee - SFRHa,corr -0.3,-0.1, 0.1
SFRpyy+rpE - SFRHa,corr -0.3,-0.0, 0.1
SFRyyviirMBEB - SFRuacorr -0.3,-0.1, 0.1
SFRNyv4irpH - SFRHa,corr  -0.2,-0.0, 0.2

4.4 Dependence on galaxy physical parameters

In Fig. 14, we compare the ratios of different SFR indicators
as a function of various physical parameters such as stellar
mass, redshift, Balmer decrement, IRX, s, Ha equivalent
width, dust temperature and Sérsic index in the SDSS op-
tical bands. In the top panel of each figure, we show the
normalised histogram of the x-axis. In the bottom panel of
each figure, the blue lines correspond to the 25th, 50th and
75th percentile in the ratio of SFRua,corr Over SFRruv4IR.
The red lines correspond to the 25th, 50th and 75th per-
centile in the ratio of SFRruv,corr (using B and our new
Aruvy-0 relation) over SFRrpuvtir. In Fig. 15, we show the
dust attenuation correction factors applied in SFRq,corr
and SFRruv,corr as a function of these physical parameters.

Stellar mass: Neither SFRruv,corr/SFRruv4ir nOr
SFRHa,corr/SFRruviir has a significant dependence on
stellar mass. The dust attenuation corrections applied in
SFRruv,corr and SFRHa, corr increase with increasing stellar
mass indicating more massive galaxies are more obscured.
It could also imply that galaxies at higher redshift are more
obscured as more massive galaxies are preferentially located
at higher redshift in our sample (selected from flux-limited
surveys). We need a larger sample to properly disentangle
the effect of stellar mass and redshift.

Redshift:  Neither  SFRruv,corr/SFRruv4r  nOr
SFRHa,corr/SFRruv+ir  exhibits a significant depen-
dence on redshift. The attenuation corrections applied
in SFRruv,corr and SFRHa,corr increase with increasing
redshift. It could be because galaxies at higher redshift are
more obscured and/or we are preferentially selecting more
massive galaxies at higher redshift.
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Figure 11. Top: SFRpuv4ir (derived using Eq. 13) vs
SFRFUV,corr (derived using Eq. 6), in unit of Mg /yr, colour-
coded by galaxy counts. The SFRruv corr values are derived us-
ing B¢ and the Hao et al. (2011) relation between Apyv and 8
(i.e. Eq. 4). The black solid line is the one-to-one relation. Bottom:
The normalised histogram in the difference between the UV+IR
SFR indicator and the UV SFR indicator corrected for attenua-
tion using 8 (blue solid : SFRryv4+1R —SFRFUV corr; red dashed :
SFRNUV+IR — SFRNUV,corr). The black vertical line corresponds
to SFRUV+IR = SFRUV,corr~

Balmer decrement (BD): The attenuation correction
in SFRHa,corr is uniquely determined by BD. The attenu-
ation correction applied in SFRruv,corr increases with in-
creasing BD which is expected given the correlation be-
tween A(Ha) and B seen in the top panel in Fig. 7.
SFRHa,corr/SFRruv+IR increases with increasing values of
BD (i.e. larger attenuation correction) which is most likely
due to the fact that the dust-corrected Ha line luminosity
directly depends on BD. The SFRruv,corr/SFRrUvV IR Ta-
tio decreases with increasing BD, which is caused by the
broad correlation between BD and IRX and the dependence
of SFRFUV,COH/SFRFUij[R on IRX (see below).

IRX: IRX is a measure of the overall UV pho-
ton escape fraction. As expected, the attenuation cor-
rections applied in SFRruv,corr and SFRpa,corr increase
with increasing IRX. This is consistent with Fig. 7.
SFRHa,corr/SFRruv+ir shows no appreciable dependence
on IRX. SFRruv,corr/SFRruviir decreases significantly
with increasing IRX, which is caused by the large scatter
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Figure 12. Similar to Fig. 11, but the SFRryuv corr values are
derived using the new relation between Apyyv and g (i.e. Eq. 21)
for our joint UV-Ha-IR sample.

in the IRX - B correlation shown in the bottom panel in
Fig. 7. For objects with high IRX values, it is clear that
the dust correction factors Aryy based on the IRX - 3 cor-
relation derived for the whole sample (the red line in the
bottom panel in Fig. 7) will underestimate the true level of
attenuation.

UV continuum slope fBa¢: The attenuation correction
applied in SFRruv corr is uniquely determined by S. The
attenuation correction applied in SFRHq corr increases with
increasing (8 which is expected given the correlation be-
tween A(Ha) and . Both SFRHa,corr/SFRruvir and
SFRFUV,corr/SFRFUV IR stays more or less flat with chang-
ing St.

Ha equivalent width (EW): The Ha emission line EW
is a measure of specific SFR (Kenicutt et al. 1994). The
attenuation correction factors applied in SFRuq,corr and
SFRruV,corr do not vary as a function of the Ha EW.
SFRFUV,corr/SFRrUv IR stays flat. SFRua, corr /SFRFUV IR
increases with increasing Hoe EW. One explanation could be
that measurement of the Hao EW affects the Ha line lumi-
nosity.

Dust temperature: The attenuation corrections applied
in SFRruv,corr and SFRHq,corr increase slightly with in-
creasing dust temperature. This is consistent with the fact
that galaxies with warmer dust tend to have higher infrared
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Figure 13. Top: Comparison of SFRHa,corr With SFRryuv4Ir
(derived using Eq. 13), in unit of Mg /yr, colour-coded by galaxy
counts. The black solid line is the one-to-one relation. Bot-
tom: The normalised histogram in the difference between the
UV+IR SFR indicator and the Ha SFR indicator corrected for
attenuation using Balmer decrement (blue solid: SFRryuv IR —
SFRHa,corr; red dashed: SFRyuv4+1rR — SFRHq,corr)- The black
vertical line corresponds to SFRyq,corr = SFRUV4IR-

luminosities. The SFRuaq,corr /SFRruv4ir ratio does not
have a significant dependence on dust temperature. How-
ever, the SFRruv corr/SFRFUv4IR ratio decreases with in-
creasing dust temperature which is due to the broad posi-
tive correlation between dust temperature and IRX. As ex-
plained above, SFRruv,corr/SFRruv+ir decreases with in-
creasing IRX caused by the large scatter in the IRX - 8
correlation.

Sérsic index: Neither the attenuation correction factors
or the SFR ratios changes significantly a a function of the
Sersic index in the r-band. We find similar trends with re-
spect to the Sersic indexes in the other SDSS optical bands.

5 SUMMARY

In this paper, we compare multi-wavelength star-formation
rate (SFR) indicators in the local Universe in the three
GAMA equatorial fields. Our analysis uses ultraviolet (UV)
photometry from GALEX, far-infrared (FIR) and sub-
millimetre (sub-mm) photometry from Herschel H-ATLAS,

and Ha spectroscopy from the GAMA redshift survey. To
minimise random statistical errors, we construct a very high
quality sample of 745 objects (median redshift (z) = 0.08).
We consider three commonly used SFR indicators: UV con-
tinuum luminosity corrected for dust attenuation using the
UV spectral slope (SFRuv,corr ), Ha emission line luminosity
corrected for dust attenuation using the Balmer decrement
(SFRHa,corr ), and the combination of UV and infrared dust
emission (SFRuv+ir).

We find a good linear correlation between SFRuv corr
and SFRuvyir but with a ~ 0.3 dex offset when using the
UV spectral slope 8 and the Hao et al. (2011) Apyv-3 rela-
tion for deriving the dust attenuation correction. This offset
is removed when we replace the Hao et al. relation with our
new Apyv-f relation based on calibrating IRX and the at-
tenuation in Ha against 5. The Arpyv-5 relation is slightly
different depending on whether Bay or Beolour is used and
the choice of IR SED library. The difference between the
Hao et al. (2011) Aruv-03 relation based on a nearby star-
forming sample and the new relation derived in this paper
is due to the difference in the galaxy samples. In addition
to being at higher redshifts, our galaxy sample corresponds
to much lower survey flux limits in the IR and UV and
therefore contains many more quiescent star-forming galax-
ies with redder UV spectral slopes and lower IRX values.
We also find a good linear correlation between SFRua,corr
and SFRuv4ir. There is a small median offset of around
0.1 dex. But we demonstrate that this offset can be entirely
explained by systematic effects in deriving the infrared lumi-
nosity Lir and/or other systematic errors in the Ha-based
SFR tracer. Moreover, the correlation between SFRHuq,corr
and SFRuv+ir has a similar scatter (0.2 dex) as the corre-
lation between SFRyv corr and SFRuv41R.

The ratios between different SFR indicators and the
dust attenuation correction factors applied in the UV (us-
ing B) and Ha (using the Balmer decrement) are examined
as a function of various galaxy physical parameters. The at-
tenuation factor applied in SFRq,corr Which is uniquely de-
termined by Balmer decrement increases with increasing val-
ues of IRX and B. Similarly, the attenuation factor applied
in SFRuv,s which is uniquely determined by f increases
with increasing values of Balmer decrement and IRX. These
trends are consistent with the broad correlations between
Balmer decrement, 8, and IRX seen in Fig. 7. We also find
that attenuation correction factors depends on stellar mass,
redshift and dust temperature, but not on the Ha equivalent
width or Sersic index in the SDSS optical bands.

After applying corrections for dust attenuation, we find
that the SFRuv corr/SFRuv4ir ratio does not depend sig-
nificantly on stellar mass, redshift, UV spectral slope 3, Ha
equivalent width, or structural parameters such as Sérsic
index. However, the SFRuv corr/SFRuv4+1r ratio does sys-
tematically decrease with increasing values of IRX, Balmer
decrement, and dust temperature. The dependence on IRX
is caused by the large scatter in the IRX vs [ relation.
For objects with high IRX values, the dust attenuation
correction factor Apyuv based on the IRX - [ correla-
tion derived for the whole sample will underestimate the
true level of attenuation. Also, there is a positive corre-
lation between IRX and Balmer decrement and between
IRX and dust temperature which explains the systematic
trend in the SFRuv,corr/SFRuUv4Ir ratio as a function of
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Figure 14. The ratio of SFR indicators as a function of various physical parameters (stellar mass, redshift, Balmer decrement, IRX,
B, Ha equivalent width, dust temperature, and Sersic index in the r-band). In the top panel of each figure, we show the normalised
histogram of the x-axis. The thin blue lines correspond to the 25th, 50th and 75th percentile in the ratio of SFRHq,corr OVver SFRruvIR.-
The thick red lines correspond to the 25th, 50th and 75th percentile in the ratio of SFRryv corr (using Bg¢ and our new Apyyv-f relation
Eq. 22) over SFRFUV4IR-
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Figure 15. The dust attenuation correction factors as a function of various physical parameters (stellar mass, redshift, Balmer decrement,
IRX, Bst, Ha equivalent width, dust temperature, and Sersic index in the r-band). In the top panel of each figure, we show the normalised
histogram of the x-axis. The thin blue lines correspond to the 25th, 50th and 75th percentile in the dust correction factors applied in
the Ha-based SFR. The thick red lines correspond to the 25th, 50th and 75th percentile in the dust correction factors applied in the
FUV-based SFR.
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Balmer decrement and dust temperature. In contrast, the
SFRHa,corr/SFRUv+1R ratio does not show any systematic
trend as a function of various physical parameters except
Balmer decrement and Ha equivalent width, which is most
likely caused by the fact that both Balmer decrement and
Ha equivalent width directly determine the dust-corrected
Ha line luminosity.
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APPENDIX A: H-ATLAS BLIND CATALOGUE

The large PSF of Herschel imaging and the relatively poor
correlation between sub-mm and optical brightness means
that matching sub-mm sources to optical sources can be
ambiguous. The two techniques considered represent alter-
native solutions to the problem: the technique used in the
main body of the paper is forced sub-mm photometry at
known optical source positions, while the alternative method
is likelihood-ratio matching between sources extracted inde-
pendently from sub-mm and optical images. The first tech-
nique can be prone to bias when bright sub-mm sources are
missing from the optical prior, while the second is biased
against sub-mm undetected sources as well as those with
ambiguous optical counterparts. Therefore, it is important
to test whether the correlations we see between SFRuviir
and SFRuv corr and between SFRyv1r, and SFRuq,corr de-
pend on how Herschel fluxes are derived for GAMA galaxies.
Here we re-derive the correlations between different SFR in-
dicators using the H-ATLAS blind source catalogue.

The H-ATLAS catalogue contains all SPIRE sources
which are > 5o significance (including confusion noise) in
any of the three SPIRE bands (250, 350, 500 pm). PACS
fluxes (100, 160 pm) are measured using circular apertures
placed at the SPIRE positions. The source catalogue is based
on finding peaks in the noise-weighted PSF filtered the maps
using the MADX algorithm. Please refer to Rigby et al.
(2011), Maddox et al. (in prep.) and Valiante et al. (in prep.)
for details of the source extraction method. The blind H-
ATLAS catalogue is matched to GAMA galaxies using the
likelihood ratio (LR) method (e.g., Sutherland & Saunders
1992; Chapin et al. 2011; Wang & Rowan-Robinson 2009,
2014). Briefly, the LR method uses the positional and bright-
ness information to identify the most likely GAMA counter-
part to an H-ATLAS source. For more details, we refer the
reader to Smith et al. (2011) and Bourne et al. (in prep.).

In Fig. Al, we show the correlations between different
SFR indicators, using the H-ATLAS blind source catalogue
matched with GAMA galaxies through the LR method. The
resulting correlations are very similar to Fig. 12 and Fig. 13
in Section 4.3. Note that we have applied our new Aruv-Sat
relation (i.e. Eq 22) and not the Hao et al. (2011) relation.

APPENDIX B: COMPARISON WITH THE HAO
ET AL. (2012) SAMPLE AND RELATION

To understand the differences seen in the IRX vs [ relation
between Hao et al. (2011) and this paper, we compare in
detail the galaxy samples used in both studies.

Fig. B1 shows IRX vs 8 using the Moustakas & Kenni-
cutt (2006; hereafter MKO06) galaxy sample studied in Hao
et al. (2011) and our joint UV-Ha-IR sample of 745 objects.
To better compare the Hao et al. (2011) study and this pa-
per, Becolour is used in this figure instead of Bgt. The blue
stars correspond to the MKO6 sample and the blue line is
the best-fit of the functional form defined in Eq. 19 from
Hao et al. (2011) with spuv=3.83 and aruv=o.46. The black
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Figure Al. Comparison of log;qSFRruv,corr (using Bgt) with logyq SFRruv4ir (left panel) and logyy SFRHa,corr With
logo SFRruv+ir (right panel) (colour-coded by galaxy counts). The H-ATLAS catalogue is matched to the GAMA galaxies using
the likelihood ratio (LR) technique. The black line is the one-to-one relation.

symbols correspond to our joint UV-Ha-IR sample of 745
objects using IR luminosities measured from SED fitting to
the MBB library. The black line is our best-fit IRX-3 rela-
tion to the black symbols with srpuv=3.55 and aruv=0.46. TO
better match the IR luminosity measurement from Hao et
al. (2012), we also plot our measurement using IR luminosi-
ties estimated from SED fitting to the Dale & Helou (2002)
library which are shown as the red symbols. The red line is
the best fit to the red symbols with sruv=3.66 and aruv=0.46-
As discussed in Section 3.3, Lir estimated using the DH li-
brary is systematically higher than Lir estimated from the
MBB library. However, the median difference is less than
0.1 dex between the two libraries. Comparing the blue stars
with the red symbols, it is clear that our joint UV-Ha-IR
sample has a lot more quiescent star-forming galaxies with
redder UV spectra and lower IRX values.

In Fig. B2, we compare bolometric Lir vs coming dis-
tance and the observed FUV luminosity LFUV (without
correction for dust) vs coming distance between the MKO06
sample and our joint UV-Ha-IR sample. The galaxies in our
sample are at much higher redshifts than the MK06 sample.
In addition, our galaxies correspond to a much lower survey
flux limit than the MKO06 sample. This is mostly like due
to the fact that the MKO06 sample are restricted to galaxies
which are detected by IRAS at 25, 60 and 100 pm. As such,
the MKO06 sample is biased towards warmer dust tempera-
ture and more infrared luminous galaxies than our galaxy
sample.

APPENDIX C: COMPARISON WITH SFR
DERIVED FROM RADIATIVE TRANSFER
MODELLING

Arguably an accurate determination of SFR requires radia-
tive transfer modelling of the panchromatic SEDs of galax-
ies, which could then be used to calibrate SFRs derived from
other SFRs indicators. In Fig. C1, we compare our SFR in-
dicators (SFRUv+IRMBB, SFRuUV,corr and SFRHa,corr) with
the NUV-based SFRs (Grootes et al. 2013) derived using the
radiative transfer models of Popescu et al. (2011) for a sam-

250 == Haoetal (2011) .

..... This study, with LIR (MBB) * .o -
= This study, with LIR (DH)
—_ -
S 20| .o
)
[
= 15}
=
=
= 10}
(=]
o
Il os}
> p X
x ;
*
0.0 Fe ‘&
e
-0.5

Beolonr

Figure B1. IRX (i.e. log;o Lir/Lruv) VS Beolour- 10 better com-
pare Hao et al. (2011) and this paper, Beolour is used in this figure.
The blue stars correspond to the MKO06 sample used in Hao et
al. (2011) and the blue dashed line is the best-fit from Hao et
al. (2011). The black symbols correspond to our joint UV-Ha-IR
sample of 745 objects using IR luminosities measured from SED
fitting to the MBB library. The black dotted line is our best-fit
IRX-f relation to the black symbols. To better match the IR lu-
minosity measurement from Hao et al. (2012), we also plot our
measurement using IR luminosities estimated from SED fitting
to the Dale & Helou (2002) library which are shown as the red
symbols. The red solid line is the best fit to the red symbols.

ple of local GAMA spiral galaxies at z < 0.13, SFRrr. The
black line indicates the one-to-one relation. In Table B1, we
list the 16th, 50th and 84th percentile in the difference be-
tween the SFR indicators (SFRyy,rmee, SFRUV corr and
SFRHa,corr) studied in this paper and the the radiation
transfer corrected NUV based SFRgrr. There is a small me-
dian difference in all cases except in SFRxuUV,corr - SFRRT,
which could be because the radiation transfer corrected SFR
is also derived from the observed NUV luminosity. Finally,
the correlation between SFRua,corr and SFRrr has consid-
erably larger scatter compared to the correlations seen be-
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Figure B2. Top: Infrared luminosity Lig (in unit of Lg) vs co-
moving distance. The blue stars correspond to the MKO06 galaxy
sample. The red symbols correspond to our joint UV-Ho-IR sam-
ple with Lig estimated from SED fitting to the Dale & Helou
(2002) library. Bottom: Similar to the top panel but with the y-
axis replaced by the observed FUV luminosity Lyyy uncorrected
for dust attenuation.

Table C1. The 16th, 50th and 84th percentile in the differ-
ence between the SFR indicators (SFRuvtir, SFRUV,corr and
SFRHaq,corr) studied in this paper and the NUV based SFRs
(Grootes et al. 2013) derived using the radiative transfer (RT)
models, SFRRT.

SFRpyvmrMes - SFRrr  -0.3,-0.2, 0.0

SFRyuvyirMBs - SFRrr - -0.2,-0.1, 0.0

SFRFUV,Corr - SFRRT -0.3, -0.1, 0.0
SFRNUV,corr - SFRRT —0-1, 00, 0.2
SFRHa,corr - SFRRT -0.3, -0.1, 0.2

tween SFRyv +irMEB and SFRrr and between SFRuv corr
and SFRRT.
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Figure C1. Top: Comparison of NUV-based SFR (in unit
of Mg/yr) derived from radiative transfer modelling with
SFRpyyrMBB (colour-coded by galaxy counts). Middle: Com-
parison of NUV-based SFR derived from radiative transfer mod-
elling with SFRruv,corr- Bottom: Comparison of NUV-based
SFR derived from radiative transfer modelling with SFRyq,corr-
The black line in all panels is the one-to-one relation.

REFERENCES

Baes, M., Fritz, J., Gadotti, D. A., et al. 2010, A&A, 518,
L39

Baes, M., Verstappen, J., De Looze, 1., et al. 2011, ApJS,
196, 22

Baldry, I. K., Robotham, A. S. G., Hill, D. T., et al. 2010,
MNRAS, 404, 86

9102 ‘22 AInc uo Aruqiay L e /Bio'sfeulnolpioixoseluw//:dny wouy papeojumoq


http://mnras.oxfordjournals.org/

Baldry, I. K., Alpaslan, M., Bauer, A. E., et al. 2014, MN-
RAS, 441, 2440

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981,
PASP, 93, 5

Bell, E. F. 2003, ApJ, 586, 794

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393

Bianchi, S. 2008, A&A, 490, 461

Blanton, M. R., & Roweis, S. 2007, AJ, 133, 734

Boquien, M., Buat, V., Boselli, A., et al. 2012, A&A, 539,
A145

Bourne, N., Maddox, S. J., Dunne, L., et al. 2012, MNRAS,
421, 3027

Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004,
MNRAS, 351, 1151

Brough, S., Croom, S., Sharp, R., et al. 2013, MNRAS,
435, 2903

Bryant, J. J., Owers, M. S., Robotham, A. S. G., et al.
2015, MNRAS, 447, 2857

Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000

Buat, V., Iglesias-Pdaramo, J., Seibert, M., et al. 2005, ApJ,
619, L51

Burgarella, D., Buat, V., & Iglesias-Paramo, J. 2005, MN-
RAS, 360, 1413

Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ,
533, 682

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ,
345, 245

Chabrier, G. 2003, PASP, 115, 763

Chapin, E. L., Chapman, S. C., Coppin, K. E., et al. 2011,
MNRAS, 411, 505

Chary, R., & Elbaz, D. 2001, ApJ, 556, 562

Cid Fernandes, R., Stasinnska, G., Schlickmann, M. S.; et
al. 2010, MNRAS, 403, 1036

Croom, S. M., Lawrence, J. S., Bland-Hawthorn, J., et al.
2012, MNRAS, 421, 872

Dale, D. A.; & Helou, G. 2002, ApJ, 576, 159

De Looze, 1., Baes, M., Bendo, G. J., et al. 2012, MNRAS,
427, 2797

De Looze, 1., Fritz, J., Baes, M., et al. 2014, A&A, 571,
A69

Draine, B. T., & Lee, H. M. 1984, ApJ, 285, 89

Driver, S. P., Norberg, P., Baldry, I. K., et al. 2009, As-
tronomy and Geophysics, 50, 12

Driver, S. P., Hill, D. T., Kelvin, L. S., et al. 2011, MNRAS,
413, 971

Driver, S. P., Wright, A. H., Andrews, S. K., et al. 2016,
MNRAS, 455, 3911

Dunne, L., & Eales, S. A. 2001, MNRAS, 327, 697

Eales, S., Dunne, L., Clements, D., et al. 2010, PASP, 122,
499

Garn, T., & Best, P. N. 2010, MNRAS, 409, 421

Granato, G. L., Lacey, C. G., Silva, L., et al. 2000, ApJ,
542, 710

Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A,
518, L3

Grootes, M. W., Tuffs, R. J., Popescu, C. C., et al. 2013,
ApJ, 766, 59

Gunawardhana, M. L. P., Hopkins, A. M., Bland-
Hawthorn, J., et al. 2013, MNRAS, 433, 2764

Hao, C.-N., Kennicutt, R. C., Johnson, B. D.; et al. 2011,
AplJ, 741, 124

Hall, N. R., Keisler, R., Knox, L., et al. 2010, ApJ, 718,

632

Helou, G. 1986, ApJ, 311, L33

Holwerda, B. W., Bianchi, S., Boker, T., et al. 2012, A&A,
541, L5

Hopkins, A. M., Miller, C. J., Nichol, R. C., et al. 2003,
ApJ, 599, 971

Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142

Ibar, E., Ivison, R. J., Cava, A., et al. 2010, MNRAS, 409,
38

Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003,
MNRAS, 346, 1055

Kennicutt, R. C., Jr. 1992, ApJ, 388, 310

Kennicutt, R. C., Jr. 1998, ARA&A, 36, 189

Kennicutt, R. C., & Evans, N. J. 2012, ARA&A, 50, 531

Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler,
C. A., & Trevena, J. 2001, ApJ, 556, 121

Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T.
2006, MNRAS, 372, 961

Kong, X., Charlot, S., Brinchmann, J., & Fall, S. M. 2004,
MNRAS, 349, 769

Kroupa, P., & Weidner, C. 2003, ApJ, 598, 1076

Lagache, G., Dole, H., & Puget, J.-L. 2003, MNRAS, 338,
555

Laird, E. S., Nandra, K., Adelberger, K. L., Steidel, C. C.,
& Reddy, N. A. 2005, MNRAS, 359, 47

Lara-Loépez, M. A., Hopkins, A. M., Lépez-Sénchez, A. R.,
et al. 2013, MNRAS, 434, 451

Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, MN-
RAS, 379, 1599

Liske, J., Baldry, I. K., Driver, S. P., et al. 2015,
arXiv:1506.08222

Lépez-Sanchez, A. R., & Esteban, C. 2009, A&A, 508, 615

Loveday, J., Norberg, P., Baldry, I. K., et al. 2012, MNRAS,
420, 1239

Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415

Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005,
ApJ, 619, L1

Mathis, J. S., & Whiffen, G. 1989, ApJ, 341, 808

Meurer, G. R., Heckman, T. M., Leitherer, C., et al. 1995,
AJ, 110, 2665

Meurer, G. R., Heckman, T. M., Lehnert, M. D., Leitherer,
C., & Lowenthal, J. 1997, AJ, 114, 54

Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ,
521, 64

Morrissey, P., Conrow, T., Barlow, T. A., et al. 2007, ApJS,
173, 682

Moustakas, J., & Kennicutt, R. C., Jr. 2006, ApJS, 164, 81

Moustakas, J., Kennicutt, R. C., Jr., & Tremonti, C. A.
2006, AplJ, 642, 775

Murfioz-Mateos, J. C., Gil de Paz, A., Boissier, S., et al.
2009, ApJ, 701, 1965-1991

Murphy, E. J., Condon, J. J., Schinnerer, E., et al. 2011,
AplJ, 737, 67

Natale, G., Popescu, C. C., Tuffs, R. J., et al. 2015, MN-
RAS, 449, 243

Oteo, 1., Bongiovanni, A., Magdis, G., et al. 2014, MNRAS,
439, 1337

Pettini, M., & Pagel, B. E. J. 2004, MNRAS, 348, L59

Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010,
AJ, 139, 2097

Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010,
A&A, 518, L1

9102 ‘22 AInc uo Aruqiay L e /Bio'sfeulnolpioixoseluw//:dny wouy papeojumoq


http://mnras.oxfordjournals.org/

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al.
2011, A&A, 536, A16

Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A&A,
518, L2

Popescu, C. C., Misiriotis, A., Kylafis, N. D., Tuffs, R. J.,
& Fischera, J. 2000, A&A, 362, 138

Popescu, C. C., Tuffs, R. J., Dopita, M. A.| et al. 2011,
A&A, 527, A109

Reddy, N. A., Steidel, C. C., Fadda, D., et al. 2006, ApJ,
644, 792

Richards, S. N., Bryant, J. J., Croom, S. M., et al. 2016,
MNRAS, 455, 2826

Rigby, E. E., Maddox, S. J., Dunne, L., et al. 2011, MN-
RAS, 415, 2336

Rosario, D. J., Mendel, J. T., Ellison, S. L., Lutz, D., &
Trump, J. R. 2016, MNRAS, 457, 2703

Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173,
267

Salpeter, E. E. 1955, ApJ, 121, 161

Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ,
500, 525

Shipley, H. V., Papovich, C., Rieke, G. H., et al. 2013, ApJ,
769, 75

Smith, D. J. B., Dunne, L., Maddox, S. J., et al. 2011,
MNRAS, 416, 857

Smith, D. J. B., Dunne, L., da Cunha, E., et al. 2012,
MNRAS, 427, 703

Sutherland, W., & Saunders, W. 1992, MNRAS, 259, 413

Taylor, E. N.; Hopkins, A. M., Baldry, I. K., et al. 2011,
MNRAS, 418, 1587

Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al.
2004, ApJ, 613, 898

Treyer, M., Schiminovich, D., Johnson, B., et al. 2007,
AplJS, 173, 256

Tuffs, R. J., Popescu, C. C., Volk, H. J., Kylafis, N. D., &
Dopita, M. A. 2004, A&A, 419, 821

Wang, L., & Rowan-Robinson, M. 2009, MNRAS, 398, 109

Wang, L., Rowan-Robinson, M., Norberg, P., Heinis, S., &
Han, J. 2014, MNRAS, 442, 2739

Wijesinghe, D. B., da Cunha, E., Hopkins, A. M., et al.
2011, MNRAS, 415, 1002

Witt, A. N., & Gordon, K. D. 2000, ApJ, 528, 799

Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al.
2010, AJ, 140, 1868

9102 ‘22 AInc uo Aruqiay L e /Bio'sfeulnolpioixoseluw//:dny wouy papeojumoq


http://mnras.oxfordjournals.org/

