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ABSTRACT

We present the catalogue of the Mg II absorption systems detected at a high signif-
icance level using an automated search algorithm in the spectra of quasars from the
twelfth data release of the Sloan Digital Sky Survey. A total of 266,433 background
quasars were searched for the presence of absorption systems in their spectra. The
continuum modelling for the quasar spectra was performed using a mean filter. A
pseudo-continuum derived using a median filter was used to trace the emission lines.
The absorption system catalogue contains 39,694 Mg II systems detected at a 6.0, 3.00
level respectively for the two lines of the doublet. The catalogue was constrained to an
absorption line redshift of 0.35 < zo796 < 2.3. The rest-frame equivalent width of the
A2796 line ranges between 0.2 < W, < 6.2 A. Using Gaussian-noise only simulations
we estimate a false positive rate of 7.7 per cent in the catalogue. We measured the
number density ON2796/9z of Mg II absorbers and find evidence for steeper evolu-
tion of the systems with W, > 1.2 A at low redshifts (z2796 < 1.0), consistent with
other earlier studies. A suite of null tests over the redshift range 0.5 < zo796 < 1.5
was used to study the presence of systematics and selection effects like the depen-
dence of the number density evolution of the absorption systems on the properties
of the background quasar spectra. The null tests do not indicate the presence of any
selection effects in the absorption catalogue if the quasars with spectral signal-to-noise
level less than 5.0 are removed. The resultant catalogue contains 36,981 absorption
systems. The Mg II absorption catalogue is publicly available.

Key words: galaxies: quasars: absorption lines — cosmology: large-scale structure of

Universe.

1 INTRODUCTION

Quasars are extremely luminous light sources and can be
used to study the high redshift universe as they can be eas-
ily observed using ground-based telescopes. The observed
light from distant quasars is altered when crossing cold gas
belonging to objects on its way to the Earth and can there-
fore reveal information about both the gas presence and
the properties. Distinct absorption patterns in the quasar

* send correspondence to Srinivasan R., sri@das.uchile.cl

spectra can be produced due to photon interaction with the
intervening gas, either neutral or ionised, providing the ba-
sis for Quasar Absorption Line studies (QALs). QALs con-
tribute both to the characterisation of faint objects in the
quasar line-of-sight (LOS) including some that cannot be de-
tected directly with the telescopes, and the acquisition of un-
biased one-dimensional information of the highly ionised in-
tergalactic (IGM) and the intra-cluster medium(ICM). Since
90 per cent of the baryons in the universe are in the form
of non-luminous gas, QALSs are one of the few cosmological
observations to trace the baryons at high redshifts. Other
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indirect measurements include the Cosmic Microwave Back-
ground Radiation (Penzias & Wilson 1965; Hinshaw et al.
2013; Planck Collaboration 2015), the weak gravitational
lensing (Bartelmann & Schneider 1999; Zaldarriaga 2000),
the Baryonic Acoustic Oscillations (Bassett & Hlozek 2009),
and the 21-cm hydrogen line measurements (Pritchard &
Loeb 2012).

There are several classes of QALs and a typical quasar
spectrum can contain hydrogen (HI) or metal lines because
of the chance alignment of several astrophysical sources
along the quasar LOS. While metal lines like C IV, Fell,
Mg 11, etc. trace galaxies, the HI lines can represent either
a galaxy or the IGM depending on their column densities
(Narayanan 2008).

The Mg II doublets can be used to study the gaseous
components of galaxies as they trace the low-ionisation
gas with column densities 10'® < N(HI) < 10%? cm ™2
(Kacprzak & Churchill 2011). The Mg II doublets are clas-
sified into strong (W, > 0.3 A) and weak (W, < 0.3 A)
systems based on their rest-frame! equivalent widths. The
ease of detection of the Mg II doublets, the ability of strong
systems to trace neutral hydrogen gas, and their association
with galaxies and star formation history (Nestor, Turnshek
& Rao 2005; Mshar et al. 2007; Narayanan 2008; Tinker
& Chen 2010) make them ideal candidates for QAL stud-
ies compared to other metal lines. The Mg II doublets have
rest-frame wavelengths (A,) of 2796, 2803 A and hence can
be easily observed using ground-based telescopes from red-
shifts as low as z=0.11. In the optical spectra like the Sloan
Digital Sky Survey (SDSS), the doublet can be observed in
the redshift range 0.35 < z < 2.3.

In this paper, we describe the catalogue of 39,694 Mg I1
doublets detected at a 60 level in the spectra of SDSS
DR12 quasars (DR12Q) using an automated search algo-
rithm. Similar Mg II absorption system searches have been
done by several groups using the earlier Data Releases (DR)
of the SDSS quasar spectra (Bouché, Murphy & Péroux
2004; Nestor, Turnshek & Rao 2005; Prochter, Prochaska &
Burles 2006; Narayanan 2008; Lundgren et al. 2009; Quider
et al. 2011; Seyffert et al. 2013; Zhu & Ménard 2013).
There were also Mg II studies from other surveys of quasars
(Lanzetta, Wolfe & Turnshek 1987; Charlton & Churchill
1998; Churchill et al. 1999; Ellison et al. 2004) and Gamma-
Ray Bursts (Prochter et al. 2006; Tejos et al. 2009). The
absorption line detection method in the above surveys was
either visual or automatic with various levels of visual checks
depending on the quality and the number of quasar spectra
used. The catalogue presented in this work along with Zhu
& Ménard (2013) (ZM13 hereafter) are the only fully auto-
matic absorption system catalogues using the SDSS quasar
spectra.

The increasing number of quasar samples with every
new data release of the SDSS, because of better statistics,
leads to a better determination of the cosmological evolu-
tion of the Mg II absorbers as well as to the identification
of more homogenous samples of Mg II absorbers for use as
probes to study the galaxies and the Large-Scale Structures
(LSS) of the universe. The Mg II systems are important

1 Throughout this paper the subscript 7 will represent the rest-
frame value which is the observed value divided by (1+z).

in understanding galaxy evolution and LSS. For example:
Lundgren et al. (2009) and Gauthier, Chen & Tinker (2009)
have employed the Mg II absorbers to study the clustering
of Luminous Red Galaxies; Nestor et al. (2011) have used
them to identify outflows from high redshift starburst galax-
ies; Lopez et al. (2008) used them to investigate the galaxy
cluster environment; Williger et al. (2002) and Clowes et al.
(2013) provided independent corroboration of even larger
structures called the Large Quasar Groups using the Mg II
absorption systems.

The Mg II catalogue described in this paper is a pub-
licly available general purpose catalogue. The paper is or-
ganised as follows. The quasar spectra sample, continuum
and noise estimation, and the automatic search algorithm
are explained in §2. The catalogue refinement, cuts applied
to eliminate spurious detections, estimation of false posi-
tives, and the caveats are explained in §3. The results of the
survey — catalogue description, statistical properties and the
cosmological evolution of the Mg II systems, and null tests
for systematics study — are in §4, and §5. We conclude in §6.

2 METHOD
2.1 SDSS DR12Q sample

The DR12 is the final data release of the SDSS-III (Eisen-
stein et al. 2011; Dawson et al. 2013) covering ~9376 deg?
of the sky in total (Alam et al. 2015). The survey was car-
ried out over a period of 14 years using a 2.5m dedicated
optical telescope situated at the Apache Point Observa-
tory in New Mexico (Gunn et al. 2006). The DR12Q cat-
alogue? (Paris et al. 2015) contains 297,301 quasar spec-
tra in total and 295,944 of them are at high redshift
(0.35 < z < 7.0; (zgso) ~ 2.15) desirable for the Mg II dou-
blet detection. The 29,580 quasars flagged as broad ab-
sorption line (BAL) quasars by the SDSS were not con-
sidered for the Mg II search in this work. The final list in
which absorption systems were searched consisted of 266,433
quasars. The spectra cover almost the entire optical window
(3500 A - 10500 A) with a resolution A/AA ranging from
1500 to 2500 (Smee et al. 2013). The spectra were down-
loaded directly from the SDSS webpage?.

2.2 Continuum estimation

A basic prerequisite to perform the spectral analysis is to
determine a satisfactory continuum. The continuum fit in
this work was computed through a mean filter algorithm
which utilises wavelength windows of varying size (see be-
low) along the spectrum. In the regions of a SDSS quasar
spectrum without emission lines, the continuum derived us-
ing the mean filter is the adopted one. For the quasar spec-
tral regions containing strong emission lines (see Fig. 1) a
special procedure has to be adopted because some interven-
ing absorption lines can actually be on top of these emission
lines. In order to detect absorption systems in the emission

2 http://www.sdss.org/dr12/algorithms/
boss-dri2-quasar-catalog/
3 http://data.sdss3.org/sas/dr12/boss/spectro/redux/
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Figure 1. A waterfall plot showing the difference between the
final continuum, and the TM filter continuum for 10000 randomly
selected non-BAL DR12Q spectra. The bright patches near the
marked emission lines indicate that they are traced by the pseudo-
continuum. The white vertical lines mark the Mg II absorption
search window (see text for more details) in the current work.

line regions, a pseudo-continuum that follows the emission
lines was determined using a median filter algorithm.

The mean filter used is the modified Thompson-Martin
(TM) digital filter (Thompson 1971; Martin & Lutz 1979) as
modified by Clowes, Cooke & Beard (1983). The TM filter
works by averaging flux values over several pixels (specified
by a window size) based on the following procedure.

1. Create a window with width W,,iqtn centered on each
pixel of the spectrum containing N, pixels and record the
window Wi, qx containing the maximum deviation.

2. Average the flux values in Wy qx.

3. Steps 1 and 2 are repeated W, times until the entire
spectrum is averaged out for the chosen window size.

4. Repeat steps 1 through 3 for W,y window sizes.

Thus, the continuum fitting process is iterative and a
satisfactory continuum was obtained after W,(q1=11 itera-
tions. The chosen window sizes for each iteration x were

2% ; 1<x<6
Wisiath = { oU—(x—1). 7 ; X ; 11 M

)

and the W, for each x were

- 1
W‘pass = { N}gix . 7 1 (2)

The pseudo-continuum fitting works similarly to the
TM filter but uses the median value of the window around
the desired pixel instead of averaging for slightly modified
window parameters.

The final combined continuum using TM and median
filter technique was obtained as follows. Since the prime fo-
cus is to trace the emission lines, a window of width ~30 pix-
els, just enough to include the narrowest emission line, was
adopted. The window was moved over the entire spectrum
and at every step, the average values of the continuum pro-
vided by the TM and median algorithms in the window were

Flux [10"7 erg em™ s A7)

compared. In the regions where an emission line is present,
the median values will follow the varying flux more closely
than the mean values. Therefore in the windows (spectral
regions) where the median values are larger than the mean
values, an emission line is being traced. As the tracing of the
emission lines is used in conjunction with the bona-fide TM
filter continuum, we call the former the pseudo-continuum.
The difference between the final and the TM filter continua
is shown as a waterfall plot in Fig. 1 for 10000 randomly
selected non-BAL DR12Q spectra. Like expected, the max-
imum difference between the continuum values occurs near
and within the presence of the broad emission lines (Ly-«,
Si IV4+0 IV, C IV, C III], and Mg II) as marked in the
figure.

Fig. 2 shows an example SDSS DR12Q spectrum. The
top panel shows the quasar spectrum (black), the derived
TM (red), and pseudo (yellow) continua. The final con-
tinuum (green) is over-plotted on the data in the middle
panel. Also shown in the plots as vertical magenta lines near
A=5780 A is a Mg II doublet at za796=1.059 identified in
the current work. The inset plot is a zoomed version of the
region near the Mg II doublet to show the quality of the
continuum fitting.

The noise estimation was performed by splitting the
spectrum into several distinct blocks of 500 pixels. The first
and the last blocks were sub-divided into narrower blocks
of 100 pixels each, to account for the high noise levels at
the start and end of the SDSS spectrum. A cubic spline
interpolation then interpolates the median flux value of each
of the blocks to get the final noise spectrum. The bottom
panel in Fig. 2 shows an example of the noise estimation.
The first and the last 30 pixels of the spectrum were ignored
for both the continuum and noise estimation.

2.3 The doublet finder

The doublet finder scans the spectra to get the candidate
list of Mg II doublets. The detections with the integrated
signal-to-noise SNR (Eq. 3) of three or more for each line
of the doublet and with a wavelength separation matching
the Mg IT doublets (7.1 & 0.25 A in the rest-frame) in the
redshift range 0.35 < za796 < 2.3, were retained.

B P2 Ci—F; P2 ) 3
SNRyros = ) (=) /| 2o (3)

i=p1 i=p1

where F is the flux, C is the continuum, o is the noise, and p;
and ps represent the starting and ending pixels® of the line.
To this initial list, we applied a cut of SNR > 6.0, 3.0 respec-
tively for A2796, 2803 lines of the doublet. The preliminary
catalogue contained 74,550 absorption system candidates.
The lower and upper limits of the search window for a
given spectrum were defined by the location of the Lyo® and
Mg 11 emission. These limits were modified if the location
of the Mg II doublet fell outside the wavelength range of the

4 The first and the last pixel where the spectrum has a flux deficit
compared with the continuum.

5 To avoid false Mg IT detections in the Ly« forest region.

6 Redshift of the intervening Mg IT absorbers must be lower than
the redshift of the quasar.
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Figure 2. The top panel shows the quasar spectrum (black), the derived TM (red), and pseudo (yellow) continua. The final continuum
(green) is over-plotted on the data in the middle panel. Also shown in the plots as the vertical magenta lines near A=5780 Ais a Mg II
doublet at z2796=1.059 identified in the current work. The bottom panel shows the estimated noise spectrum using the median method

for the same quasar spectrum.

SDSS spectra. The precise definition of the search window
is given below

Zmin = Max(0.35,zg9s0 + AZLy—«) (4)

Zmax — mlﬂ.(237 ZQso _AZQSO) (5)

where Azp,_« = 0.1 corresponds to a velocity separation of
v > 30000 km s7! from the Ly« emission and Azgso = 0.03
corresponds to v < 9000 km s~! from the Mg II emission.
The quasar redshift zgso corresponds to the zprpe field of
the DR12Q catalogue.

The redshifts of the two lines of the doublet were mea-
sured by fitting two Gaussians, one for each member of the
doublet. Although, the spectral shape of the Mg II dou-
blets is best represented by Voigt profiles (convolution of
the Gaussian and the Lorentzian profiles), the use of Gaus-
sians suffice for the current work as they are used for the

redshift estimation only. The rest-frame EW (W,) of the
line is measured using the original spectrum as:

1 o (Ci— Fi)
W, — AX 6
1+ 22796 ‘1;1 ( Ci (©)

where AA is the pixel resolution in angstroms. The corre-
sponding error oy, is

1 P2 o 2\ 1/2
ow, = —— — AN 7
W, 1 —+ Z2796 1_';1 |:C1 :| ( )

where o is the pixel noise estimated as explained in the
previous section.
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Figure 3. Wavelength distribution of the Mg II catalogue before
(black) and after (green) applying the SDSS BITMASKS, and
results of the SF algorithm. The sharp black peaks near the sky
line wavelengths as mentioned in the text represent the original
catalogue contamination due to the sky lines.

3 ANALYSIS
3.1 Catalogue refinement
8.1.1 Cut 1 - OH band cuts, Ca 11, and C IV systems

The first set of cuts were to eliminate contamination from
the sky lines and the lines arising from the Galactic absorp-
tion. The SDSS spectra can contain strong sky lines such
as [OIII], [OI], Na, and Hg lines. These are handled sepa-
rately and explained in the next section 3.1.2. Other than the
above listed strong sky lines, the SDSS spectra also contain
the calcium Ca IT (3934,3969 A) arising from our Galaxy.
We ignored 100 possible Ca II systems by applying a 60 A
mask (3920 < Agre6 < 3980 A). There are also numerous
other sky line artefacts mimicking Mg II doublet in the OH
band (A > 6900 A) arising primarily due to the difficulty of
sky subtraction near these wavelengths in the SDSS spectra.
These are the sharp black peaks in Fig. 3. We used the SDSS
BITMASKS (Bolton et al. 2012) to identify the bad pixels
in the OH band and detections within 4 A from a masked
SDSS pixel were removed from the catalogue. The gaps in
the green histogram in Fig. 3 show the result of this cut (27
per cent) in the OH band.

Finally, there is also a chance of erroneously identifying
a C IV as a Mg II doublet because of the difficulty in distin-
guishing the two. The C IV doublets arise from a differently
distributed population of objects as compared to the Mg II.
However, the C IV systems can also help in tracing the
galaxies and the LSSs. Subsequently we flagged all the pos-
sible C IV systems (the systems detected below Az = 0.03
from C IV emission) but did not remove them from the cat-
alogue. Note that the flagged systems (~21 per cent) were
not included in calculations of the evolution of the number
density of the Mg II systems, and the null tests (section 5.1,
and 5.2).

8.1.2 Cut 2 - Strong sky emission lines

The SDSS quasar spectra contain strong night sky emis-
sion lines at 4364 A ([OIII)), 5578 A ([OI]), 5895 A (Na),

T T
— spec-3590-55201-0520
15+ Final continuum

® o Skylines
10+ Potential sky lines
=== Mgll absorber

261 417

F,[10'7" erg cm

| | | | | |
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| |
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Wavelength ) [4] -->
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Figure 4. Strong sky line finder algorithm acting on the spec-
3590-55201-0520 (spec-3588-55184-0776) quasar spectrum in the
top (bottom) panel. The yellow lines show the region where the
sky lines were searched for, red circles show the strong sky lines
present and captured by the algorithm. The top panel is an ex-
ample where the sky lines affect the data quality significantly and
are all picked by the SF finder. The bottom panel shows a cleaner
spectrum where the SF finder only picks two lines. The Mg II
doublet at zo796=1.2 (0.9) in the top (bottom) panel picked by
the doublet finder is also marked using the magenta line.

6302 A ([OI]), 6365 A ([O1]), and 7246 A (Hg) (e.g. Massey
& Foltz (2000)) leading to an underestimation of the noise
near the sky lines causing spurious Mg II detections. Since
many of these lines are not captured by the SDSS BITMASK
we perform an additional strong sky line refinement. The
sharp black peaks near the above mentioned wavelengths in
Fig. 3 shows the contamination in the catalogue. A simple
solution would be to apply narrow masks at these wave-
lengths. But, some of these lines are attributed to auroral
activities and not all quasar spectra contain them. Hence we
developed a separate sky line finder (SF) to reduce the po-
tential contamination of our absorber catalogue due to the
sky lines. The SF scans each quasar spectrum to construct
individual narrow sky line masks.

The SF algorithm works as follows. We chose three win-
dows for the [OIII], [OI], Na, and Hg lines such that the
central window completely covers the sky line with control
windows on either side. The size of the central window var-
ied between 5 and 20 pixels depending on the pixel width
of the line while the control windows always covered five
pixels each. The scatter in the flux level in all the three
windows was calculated and the spectrum was flagged for
a particular line if the scatter in the central window was
Ocentral = 3.5 Ocontrol-

An example of the SF process is shown in Fig. 4 for
two quasar spectra. The yellow vertical lines show the loca-
tion of the potential sky lines and the presence of the red
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circle indicates that the quasar spectrum is affected by the
corresponding sky line. The bottom panel is a cleaner spec-
trum with only two strong sky lines picked by the SF finder
(red circles) compared to the top panel which contains five
strong lines. The Mg II absorption system at zo796=1.2, and
0.9 picked by the doublet finder is marked as the vertical
magenta line in the two panels. Our absorber catalogue was
cross-correlated with the strong sky line catalogue from the
SF algorithm. The absorbers present near the sky line (cen-
tral window) wavelengths in the spectra of flagged quasars
were subsequently removed. The sky line catalogue obtained
using the SF algorithm is also available online along with the
Mg IT catalogue.

The SF cut removed 2.5 per cent of the systems near
the strong sky lines. The green histogram in the Fig. 3 show
the distribution of the absorption wavelengths after incorpo-
rating the results of the SF finder and the SDSS BITMASK.

3.2 False detections and caveats

In this section we caution the reader about possible false de-
tections of Mg II absorption systems and other systematic
effects. We estimate less than eight per cent of the detec-
tions in our catalogue as false detections due to artefacts of
the continuum fitting. The underestimation of the emission
lines by the pseudo-continuum could lead to false detections
near the strong emission lines like C I1II], and C IV (see Fig.
1). The artefacts could also be due to the overestimation of
the continuum near the pixels where the pseudo-continuum
takes over the TM filter continuum. The accurate method of
estimating the detection errors due to the continuum arte-
facts is using mock spectra. But, we ignore this step as the
catalogue contains less than eight per cent of the systems
near strong emission lines. These systems were removed from
the catalogue.

As mentioned already, we flagged the possible (~21 per
cent) C IV (Az = 0.03 from C IV emission) absorbers but
did not remove them from the catalogue since they could be
useful for other LSS studies.

To estimate the percentage of false detections in the
catalogue, we used random Gaussian-noise only simulations.
We chose to use simulations instead of visual checks to
avoid any observer bias. For the noise only simulations we
randomly picked 45,000 from the original 266,433 searched
quasars. The continua derived using the original spectra
were used as templates and separated into four blocks (A : <
4000, 4000 — 6200, 6200 — 7500, > 7500 A) for each spectra.
Random Gaussian-noise with zero mean and sigma equal to
the standard deviation of the spectra in the respective block
was added to this template. The noise only simulations are
then processed through the doublet finder and the obtained
catalogue was refined using the same procedure described in
the previous section. The refined catalogue contains 516 sys-
tems detected in 45,000 noise only simulations. Projecting
this false detection rate, we estimate ~3055 false detections
in the overall catalogue. Thus, less than eight percent of the
systems in our catalogue could be due to noise.

30000 T T T T T
EE DR12Q
Mgl 1200
1 DR12Q w/ Mgl " " " "
25000 1000 -
A oo
g 600
20000 - 3
§ oo
200 |
15000 0
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Figure 5. The redshift distribution of the catalogued Mg II ab-
sorption (green) systems and the background quasars (black). The
red stepped histogram represents the redshift distribution of the
quasars hosting the Mg II absorbers in their spectra. The his-
togram is binned with Az = 0.1. The horizontal axis is limited
to z = 5.5 for clarity, but the most distant background quasar is
at z = 7.1. The inset plot shows the redshift distribution of the
absorbers with a finer bin, Az = 0.025.

4 RESULTS
4.1 The Mg II catalogue

Table 1 shows an excerpt from the Mg II catalogue pro-
duced in this work”. The resultant catalogue after all the
above mentioned cuts contains 39,694 absorbers in the EW?
range 0.2 < W, <6.2 A, constrained to a redshift range
0.35 < za796 < 2.3. Fig. 5 shows the observed redshift distri-
butions of the Mg II absorbers (green) and the background
quasars (black). The red histogram corresponds to the red-
shift distribution of the quasars that host Mg II in their
spectra. The inset plot shows the redshift distribution of
the absorbers with a finer bin, Az =0.025. The dips near
z=0.41 and z=1.0 correspond to the removal of Ca II sys-
tems and the 5577 A [OI] line. A random selection of 16
Mg II doublets detected in this work is shown in Fig. 6.
The equivalent width distribution of the catalogued
Mg II absorption is shown in Fig. 7. Close to 28 per cent of
the systems lie in the range 0.5 < W, < 1.0 A and 21 per
cent of the systems are extremely strong with W, > 2.0 A.
The systems with 1.0 < W, < 2.0 A account for 47 per cent
of the catalogue. Fewer than one per cent of absorbers in
the catalogue are Weak absorbers with W, < 0.3 A. Nor-
mally, the transition from weak to strong Mg II absorbers
happens near 0.3 A. However, considering the difficulties in
accurately measuring such small equivalent widths in low
resolution spectra like the SDSS, we classify the absorbers
with W, < 0.5 A as Mild absorbers. The mild absorbers ac-

7 The catalogues produced in this work can be downloaded from
http://srini.ph.unimelb.edu.au/mgii\_dri2.php.

8 From now on, the W, will always mean the rest-frame EW
calculated for the A2796 line unless otherwise specified.
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Table 1. An excerpt from the Mg II absorption catalogue. The columns represent: the SDSS name of the quasar spectra; plate-mjd-fibre
numbers of the spectra; RA, Dec. (J2000); quasar redshift; quasar PSF i-band magnitude; absorption redshift and the error; rest-frame
equivalent width of the two lines of the doublet along with their errors; the flag showing if the detection could be a C IV line; SNRcon

calculated in the current work (see section 5.2). The full catalogue is available online.

SDSS name plate-mjd-fibre RA Dec. zQso PSF i z Sz Wi SW1 Wy 5§ Wy CIV  SNR¢on
[Deg.] [Deg.] mag o4 (4] (A) [A] [A) flag

003304.79+004338.1  3587-55182-0602  8.269998  0.727270 2.217 19.585 1.362 4.871 1.334 0.180 0.760 0.146 0 12.353
003416.61+002241.1  3587-55182-0691  8.569213  0.378083 1.627 17.290 1.188 0.340 1.134 0.060 1.027 0.063 0 29.756
003640.34+011449.4  3587-55182-0714  9.168105  1.247081 2.348 20.204 1.369 2.049 2.591 0.193 1.583 0.164 0 10.333
004034.19+001356.4  3588-55184-0776  10.142481  0.232342 2,543  20.348 0.909 1.430 1.556 0.123 1.307 0.119 1 11.015
003746.95-002052.5  3587-55182-0222  9.445635  -0.347941 2.617 20.836 0.802 3.969 0.838 0.129 0.484 0.117 1 6.717
003746.95-002052.5  3587-55182-0222  9.445635  -0.347941 2.617 20.836 1.524 4.974 1.701 0.254 1.017  0.202 0 6.717
003542.19-011313.2  3587-55182-0282  8.925794  -1.220347 2.185 20.061 0.896 1.309 0.863 0.100 0.839 0.109 0 10.910
003432.72-004108.4  3587-55182-0344  8.636340  -0.685670 1.414 20.989 0.777 6.594 1.896 0.230 0.784  0.202 0 4.438
004439.24-004207.2  3589-55186-0218  11.163518 -0.702013 2.060 21.773 0.754 2.721 3.272 0.536 1.365  0.390 0 1.682
005058.61-005845.6  3590-55201-0122  12.744232  -0.979337  2.537  20.399 1.922 4.384 2.873 0.341 2.752  0.429 0 6.558
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Figure 6. A random selection of 16 Mg II absorption systems detected in the current work. The absorbers are shown in their rest-frame
wavelengths with the flux normalised to one. The quasar spectrum name “spec-PLATE-MJD-FIBER” along with the EW of the two
lines, and the redshift are given in each panel.
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Figure 7. The rest-frame EW distribution of the catalogued
Mg II absorption binned with AW,=0.05 A. The red dashed
line marks the transition point from mild to strong systems at
W, = O.SNA. The distribution peaks around 0.9 A with a median
value of W, = 1.3 A, which is marked in the cumulative distri-
bution in the inset plot.

count for four per cent of the catalogued systems (left of the
red dashed line in the Fig. 7). The reason for such a low
detection of weak systems is due to the dependence of the
Mg II detection on the brightness of the background quasar.
The density plot in Fig. 8 shows the relationship between the
i-band magnitude of the quasar and the EW of the detected
absorbers. As expected, and noted in other similar studies
(Nestor, Turnshek & Rao 2005; Quider et al. 2011), it is evi-
dent from the figure that weaker Mg II systems are detected
predominantly in brighter quasars. The black dashed line at
i =20.2 in the density plot corresponds to the target selec-
tion i magnitude limit for the SDSS main survey (Richards
et al. 2002; Alam et al. 2015). The 1 = 20.2 limit can also
be seen as a drop in the red histogram in the inset plot of
Fig. 8. The red (green) histogram in the inset plot shows the
1 magnitude distribution of the quasars with (without) the
Mg II systems detected in their spectra. More than 66 per
cent of the DR12Q are fainter than this limit resulting in a
low detection of the weak Mg II systems.

The relationship between the line strengths of the two
lines of the Mg II doublet is shown in Fig. 9. The ratio of
the line strengths (doublet ratio), should ideally lie in the
range one (completely saturated), and two (unsaturated).
Due to associated errors in the EWs, roughly 29 per cent
of the systems lie outside the ideal doublet ratio range
(17 per cent < 1.0 and 12 per cent > 2.0). The doublet ra-
tio distribution is shown as the histogram in the inset plot in
Fig. 9. Our doublet ratio measurements are inclined towards
a value of 1.0 rather than 2.0 indicating that majority of the
detected systems are saturated. For saturated systems, the
blending of the two lines of the doublet could also introduce
errors in the EW measurements explaining why a majority
of systems outside the theoretical doublet ratio limit appear
below the lower end (17 per cent with doublet ratio < 1.0).

6 T . T T

3 QS0 w/ Mgl
[ QS0 wjo Mgl [{0.8

10.4

10.2

0.0

W27 [A] -->

Figure 8. The dependence of the Mg II detection on the bright-
ness of the background quasar. Weak Mg II systems are predom-
inantly detected in brighter quasars as expected. The black solid
line corresponds to the median value of i magnitude (19.65) for
the quasars hosting the Mg II doublets detected in this work.
The inset plot shows the distribution of the i magnitude for
the quasars with (without) the Mg II absorption systems in red
(green). The drop in the red histogram near i = 20.2 corre-
sponds to the DR12Q bright target selection criteria (Richards
et al. 2002; Alam et al. 2015). This limit is marked with the black
dashed line in the density plot.

4.2 Catalogue comparison

To determine the quality of the catalogue we performed a
comparison of our catalogue to the publicly released ZM13°
catalogue. The ZM13 Mg II DR12 catalogue contains 41,895
absorption systems detected at a SNR level of 4.0 and 2.0
for the two lines respectively.

The ZM13 searched for absorption lines in the spectra
of 57,479 DR12 quasars. Of this, we only used absorption
systems detected in the spectra of 47,550 DR12Q for the
catalogue comparison purpose. The ignored 9929 quasars
are either marked as BAL quasars (5915 quasars) in the
DR12Q catalogue or not included (4014 quasars) in the of-
ficial DR12Q release (Paris et al. 2015).

Further, the systems which are below the threshold SNR
level of the current work and that lie outside the redshift
range 0.5 > za796 > 1.5 were also ignored. After all these
cuts the ZM13 catalogue contains 11,100 systems for a direct
comparison. The distributions of the absorption line red-
shifts in the two catalogues are shown in Fig. 10. The green
and red solid lines correspond to absorbers in the ZM13 and
current work. The dashed lines show the systems that are
unique in each catalogue as discussed below.

The catalogue produced in this work recovers 74 per
cent of the ZM13 systems used for the comparison. The
number of common systems goes up by two per cent if only
absorption systems with W, > 0.5 A were considered for

9 The MglIl catalogue detected from the DRI12Q was
downloaded from http://wuw.guangtunbenzhu.com/\#
! jhu-sdss-metal-absorber-catalog/acrow
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Figure 9. The relationship between the line strengths of the two
lines of the Mg II doublet. Majority of the catalogued systems lie
within the theoretical limits shown as black dashed lines. See the
text for more details.

the comparison. Three per cent of the missed detections lie
close to either C III] or C IV emission lines and were re-
moved because of the cut we applied to remove the false de-
tections due to continuum artefacts. The density plot in the
top panel of Fig. 11 shows the comparison of the equivalent
width of the systems common to both the catalogues. A first
order polynomial fit (black dashed line) indicates an offset of
0.1 A between the two measurements although this is well
with in the error bars of the measured equivalent widths.
The discrepancy reduces to 0.046 A if the EW is measured
within £3 Gaussian widths using Gaussian profiles as mea-
sured in ZM13 instead of the original spectrum. The small
offset could be due to the differences in the continuum ob-
tained in the two works. For clarity, the difference between
the two measurements is shown in the bottom panel. The
horizontal histogram in the left panel of Fig. 11 shows the
EW distribution of ZM13 catalogue. The black and red lines
show total and the systems unique in the ZM13 catalogue.
The peak values of the EW distributions are marked using
arrows.

To determine the number of unique systems in our cat-
alogue we only used the 10,722 absorption systems that we
detected in the spectra of the quasars in common to both
the works. ZM13 catalogue contains 75 per cent of our sys-
tems. However, the percentage of common systems increase
to 88 per cent if we relax the SNR condition of ZM13 from 6
and 3 to their original values of 4 and 2 respectively for the
two lines of the doublet. The histogram in the middle panel
of Fig. 11 shows the EW distributions of the total (unique)
absorption systems detected in the current work in black
(red) colour. The orange histogram is the EW distribution
of the systems common to both the catalogues as measured
in this work.
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o = ZM13only
L o This work only

10° }

102+

Counts -->

101 }

10°

0.5 1.0 1.5 2.0 2.5
Redshift z -->

Figure 10. The redshift distributions of the absorption systems
in the ZM13 (green) and the current work (red) after removing
the plausible C IV systems. The dashed lines show the systems
that are unique in each catalogue in the redshift range 0.5 <
z2796 < 1.5.

5 DISCUSSION
5.1 Statistical properties of the Mg II catalogue

To understand the cosmological evolution of the Mg II ab-
sorbers, it is important to calculate the number of systems
detected as a function of both redshift and EW. However,
since the sensitivity of the Mg II search in each bin differs
for every quasar spectrum, the number of systems alone may
not represent the true evolution. The differences in sensitiv-
ity arises mainly because of the differences in:

e The useful redshift range of each spectrum (defined by
the Ly« forest region, and the quasar redshift);

e The SNR of each spectrum (changes because of the
quasar brightness); and

e The SNR at different regions of the same spectrum (pri-
marily due to incomplete sky subtraction).

To account for the above effects and derive a homoge-
neous sample, it is essential to determine the sensitivity of
the survey in every redshift and EW bin. The redshift path
density g(W;™, z,) gives the number of quasar LOS at red-
shift z, at which a Mg II system with equivalent width W;
satisfying all the imposed constraints (see section 3.1) could
potentially be detected. As mentioned earlier, we ignored
all the possible C IV systems in the catalogue for the cal-
culations here. Mathematically the redshift path density is
represented as

Ngso

9 (Wj27967 Zk) = Z H(Zk - Zi,min) X H(Zi,max - Zk)
i=1

X

i,min
Ngso

Z H(zyx — Zi,m‘m) X H(Zi,max —zx)
i=1

X H(Wj2796 - 527960w,<,-l) x H(Cxi — &2™%0y 1))

HWE™® = WETS (21) x H(Ci — £77%0y))

(®)
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Figure 11. The top panel shows the comparison of the equivalent widths between ZM13 and the current work. The black dashed line
is the best fit and shows an offset of 0.1 A between the measured equivalent width values in the two catalogues. The difference between
the two equivalent width values is shown in the bottom panel for clarity. Note that in the current work the EWs are measured using the
original spectrum instead of the Gaussian profiles. The discrepancy in the measurements reduces to 0.046 A if the EW is measured for
Gaussian profiles within £3 Gaussian widths as measured in ZM13. The (horizontal) histogram in the left and middle panel show the
EW distribution of the systems in ZM13 and the current work. The black lines represent the distribution of all the systems while the
red is for the systems that are absent in the other catalogue. The EW distribution of the common systems as measured in the current
work is shown as the orange histogram.

Table 2. Number density 9N2796 /9z values calculated for different EW ranges. The columns represent: EW range; 9N2796 /9 z values
for the respective EW range at different redshifts; ratio of 9N2796 /92 values at redshifts 0.65 and 1.45.

Redshift z

EW range 0.65 0.75 0.85 0.95 1.35 1.45 ON2796 /32
(20.65/21.45)

ON2796 /92 (W, > 0.65 A)  0.520  0.601 0.588 0.564  0.673  0.792  0.657 & 0.037
ON?™6 /92 (W, > 120 A)  0.147  0.186 0.181 0.173 0.235 0.280  0.526 =+ 0.048
ON276 /32 (W, > 1.80 A)  0.054  0.071 0.069 0.070  0.104  0.121  0.447 4 0.070
ON?2™6 /92 (W, > 240 A)  0.022  0.030 0.028 0.028  0.050 0.060  0.366 4 0.109
ON276 /32 (W, > 3.00 A)  0.007 0.011 0.010 0.011  0.020 0.028  0.236 £ 0.194
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Figure 12. Number density evolution 9N2796 /9z of the Mg IT absorption systems for different cumulative (left) and differential (right)
EW bins. The solid curves represent the modelling based on Eq. 11. The greater evolution of the stronger systems towards low redshifts
is evident. The figure is in good agreement with Fig. 10 of ZM13. See the text and Table 2 for more details.

where H is the Heaviside step function and the summation
is over all the quasar spectra that were searched for the
absorption systems. The redshift limits for the Mg II search
in a quasar spectrum zi min and zi max were determined by
the C IV absorption'® and Mg II emission respectively.

The minimum equivalent width W; min (zi) of the A2796
line detected at redshift zy for a spectrum is given by the
detection level €279 = 6.0 times the noise in the measure-
ment O, at the desired redshift presented in the rest-frame
(see Eq. 2 - 5 of Lanzetta, Wolfe & Turnshek (1987)). For
the g (W]-2796,zk) calculations, we assumed a typical width
of ten pixels for the 2796 line. The final term in Eq. 8 cor-
respond to ignoring the regions of the respective spectrum
with a poor SNR represented using the continuum Cy ; and
the noise oy ; of the pixels (see section 2.2) lying in the re-
spective redshift bin.

The total redshift path g(W7?7) of the survey for a
given equivalent width bin Wj is given by integrating the
g (Wj, z) over the entire redshift range (Lanzetta, Wolfe &
Turnshek 1987; Ellison et al. 2004). For a given redshift bin

10 Since we remove the possible C IV from the catalogue for es-
timating the number density evolution, we modify the minimum
redshift for the Mg II search to the location of C IV absorption
instead of the Ly — « for g(Wj27967 zy ) calculations.

Az this is

z3
gW™0 21,29) = ) g(Wi™,2) Az (9)
z1

The g(Wj27967 z1,2zs) from Eq. 9 can now be used to cal-
culate the number density of the observed absorption sys-
tems in the respective redshift bin.

ON?2796 N(WT >W]'; Z1 <Z<Z2)

0z g(W?™, 2, 25)

(Wr > Wj721122) =

(10)
where N(W, > W;) is the number of systems satisfying the
EW threshold and lie in the desired redshift bin.

Our measurements of the 9N27%6 /9z for different equiv-
alent width ranges are given in Table 2 and shown in Fig. 12.
The last column shows the ratio of 9N2796 /9z values between
the z-range from 0.65 to 1.45. We limited the calculations
to za796 = 1.5 because of the OH band maskings. It is clear
that the evolution is steeper for strong Mg II systems. The
number density ON2796 /9z is an important quantity as it de-
scribes the cosmological evolution of the Mg IT absorption
systems. We modelled the 9N27%6 /92 using (Nestor, Turn-

shek & Rao 2005)
62N2796 Wr
exp (W(z))

_ N(z)
0z OW,  W(z)

(11)
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where N(z) = N*(1+2z)%, and W(z) = W*(1+2z)P. Note that
the EW parameter W(z) also has a power law dependence on
the redshift z instead of a simple exponential function. Thus,
this is a model for the joint EW-redshift distribution. For
more details refer to the original paper by Nestor, Turnshek
& Rao (2005).

The solid curves in Fig. 12 are the results from the mod-
elling based on Eq. 11. For W, > 1.8 A systems, we obtained
N* = 1.487, W* = 0.31, « = 0.156, and = 0.639 using x>
minimisation. The steepening of the curves at low redshifts
is an indication of the evolution. The evolution is greater
for stronger systems with W, > 1.2 A as compared to lower
EW systems. In the past, Nestor, Turnshek & Rao (2005);
Lundgren et al. (2009); Seyffert et al. (2013); and ZM13 have
also found a similar evolution of the strong Mg II systems.
In particular, Seyffert et al. (2013) and ZM13 combined their
observations with the Mg II systems detected in the near-
infrared spectra from a different survey to parameterise the
redshift evolution up to redshift z ~ 5. They find a strik-
ing correlation between the evolution of the strong Mg I
systems and the star formation history of the universe. Our
results (compare Fig. 12 to Fig. 10 of ZM13) about a steeper
evolution of the stronger systems in the local universe agree
with all these earlier studies.

5.2 Null tests

The null tests are statistical tests performed to capture sys-
tematic biases in the data. These tests are very common in
the CMB research where the raw CMB data is split into
two subsets (that differ in the level of contamination due to
a particular source of systematic error) and the maps made
using the two subsets are differenced to get the final null
map. In this work, we determine the ratio of the number
(aN2796/aZ)1 of
(aN2796/az)2
the absorption systems for different EW ranges and types
of catalogue splits. If the catalogue is free from systematic
bias, then the absolute value of the ratio of the two subsets
R1o will be one. A deviation from one will indicate a poten-
tial problem that was expected to be captured based on the
type of catalogue split (see left panel of Fig. 13). Our null
suite consists of six null tests to probe the selection effects
due to the spectral quality. They are obtained by splitting
the catalogue based on median value of absolute and ap-
parent magnitude of the background quasar, exposure time
of the spectrum, average SNRcon of the continuum in the
search window as calculated in this work, SNR; spss of the
i-band, and SNRspss of the overall spectrum as derived by
the SDSS team. Of course, these data splits are not unique
and could be highly correlated. For example, a fainter quasar
will surely have a low SNR unless the photons are integrated
for a longer duration. In that sense the different null tests do
not give distinct information about the systematics. Never-
theless, we show the plots of Ri5 without including all the
null tests for the final x? statistics. In fact, the correlation
C(A, B) between two null tests A and B calculated as'! be-
low and explicitly shown in the right panel of Fig. 13.

density evolution in the two subsets Ri5 =

11 Colin  Bischoff, Doctoral dissertation; http://quiet.
uchicago.edu/depot/pdf/bischoff\_thesis.pdf

C(A,B) = v/N(A;)N(A2)N(B;)N(B>)
« (TI—T2—T3+T4)

where
_ N(A1NBi1) . N(A1NBy)
= NAONBY 2~ N(AN(B,)
C N(A2NBy) . N(A;NBy)
B = NANBY = N(AN(Ba)

and A, By, Ay, By are the first and the second subsets of the
two null tests.

The X2, value for all the data points (every EW range
in all redshift bins) in all the null tests is

1—Rp\?
Xiuu = ( 12) (13)

ORyp

where the error og,, is

2 2
OaN2796 /5, OaN2796 /52
=R o /9 o /9 14
1z = [Raa \/(6N2796/62)1 * (6N2796/az)2 (14)
We chose suitable redshift and differential EW bins for

the null tests to avoid the correlation between data points.
For each null test we have 4 (z bins) x 3 (EW bins) = 12

degrees of freedom. Using the x2,,; value, we calculate the
probability to exceed (PTE) of each data point. We did not
calculate the combined PTE value of all the null tests be-
cause of the high degree of correlation between the null tests.
The null test is a success if the PTE values are distributed
uniformly between 0 and 1 (consistent with random Gaus-
sian fluctuations). A very high or low x?2 value will push the
PTEs to be distributed either close to 0 or 1.

The ratio plot R;s for different null tests are shown in
the Fig. 13 (a). The null tests based on the absolute and
apparent magnitude, SNRspss, and SNRcon fail to pass
(Ry2 # 1) with extremely high x2,; values. The distribu-
tion of the PTEs is shown in the top panel of Fig.14 and
the failed null tests peak close to zero as expected. The fail-
ure indicates a selection bias in the catalogue based on the
brightness of the background quasar. The reason and the
correction for this failure are discussed in the next section.

5.3 Null test results

Here we discuss the reasons for the null test failures and
check if introducing additional constraints to the catalogue
can fix them. In the left panel of Fig. 13, the rather large
deviation of the ratio Rio from the expected value of one
for the ABS.IMAG, APP_IMAG,SNRcon, and SNRspss
suggests that the absorber number density depends on the
brightness (and hence the spectral SNR) of the background
quasar. This is due to the inclusion of the quasars with poor
spectral SNR in our analysis. The redshift path g(Wj2796) is
explicitly used to suppress such selection effects and reveal
the correct astrophysics of the absorption systems. But the
continuum and the noise models for the spectra with poor
SNR cannot be highly trusted and could affect the line de-
tection algorithm significantly. This could lead to selection
effects in the dN2796/9z of the absorption systems detected
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Figure 13. (a) The ratio of the number density evolution dN2796/9z of the Mg II absorption systems for different null tests in our
null suite before (left) and after (right) the cut based on the SNRcon. The large deviation of Ri2 from unity in the left panel for null
tests based on absolute and apparent magnitude, SNRspss, and SNRcon indicates selection bias. The selection bias is removed (right
panel) after removing the quasars with poor spectral SNR. (b) The amount of correlation (Eq. 12) between different null tests is shown

explicitly.
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Figure 14. The distribution of the PTE values for four null tests
before (top) and after (bottom) the SNRcon cut. The peak near
PTE value of zero in the top panel is because of (high X%ull val-
ues) the deviation of the ratio of 9N2796 /9z in the two subsets
(R12) from unity. The PTE distribution looks uniform after ig-
noring the quasar spectra with poor SNR. The indicates that the
null tests are successful and the absence of selection bias in the
catalogue.

in the spectra of fainter quasars (as a faint quasar will have
a poor SNR compared with a brighter quasar).

This was indeed the case and the selection bias van-
ished when we removed quasar spectra with SNRcon < 5.0
from the analysis. The distribution of R;5 for different null

tests also improved and now centered around unity (see right
panel of Fig. 13 (a)). There was a substantial improvement
in the x2,;; values of all the failed null tests after intro-
ducing the SNRcon cut. Fig. 14 shows the distribution of
the PTE values before (top panel) and after (bottom panel)
the SNRcon cut. The distribution is uniform in the bottom
panel hinting the absence of any major selection effects. This
cut removes 2803 systems and the catalogue contains 36,981
Mg II doublets.

In similar studies, Prochter et al. (2006); Tejos et al.
(2009) have reported a higher incidence rate of the strong
Mg IT absorbers in the spectra of luminous gamma-ray
bursts (GRBs) compared with quasars. Evans et al. (2013)
have also found a dependence of incidence rate of Mg II dou-
blets on the quasar luminosity using high resolution quasar
spectra.

Several studies have subsequently attempted to under-
stand this discrepancy (see Cucchiara et al. (2009); Budzyn-
ski & Hewett (1998); Wyithe, Oh & Pindor (2011) and ref-
erence therein) and three main possibilities were considered
to explain the phenomenon: (1) the higher incidence rate in
GRBs is because of the additional absorbers that are intrin-
sic to the GRBs, (2) the dusty Mg II doublets reduce the
luminosity of the background quasar such that Mg II dou-
blet can no longer be detected in the spectra, and (3) the
GRBs are lensed by the host galaxy of the Mg II doublets.

Using a large sample of GRB spectra, Cucchiara et al.
(2013) repeated the ON27%6/9z analysis. Their results agree
with the ON2796 /3z of ZM13 and does not indicate a higher
incidence rate of absorbers along the LOS of GRBs. The
results from the earlier studies served as a prime motivation
for our null tests. Our results are free from selection effects
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and do not indicate an enhancement of the strong Mg II
absorption lines in the spectra of brighter quasars.

With the above findings we advise caution when work-
ing with the low SNR Mg II detections in the spectra of faint
quasars as the large photometric errors for many candidates
selected at the limits of the SDSS imaging survey'? could
be detrimental for some projects. Some users may need to
perform additional selections depending on their scientific
intention.

6 CONCLUSION

We describe the Mg II absorption catalogue detected us-
ing an automated search algorithm from the spectra of the
SDSS DR12Q. The detection threshold was SNR > 6.0, 3.0
respectively for the two lines of the doublet. The continuum
fitting is performed using a mean filter algorithm which was
modified with a pseudo-continuum using a median filter to
trace the emission lines. The catalogue contains 39,694 sys-
tems distributed in the EW range 0.2 < W, < 6.2 A con-
strained to the redshift range 0.35 < z < 2.3. A separate sky
line finder algorithm was employed to remove the strong sky
lines in the SDSS spectrum. The catalogue containing the
list of sky lines in each quasar spectrum is also publicly avail-
able. The SDSS BITMASKS were used to eliminate the bad
detections in the OH band of the spectrum. Using Gaussian-
noise only simulations we estimate ~7.7 per cent of false pos-
itives in our catalogue. Our catalogue recovers 76 per cent of
the ZM13 absorbers with W, > 0.5 A. The measurement of
the number density 0N2796/9z of the Mg II absorbers sug-
gests a steeper evolution of the stronger (W, > 1.2 A) Mg II
systems in the low redshift universe as compared with the
lower EW systems consistent with other similar works from
the earlier data releases of the SDSS. We performed several
null tests to quantitatively analyse the dependence of the
redshift evolution of the absorption systems on the charac-
teristics of the background quasar. The null test results in-
dicate no selection effects if the quasars with poor spectral
SNRcon < 5.0 are removed from the analysis. The resul-
tant catalogue contains 36,981 systems. The Mg II absorp-
tion catalogue is publicly available and can be downloaded
from http://srini.ph.unimelb.edu.au/mgii\_dr12.php.
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