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Sleep-Wake Sensitive Mechanisms of Adenosine Release
in the Basal Forebrain of Rodents: An /n Vitro Study

Robert Edward Sims*, Houdini Ho Tin Wu, Nicholas Dale

School of Life Sciences, University of Warwick, Coventry, West Midlands, United Kingdom

Abstract

Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations
increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent
rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with
microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have
therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked
adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high
K*, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin,
histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the
magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to
sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine
release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor,
1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have
been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key
role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this
induction may constitute a biochemical memory of this state.
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Introduction

Sleep is a homeostatically-regulated process. Prolonged wake-
fulness leads to increased sleep pressure and consequent increased
duration and intensity of sleep. The endogenous somnogen
adenosine is a key mediator of sleep homeostasis. Adenosine or
adenosine receptor agonists enhance sleep [1-5]. Adenosine
receptor antagonists such as theophylline and caffeine are known
stimulants that prevent sleep (for a review see [6]). The levels of
adenosine increase throughout the brain during wakefulness and
decrease during sleep, and this is particularly notable in the basal
forebrain (BFB), part of the ascending arousal system [7-9].
Consequently, identifying the mechanisms of adenosine produc-
tion, release and activity are vital to understanding its role in sleep
homeostasis.

McCarley and colleagues [10] proposed that adenosine in the
basal forebrain acting via adenosine A, receptors inhibited the
cholinergic neurons of the BFB which provide mnput to the
cerebral cortex. However, despite the evidence for the role played
by A, receptors [11-14] there may be additional mechanisms
involved. Ay, receptors are also implicated in sleep as A; receptor
null mice have normal sleep patterns and exhibit rebound sleep
similar to wild type [15], nor are affected by caffeine [16].

Nitric oxide (NO) signaling has been proposed as a trigger for
enhanced adenosine release during sleep deprivation [17].
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Delivery of 1400 W (an antagonist selective for inducible nitric
oxide synthase (iNOS; [18]), L-NAME (a general NOS inhibitor)
and cPTIO (a NOS scavenger; [17]) through microdialysis into the
BFB all inhibited the increase extracellular adenosine concentra-
tions in BFB that follows sleep deprivation. Furthermore, both the
expression of iNOS in the BFB and NO production increase
during sleep deprivation [19].

Djungarian hamsters are nocturnal, seasonal mammals that
adapt to seasonal changes in photoperiods and temperature with
alterations to physiology, including sleep. The total sleep duration
1s similar between winter- and summer-adapted hamsters. In
winter-adapted hamsters (short photoperiod) the distribution of
sleep and wake is relatively even across the light and dark phases.
Summer-adapted hamsters (long photoperiod) show more periods
of wakefulness and fewer periods of SWS in the dark compared to
the light phases [20]. They also exhibit greater power in slow wave
activity during the light phase compared to the dark phase —an
indication of greater drive to sleep that has been associated with
adenosine receptor activation in mice [21]. Consequently, we
hypothesized that adenosine levels may be greater in hamster BFB
slices shortly after the dark/wake period in long-photoperiod (LP)
adapted hamsters compared to the short photoperiod (SP) adapted
hamsters. This has the experimental advantage that differences in
sleep distribution can be observed in the absence of any additional
handling of the hamsters and consequent potential stress.
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The mechanisms of adenosine release in the BFB and sleep have
largely been investigated @ vivo by microdialysis. However, an
in vitro model could be advantageous for the study of cellular and
molecular mechanisms. To validate such a model, it is essential to
illustrate that the mechanisms of sleep-dependent changes in
extracellular adenosine in the BFB are still extant in i vitro
preparations. Sleep-wake dependent changes in extracellular
adenosine release have recently been demonstrated in hippocam-
pal slices [22]. In this study we extend this approach to the BFB,
which is causally linked to the homeostatic control of sleep. To
demonstrate the generality of our results we have examined the
relationship between adenosine release and sleep status in three
species: rats, mice, and Djungarian hamsters. Our findings
demonstrate that sleep-wake status has a biochemical memory
that survives death and that the cellular mechanisms of adenosine
production relevant to the control of sleep can be studied n vitro.

Materials and Methods

Slice Preparation

400 um-thick coronal slices including the basal forebrain were
obtained from several rodent species. These were 18-30-day-old,
male, Sprague-Dawley rats; 2—-3-month-old mice, C56BL/6 wild
type littermates of transgenic dnSNARE mice; and 5-6-month-old
Djungarian hamsters. All animal handling was carried out in strict
accordance with the UK Animals (Scientific Procedures) Act 1986
(licence PPL 80/2493) with all effort taken to minimise suffering.
Rats and mice were maintained on a 12 h/12 h light/dark cycle
with lights on from 7 am to 7 pm. Unless otherwise stated, all
animals were sacrificed approximately 2 hours into the light phase
of the day (ZT 2). For some animals sacrificed at different points in
the cycle, they were moved to a room on a different light cycle and
given at least one week to acclimatise. Sleep deprivation was
achieved by established principles of gentle handling [23,24] or an
8229 Automated Sleep Deprivations System (Pinnacle Technol-
ogies Inc., USA) to minimise stress. Gentle handling was used for
mice and 2 h sleep deprivation in rats, and the automated system
for 6 h sleep deprivation in rats. Animals sleep deprived by
automation were monitored every 45 mins for several minutes.
Although EEG recordings were not used to assess sleep status of
animals prior to sacrifice, the effects of adenosine release
accumulate over hours of sleep status, which can be assumed to
be consistent across multiple animals maintained in consistent
conditions. These methods of sleep deprivation have well-
established reliability and efficacy without the need for EEG
recordings to confirm increased slow wave activity [22,25]. For
sleep recovery after deprivation, rats were marked, returned to a
cage with their littermates and left for 24 h before sacrifice.

Animals were sacrificed by cervical dislocation, decapitated, and
the brain was rapidly extracted and placed in a sub-4°C artificial
cerebrospinal fluid solution (aCS¥F; see below for composition) with
an extra 10 mM MgCl, added to counteract excess NMDA
receptor activation. Slices were cut on a Microm HM 650 V
microslicer (Carl Zeiss, Welwyn Garden City, UK). Slices were
then transferred to a holding chamber at room temperature in
standard aCSF composed of (in mM): NaCl, 124; KCl, 3; CaCl,,
2; NaHCO3, 26, NaHy,PO,, 1.2; MgSO,, 1; glucose, 10;
equilibrated with 95%:5% O4:COy to pH 7.4. Slices were
incubated for at least one hour prior to initial experiments.

Recording and Analysis

For experiments, individual slices were placed on a nylon net,
submerged in a recording chamber perfused with 32-33°C aCSF
at a flow rate of 5-6 ml/min which was recycled, allowing
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sufficient run-out to waste during solution changes. Microelectrode
biosensors (Sarissa Biomedical, Coventry, UK) were carefully
placed in the slice visualised under an Olympus SZ60 stereozoom
microscope (Japan). Sensors were inserted in pairs, one adenosine
(ADO) or inosine (INO) sensitive and the other Null, in BFB and
cortex at an angle of approximately 70° so that the active region
was fully in the slice. Sensor pairs were placed as close together as
possible consistent with the need to avoid crosstalk between
biosensors and to minimize localised tissue damage. The areas of
the BFB used were the horizontal arm of the diagonal band of
Broca or substantia innominata. Initial insertion of bionsensors
resulted in a transient purinergic response (2040 minutes), which
was allowed to decay before experiments commenced. After the
experiments were completed, the biosensors were withdrawn from
the slice and the response allowed to stabilise, to provide a baseline
with which to measure the basal tone of the slice. They were then
calibrated with aCSF containing 10 uM adenosine or inosine as
appropriate, followed by aCSF with 10 pM serotonin to check that
the sensor was adequately shielded and thus insensitive to other
electro-active biological substrates. All drugs were bath applied by
addition to the aCSF.

Biosensor signals were measured on a Duo-Stat ME200+
potentiostat (Sarissa Biomedical, Coventry, UK) and acquired on a
DT3010 data acquisition board (Data Translation, Bietigheim-
Bissingen, Germany). Offline data analysis was done with
customised software written by N. Dale. Adenosine concentrations
were measured at peak, and data are presented as mean *
standard error of the mean.

Biosensor characteristics. For a detailed explanation of the
biosensors used, see Llaudet et al. [26]. Briefly, biosensors
consisted of an etched, platinum wire 50 um in diameter coated
with a shielding layer against electro-active biological molecules
(e.g. serotonin, dopamine, ascorbic acid) and a 500 pm-long active
region of polymer matrix. In ADO sensors this matrix contained
the enzymes adenosine deaminase, nucleoside phosphorylase and
xanthine oxidase, breaking adenosine down to inosine, inosine to
xanthine, and xanthine to uric acid and HyOy. ADO biosensors
are also reactive to both inosine and hypoxanthine, which are
endogenous to brain tissue. Consequently, all adenosine measure-
ments are actually total purinergic responses, which is signified by
the unit measurement ADO’. INO sensors, made as ADO except
lacking adenosine deaminase, were used in some experiments to
examine the time course of inosine responses. Null sensors
contained no enzymes in the matrix, thus providing an internal
control for non-specific electrical interferences. Consequently, all
raw data traces show the subtraction current of the ADO or INO
sensor minus the Null.

Biosensors could be expected to generate a current of 1-3 nA in
response to 10 uM adenosine/inosine. Within the range of
biological responses generated here, the relationship between
purinergic concentration and current is linear [22,26]. Evoked and
tone adenosine concentrations were therefore calculated by the
relationship of the experimental measurements to the 10 uM
adenosine/inosine calibration at the end. All drugs were also
tested against the biosensors with no slice present to ensure they
did not intrinsically generate an electrical signal. Tone measure-
ments were recorded as the difference in electrical signal recorded
when the sensors were inserted in the slice and after removal
before addition of the calibrating adenosine/inosine application.

Dependence of adenosine release on diurnal time. To
investigate the dependence of adenosine release on the time of
sacrifice of the animal we used 18-30-day-old rats. These were
sacrificed at seven points in the 24 h cycle: ZT 2,21 6,219,721 12
(light), and ZT 14, Z’T 17, ZT 20.5 (dark). Slices were prepared as
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above andallowedtorest 1 hpriortorecordings. Biosensorsplacedin
the BFB, and also the cortex as a control region not causally
implicated in sleep as indicated in figure l1a. Adenosine release was
evoked by a two-minute bath application of 5 puM AMPA in aCSF.
After the response had returned to baseline, the biosensors were
withdrawn from the slice and the current compared to the baseline to
obtain the basal tone.

Dependence of adenosine release on  sleep
deprivation. To investigate the dependence of adenosine
release on sleep deprivation prior to sacrifice, at the end of the
sleep cycle, Sprague-Dawley rats were transferred to a new cage,
and prevented from sleeping for 2 or 6 hours by established
methods of gentle handling to minimize stress. They were then
promptly sacrificed and slices prepared. As before, adenosine
release was evoked by two-minute application of 5 pM AMPA and
recorded by biosensors placed in the BFB and cortex. After the
response had returned to baseline, the biosensors were withdrawn
from the slice and the current compared to the baseline to obtain
the basal tone.

A D

Bregma -0.4mm

ADO

Adenosine Release in the Basal Forebrain In Vitro

Role of iNOS in triggering the enhanced adenosine
release following sleep deprivation. 2-3-month-old
C57BL/6 mice were sleep deprived with gentle handling over a
period of six hours after the end of the dark cycle, and coronal
brain slices obtained as normal. Half the slices were incubated in
aCSF containing 10 uM 1400 W for at least an hour prior to
experimentation and maintained in 1400 W throughout the
experiment. These mice were also compared to control mice
sacrificed at a similar point in the diurnal cycle -6 h into the light
cycle — that had not been sleep deprived.

Djungarian hamsters. 5-6-month old Djungarian hamsters
were separated into two groups and maintained in either a short
(8 h light, 16 h dark) or long (16 h light, 8 h dark) photocycle, and
left to acclimatize for 12 weeks. Their weight was measured every
week to check that it was maintained in the long photoperiod
group and diminished in the short photoperiod group. They were
then sacrificed within two hours of the dark cycle ending.
Biosensors were placed in both BFB and cortex. The testes were
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Figure 1. Release of adenosine by depolarisation and agonists. (a) Schematic diagram of a coronal slice indicating location of sensor
placements. SI: substantia innominata; HDB: horizontal arm of the diagonal band. Adenosine release was measured as the peak ADO’ signal from BFB
slices as measured by inserted biosensors combined with whole cell patch recordings of BFB neurons in current clamp. All panels show raw data from
representative experiments. (b) High K" aCSF evoked adenosine release and depolarisation of BFB neurons. (c) NMDA application also evoked
neuronal depolarisation and firing accompanied by subsequent release of adenosine and inosine. (d) Adenosine released was evoked after
depolarisation with AMPA (d), by (1R,3S) ACPD with or without accompanying depolarisation (e,f), and Orexin A did not induce ADO release despite

causing depolarisation (g).
doi:10.1371/journal.pone.0053814.9001
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also dissected free and weighed to verify adaptation to photoperiod

[27].

Immunohistochemistry

Coronal slices containing BFB and cortex were prepared from
6 h sleep-deprived and non-sleep-deprived rats at a similar point
in the diurnal cycle. Free-floating slices for iNOS immunofluores-
cence labeling were cut 150 um thick, and slices for later
cryosection and double immunofluorescence of iNOS and choline
acetyltransferase (ChaT) were initially 300 um thick. These slices
were then incubated at room temperature in aCSF bubbled with
95%:5% O5:COy for 1 or 4 hours.

iNOSimmunfluorescence. Iree-floating sections were fixed
for 75 mins with 4% paraformaldehyde (PFA) at room temper-
ature, followed by three rinses in TBS-Tween for 10 mins. For
each immunohistochemical run, sections from Non-SD and SD
brains were processed using the same reagents and conditions.
After incubation in blocking solution (5% bovine serum albumin
(BSA) in TBS-Tween) overnight at 4°C, sections were labeled with
primary rabbit polyclonal antibody against inducible nitric oxide
(iINOS; 1:20, M-19; Santa Cruz Biotechnology) in 1% BSA in
TBS-Tween overnight at 4°C. After thorough washing in Tris-
buffered high salt saline (pH 8.6), sections were incubated for 1
hour with chick anti-rabbit AlexaFluor 488 nm secondary
antibody (1:1000; Invitrogen) at room temperature and mounted
onto Superfrost plus slides and coverslipped with VECTA-
SHIELD® mounting medium with DAPI (Vector Laboratories).
Images of BFB and cortex were acquired using an SP2 confocal
scanning microscope (Leica, Germany) under a 40x oil immersion
lens and analyzed with Image J software.

Double immunofluorescence. For double immunofluores-
cence of INOS and ChaT, slices were fixed for 1 h with 4% PFA
in PBS at room temperature. Sections were washed in PBS and
stored overnight at 4°Ci in 30% sucrose/PBS solution until sank.
Brain slices were embedded in OCT and frozen sectioned using a
sliding microtome into 17 um coronal sections. Frozen sections
were rinsed in PBS, washed twice with TBS and permeabilized
with TBS-Tween for 15 mins at room temperature. The sections
were pre-incubated for 1 hour at room temperature in blocking
solution and then double labeled with a rabbit anti-iNOS
polyclonal antibody (1:20, M-19; Santa Cruz Biotechnology) and
a sheep anti-ChATT polyclonal antibody (1:20, Ab18207; Abcam)
in 1% BSA in TBS-Tween overnight at 4°C. The immunoreac-
tivities to iINOS and ChaT were visualized using a chicken anti-
rabbit AlexalFluor 488 nm- and a donkey anti-sheep AlexaFluor
594 nm-conjugated secondary antibodies. Immunohistochemical
studies for all sections were stained with DAPI (1:1000; Invitrogen)
and mounted in Mowiol 4-88 (Sigma). Secondary antibody in 1%
BSA in TBS-Tween without primary antibody was used as a
negative control to detect the specificity of immunofluorescence.
Images were acquired as above.

Drugs

All drugs were made up as stock solutions in distilled water,
frozen for storage, and diluted 1:1000 in aCSF to their final bath
concentration. 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propa-
noic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) were
supplied by Ascent Scientific (Bristol, UK). 1400 W and erythro-9-
(2-Hydroxy-3-nonyl)adenine (EHNA) were supplied by Tocris-
Cookson (Bristol, UK). All other drugs were were supplied by
Sigma-Aldrich (Dorset, UK). Concentrations used were those
established as efficacious in prior studies, e.g. histamine [28],
orexin A [29], neurotensin [30]. In the case of AMPA and
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NMDA, a dose close to the EC50 to reduce concerns regarding
excitotoxicity.

Statistical Analysis

Observation of histograms suggested non-normal distribution,
although some data sets were normally distributed according to
Shapiro-Wilk test. Consequently the non-parametric Mann-
Whitney U test or Wilcoxon signed-rank test (both one-tailed,
on the basis that the manipulations we were performing would be
expected to increase adenosine release) were used. The False
Discovery Rate procedure was used [31] to minimise the
possibility of false rejections of the null hypothesis during multiple
comparisons. We used an upper limit for the false discovery rate of
0.05. Statistical analysis was carried out on PASW Statistics 18
software (IBM, USA). The n values refer to the number of slices
used, with one recording per slice and 2—4 slices per animal.

Results

Extracellular adenosine levels i vivo are likely to depend on
both the extent of neuronal activity [32-36] and on the rate of
basal release. In brain slices the basal mechanisms of release are
likely to be preserved but the levels of spontaneous neuronal
activity are much less than @ vivo. We therefore examined
extracellular adenosine in two ways: the basal adenosine tone,
and during depolarizing stimuli (to probe potential activity
dependence of adenosine release).

Basal Tone of Adenosine

We first examined the basal tone of purines in the BFB (n=12).
The ADO’ basal tone was 0.56+0.15 uM and INO sensor basal
tone was 0.28+0.04 uM, suggesting that 49% of the ADO’ tone
was adenosine. We verified this measurement by an alternative
method: use of an adenosine deaminase inhibitor EHNA, to
inhibit adenosine deaminase within the biosensor and thus
selectively block the adenosine component of the biosensor signal
[34]. Application of 20 uM EHNA decreased the tone by
0.22%0.10 pM, indicating that by this method 39% of the signal
was adenosine.

Depolarizing Stimuli Evoke Adenosine Release

High K. In vivo, BFB extracellular adenosine levels in rats are
observed to increase with increased wakefulness and decrease with
increased sleep, and increase considerably more during sleep
deprivation. This is consistent with evidence of adenosine release
due to neuronal activity [17,37-39], as BFB cellular activity
increases during periods of wakefulness and is considerably lower
during NREM sleep according to juxtacellular recordings [40,41]
and c-fos activity [42]. Whole cell patch clamp recordings were
made from BFB neurons whilst extracellular adenosine and
inosine concentrations were concurrently recorded with biosen-
sors. Depolarization was evoked by applying a high K (23 mM)
aCSF (figure 1b). High K* caused depolarization of neurons
coupled with intense action potential firing, and then after a brief
delay adenosine and inosine release.

Glutamatergic agonists. We next tested the ability of more
selective depolarizing stimuli to evoke adenosine release in basal
forebrain slices. We examined ionotropic glutamate receptors,
which are are the most common source of excitatory inputs in the
brain. Furthermore, in vivo experiments have shown BFB adeno-
sine release by microdialysis application of AMPA and NMDA
(43].

Simultaneous whole cell patch clamp and biosensor recordings
in BFB showed that 20 pM NMDA applied to the bath caused
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transient firing followed shortly later by adenosine release,
1.16%£0.26 uM ADO’, 144*38 s to peak, n=6 (figure lc). The
role of AMPA receptors was then examined with application of
5uM AMPA to the aCSF (figure 1d). This caused rapid
depolarization of neurons and after a delay by the release of
adenosine (1.2120.34 uM, n=17). The percentage of the ADO’
signal that was adenosine also was examined with ADO and INO
sensors placed in the BFB. Upon addition of 5 uM AMPA the
mean peak ADO’ concentration (ADO-Null) was 1.1£0.5 uM,
with a mean latency of 211%11 s from initial AMPA application,
n=9. At the ADO’ peak, the INO response (INO-Null) was
0.7£0.3 uM, suggesting 40% of the AMPA-evoked ADO’ signal is
adenosine at peak, and 60% inosine/hypoxanthine (data not
shown).

Metabotropic glutamate receptors (mGluRs) have also been
reported present in BB neurons and glia [44—46], and so mGluRs
were also tested to see whether they evoked adenosine release. The
group I mGluR agonist (1S,3R) ACPD at 50-100 pM reliably
evoked adenosine release, although this was not reliably accom-
panied by neuronal depolarization (figures le,f). Peak ADO’
concentration was 2.84%1.12 uM. Neither L-AP4 nor (2R,4R)
APDC caused adenosine release, suggesting that neither group II
nor group III mGluRs are involved.

Other depolarizing stimuli. BIB neurons are known to be
receptive to several other neurotransmitters which are capable
of depolarizing cells. Orexin, acetylcholine (ACh), neurotensin
and histamine are all transmitters associated with the ascending
arousal system. However, application of 100 nM Orexin A
failed to generate adenosine release despite causing depolarizing
and action potentials in BFB neurons (figure 1g), which was also
observed with 200 nM neurotensin, 100 uM histamine and
100 uM ACh.

Therefore in the BFB, although widespread depolarization with
high K* or glutamatergic agonists is sufficient to generate
adenosine release, not all depolarizing stimuli can release
adenosine. There may be a discrete population of BFB cells —
neurons or astrocytes — with a specific receptor phenotype that are
responsible for adenosine release. These cells possess ionotropic
glutamate receptors and group I mGluRs, but have few or lack
orexin, histamine and neurotensin receptors.

Ca**-independence of Evoked Adenosine Release

As depolarizing stimuli could indirectly cause release of
adenosine through the actions of interposed transmitters, we
tested the Ca®" dependence of adenosine release. ADO and Null
biosensors were placed in the BFB and cortex. CaCly was removed
from the aCSF and replaced with 2 mM MgCl, and 1 mM
EGTA. Furthermore, 20 pM cyclopiazonic acid (CPA), an
inhibitor of Ca®"-ATPase, was included in order to drain internal
Ca®" stores. 5 UM AMPA was used to evoke adenosine release,
and then normal aCSF washed back in and AMPA applied again
(figure 2a). Adenosine release was not significantly different in
presence or absence of Ca’" in either the BFB (Ca®*-free:
2.21%0.74 uM; 2 mM Ca?*: 2.82+1.33 uM; figure 2b) or cortex
(Ca®"-free: 7.60%2.08 uM; 2 mM Ca**: 6.40+1.92 uM; figure 2c)
according to the Wilcoxon signed-rank test, n=7. These results
indicate that the mechanism of AMPA-evoked adenosine release
in this i vitro preparation is independent of both intra- and
extracellular Ca”", indicating that it may not be mediated by
vesicular exocytosis.

Diurnal Rhythms of Adenosine Release and Tone

Microdialysis experiments i vivo have demonstrated basal
adenosine levels throughout the brain exhibit a diurnal rhythm,
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Figure 2. Adenosine release occurs independently of calcium.
Adenosine release was evoked by 5 uM AMPA in Ca®*-free aCSF (0 mM
Ca?" and 1 mM EGTA) with 20 UM CPA added to drain internal calcium
stores, and then again after following wash in of normal 2 mMm Ca®*
aCSF. (a) Raw data traces from a representative experiment in cortex
(top) and BFB (bottom). Adenosine responses were not significantly
different in Ca®>" -free conditions in either BFB (b) or cortex (c) by the
Mann-Whitney U-test, n=6.

doi:10.1371/journal.pone.0053814.g002

increasing during wakefulness and decreasing during sleep
[7,8,10]. Although this appears to be true throughout the brain,
it is particularly prominent in the basal forebrain. We therefore
investigated whether adenosine release i vitro exhibited a prior
dependence on the time of sacrifice of the animal relative to the
light-dark cycle.

Measurements from rat slices. AMPA-evoked adenosine
release showed systematic variation with time of sacrifice. The
release increased the farther into the dark cycle the rat was
sacrificed, and conversely decreased as sacrifice was performed
later into the light cycle (figure 3a). AMPA evoked release at ZT 2
(2.2%£0.4 puM; n=14) was significantly higher (p<<0.05, Mann-
Whitney U test,) than at the opposite point in the wake/sleep cycle
at ZT 14 (1.0£0.4 pM; n=09; figure 3b).

No significant cycle was observed in the basal tone of rat slices,
although this is most likely due to natural variability given the very
small adenosine concentrations in tone, range 0.2-0.6 uM in rats.
Furthermore, no adenosine cycle was observed from the cortex
either from AMPA-evoked release or basal tone. AMPA-evoked
cortical responses were, however, 5-10 times greater in peak
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doi:10.1371/journal.pone.0053814.g003

magnitude than BFB responses (range 5.5-12.4 uM), and of
greater duration.

Adenosine release was similar in the horizontal arm of the
diagonal band of Broca and the substantia innominata (SI). Nor
were responses observed to vary according to the latency between
sacrifice and start of experiment, indicating that length of
incubation did not appear to alter adenosine release, further
suggesting that adenosine responses are representative of time of
sacrifice. This is illustrated for Z'T 6 (figure 3c).

Our results suggest that in slices of the BIFB, aspects of
adenosine release are sensitive to the diurnal cycle. These altered
concentrations of adenosine cannot result from simple accumula-
tion of adenosine in the extracellular environment while i vivo, as
this would be washed out of the slice during incubation and
perfusion. Instead the changes in extracellular adenosine must in
some way reflect changes in the molecular, biochemical and
cellular properties of slices derived at different times of sacrifice
such that alters the balance between release and uptake from cells.

Measurement from mouse slices. Similar experiments
were performed to see if the same differences could be observed
In mice, using only two times of sacrifice separated by 12 h, 2 h
into the light cycle (ZT 2) and 2 h into the dark cycle (ZT 14). The
AMPA-evoked release from BFB in mouse slices was not
significantly different between ZT 2 (0.12+0.04 uM, n=21) and
ZT 14 (0.10%£0.05 uM, n=17). However, basal tone was
significantly greater at ZT 2 (0.63%£0.11 pM) than ZT 14
(0.34%0.05 pM) according to the Mann-Whitney U-test, p<<0.05
(figure 3d). No difference was observed between AMPA-evoked
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and basal tone adenosine in the cortex. These data indicate that a
difference in adenosine release according to diurnal rhythm can
also be observed in mice and accords with the data of Schmitt
et al. [23] documenting adenosine release in the hippocampus.

Effects of Prolonged Wakefulness

Any mechanism involved in the control of sleep should exhibit
sensitivity to prolonged wakefulness. We have therefore examined
this in three rodent models: the rat, as this has extensively been
used in prior i viwe studies; the mouse, as this opens the possibility
of using genetic modifications to examine mechanism; and the
Djungarian hamster which under goes natural variation in its sleep
patterns when adapted to different photoperiods.

Rats. Prolonged wakefulness arising from sleep deprivation is
also known to cause a considerable increase in extracellular
adenosine concentrations m vivo [47]. We found that ADO’
responses to AMPA in 2 h sleep deprived (SD) rats were 160.0%
that of control animals sacrificed at a similar point in the diurnal
cycle (control: 2.0x0.4 pM, n=14; SD: 3.3%0.6 uM, n=13;
Mann-Whitney U test, p<0.05; figure 4). Tone measurements of
BFB were higher in 2 h SD (0.50%£0.08 uM) rats than control
(0.33%20.08 uM), but not significantly so (p =0.14, Mann-Whitney
U test). However, in the cortex there was no observed statistical
difference  in  AMPA-evoked adenosine release (control
9.7£1.6 uM; SD 11.4%1.3 uM) or tone (control 0.88£0.12 uM;
SD 0.76£0.23 uM).

Recent i vivo data has suggested that adenosine concentrations
following 6 hours of sleep deprivation depend on nitric oxide (NO)
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forebrain adenosine release in rats. Adenosine release evoked by
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data traces of representative experiments of sleep deprived and control
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cumulative probability graph illustrates the distribution of individual
ADO'’ responses for control (black fill) and 2 h SD (white fill).
doi:10.1371/journal.pone.0053814.9g004

and induction of iNOS [18,19]. We therefore examined whether
the enhanced release of adenosine in slices following sleep
deprivation also depended on activation of iNOS. Peak ADO’ in
slices from 2 h SD rats incubated with 1400 W (3.5%0.7 uM,
n=6) was not significantly different from those without 1400 W.
Although induction of iNOS, production of NO (as indirectly
measured by downstream metabolites NOy, and NOj ) and
ADO release begins under 1 h into sleep deprivation [18], at 2 h
all three are sub-maximal [19]. Consequently, we examined both
adenosine release and the basal tone after a longer period of sleep
deprivation to ensure adequate induction of iNOS.
AMPA-evoked release in the basal forebrain after 6 h sleep
deprivation in rats was 207% that of control rats sacrificed at a
similar point in the diurnal cycle (control: 1.5=0.3 uM, n=13;
6 h SD: 3.320.6 uM, n=14) and also significantly greater than
slices from 6 h SD rats incubated with 10 uM 1400 W
(1.6%£0.4 pM, n = 14, Mann-Whitney U-test, p<<0.05; figures 5a—
c). Between all three comparisons, significance was maintained by
false discovery rate analysis. Although the basal ADO’ tone was
greater after 6h SD (0.80%£0.28 uM) than control
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(0.38x0.07 uM) and 6 h SD +1400 W (0.42%0.06 uM), this
failed to achieve conventional statistical significance (p=0.09
control v. SD; p=0.14 SD v. 1400 W, Mann-Whitney U test;
figure 5d).

Slices from control rats 6 h into the light cycle were also
incubated with 1400 W to investigate whether it had any effect on
adenosine release without sleep deprivation. For slices prepared
from non-sleep deprived rats, 1400 W had no effect on the
AMPA-evoked release in either basal forebrain or cortex (BFB:
1.8x0.5 uM; Ctx: 10.8%£0.9 uM), and was not significantly
different from controls in the absence of 1400 W. This was also
true for the effect of 1400 W on the ADO tone in non-sleep-
deprived slices (BFB: 0.52%0.15 uM; Ctx: 0.78£0.48 pM). Thus
the actions of iNOS are specific to the sleep deprived state.

In the cortex, AMPA-evoked adenosine release was
8.9*1.8 uM (n=10) in slices from control rats, 10.3*£1.7 uM
(n=13) from 6h SD rats and 11.6*=1.7 uM (n=11) for 6 h SD
+1400 W (figure 5e). Basal tone was 0.61%=0.17 uM for control,
1.07%20.25 pM for 6 h SD, and 0.89£0.15 uM for SD +1400 W
(figure 5f). None of these were significant by the Mann-Whitney U
test (AMPA-evoked: p=0.29 control v. 6 h SD; p=0.22; 6 h SD
v. 6 h SD +1400 W; for tone: p=0.13 control v. 6 h SD; p=0.35
6 h SD v. 6 h SD +1400 W). As with BFB, slices from non-sleep
deprived rats incubated with 1400 W (n=7) were similar to
controls in AMPA-evoked release and basal tone.

Some rats subjected to 6 h SD were also allowed 24 h recovery
sleep before sacrifice. For these experiments (n=15) in the basal
forebrain AMPA-evoked ADO release was 1.8+0.5 uM and basal
tone 0.36+0.05 uM. In the cortex, AMPA-evoked ADO release
was 9.4+1.8 uM and basal tone 0.71%20.27 pM. These results
were not significantly different from non-sleep deprived controls,
and only AMPA-evoked release was significantly lower than 6 h
SD without recovery sleep. (Mann-Whitney U-test, p<0.05).

Immunocytochemical localization of iNOS following sleep
deprivation. To check that iINOS was present in our slices, we
carried out immunfluorescence staining for iNOS. Rats that were
sleep deprived for 6 h were compared to non-sleep deprived rats at
a similar point in the diurnal cycle. After sectioning, slices were
incubated in aCSF as normal for 1 h, then free-floating slices fixed
and stained. Non-sleep-deprived rats had very little iNOS
immunfluorescence in the BFB (figure 6a) in contrast to
considerable fluorescence in slices from those that were sleep
deprived (figure 6b). To see whether iNOS expression might decay
during prolonged incubation of slices after sacrifice, we also
processed slices that had been incubated for 4 h after sacrifice, and
again observed considerable iNOS immunofluorescence (figure 6c).
By contrast after 4 h incubation following sacrifice, there was still
insignificant iNOS present in slices from non-sleep deprived rats.
Joint immunofluorescence for iNOS and ChaT indicated that
iINOS was present in Chal positive cells (figure 6d), but not
exclusive to them, suggesting that non-cholinergic cells in the BB
are also involved in the increase of NO production. Finally, the
cortex was also examined with iNOS in free-floating slices. As with
the BIB, iNOS immunofluorescence was considerably greater in
sleep-deprived animals, although there was some observed in non-
sleep deprived too (figures 6e, f).

Mice. We next examined the effect of sleep deprivation
effects in slices derived from mice. Again, sleep deprived
animals were matched against control animals sacrificed at a
similar point in the diurnal cycle without sleep deprivation.
Following 6 h SD in mice, AMPA-evoked responses were higher
(0.46£0.15 uM, n=15) than in control (0.10£0.05 uM, n = 10),
significantly so by Mann-Whitney U-test, p<<0.05 but not by
false discovery rate analysis applied to control, 6 h SD and
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1400 W (figure 7a). In 6 h SD mouse slices treated with
1400 W, AMPA-evoked responses were reduced compared to
untreated 6h SD slices but this did not achieve statistical
significance (0.26%0.12 uM, n=15).

The basal adenosine tone in control mice was 0.46+0.17 uM
and significantly higher in 6 h SD mice at 1.18£0.32 pM (Mann-
Whitney U test, p<<0.05, figures 7b,c). In 6 h SD +1400 W mice
the tone was similar to controls and significantly less than 6 h SD
without 1400 W (0.51%0.15 uM). Significant differences between
groups were sustained by false discovery rate analysis. In the
cortex, however, no significant differences were observed between
controls, 6 h SD and 6 h SD +1400 W in either AMPA-evoked
release or basal tone. Our results suggest that there are significant
differences between rats and mice in the magnitude of activity-
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dependent and basal adenosine release and that mice may be
advantageous for measurement of adenosine tones whereas rats by
contrast are more advantageous for examining AMPA-evoked
adenosine release.

Both a greater adenosine release (evoked by 5 uM
AMPA) and resting tone was observed in LP compared to SP
hamsters (LP  hamsters AMPA: 0.18%0.04 uM; tone
0.57%0.15 uM; n = 15; SP hamsters AMPA: 0.06£0.04 uM; tone
0.21+0.07 uM; n=14). These differences were statistically
significant, p<<0.05, Mann-Whitney U-test (figure 8). This
provides evidence from a third rodent model that adenosine
concentrations appear to differ by sleep status i vitro. Further-
more, it validates previous data indicating the different sleep
patterns in hamsters according to seasonal variation.

Hamsters.
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Figure 6. 6h sleep deprivation causes an increase in iNOS expression in BFB and cortex. iNOS Immunofluorescence (green) was largely
absent in BFB slices from rats not sleep deprived after 1 h post-sacrifice incubation in aCSF (a), but strong after 6 h SD with 1 h (b) and 4 h (c) post-
sacrifice incubation. The blue immunfluorescence is DAPI, showing nuclei. Double immunfluorescence staining for iNOS and ChaT (red) in BFB for a
6 h SD rat after 1 h incubation is shown in (d), single arrows indicate examples of somata with colocalised ChaT and iNOS, double arrows somata with
iNOS but no ChaT. In the cortex, iNOS immunfluorescence after 4 h incubation was present in non-SD rats (e), but less strong than those after 6 h SD

(f).
doi:10.1371/journal.pone.0053814.g006

Discussion

Our results suggest that both activity dependent and basal
adenosine release in the BFB @ vitro exhibit sensitivity to the
diurnal time of sacrifice and any sleep deprivation prior to
sacrifice. The enhanced adenosine release or tone observed i vitro
following sleep deprivation exhibited dependence on iNOS. This
suggests that the same fundamental mechanism (dependence on
iNOS and NO signaling) controls the availability of adenosine for
both activity-dependent and basal release in this brain area. Our
in vitro model therefore recapitulates key aspects of the homeostatic
control of sleep that have previously been described from i vivo
studies in the BFB. Our work demonstrates that the sleep status of
an animal is encoded in a biochemical state or “memory” that can
survive death, and that this is likely to be the induction of iNOS.
Activity dependent
adenosine release has been described in several different contexts
(reviewed by Wall & Dale [35]). Some of this arises from
previously released ATP that is broken down into adenosine in the
extracellular space. However in the best-studied example,
adenosine can be released directly from cerebellar parallel fibres
via exocytosis [32,34,36].

Increases in extracellular adenosine concentrations are also
associated with metabolic stress [37,48,49]. Adenosine concentra-
tions also increase during seizure activity as a neuroprotective
mechanism [50,51]. Here it is likely that adenosine first
accumulates intracellularly and transported across the plasma
membrane via the equilibrative nucleotide transporters. This

Characteristics of adenosine release.

PLOS ONE | www.plosone.org

mechanism of direct activity dependent adenosine release has also
recently been proposed to result from the metabolic load of
neuronal firing so that adenosine can act as an autocrine
modulator in the brain [33].

The BFB is a heterogeneous region containing cholinergic cells,
GABAergic and glutamatergic cells, which receives afferents from
wake-promoting areas of the brainstem. Orexin inputs are known
to derive from the hypothalamus and innervate cholinergic centres
of the BFB [52], with release associated with waking and REM
sleep [53]. Neurotensin activates and promotes bursting behaviour
in BFB cholinergic cells [54]. Histaminergic cells in the
tuberomammillary nucleus also innervate BFB cholinergic neu-
rons, and are most active in vivo most during wakefulness [55].
The failure of non-glutamatergic neurotransmitters to stimulate
adenosine release in slices poses several possibilities: 1) they
innervate insufficient neurons or otherwise generate insufficient
neuronal activation, 2) adenosine release is primarily from a
neuronal subpopulation not responsive to them, 3) they generate
very specific cellular responses that may not include adenosine
release.

A possibility for adenosine release is that it is astrocytic rather
than neuronal. Although astrocytes are not electrically excitable,
they do respond to neuronal activity, with intracellular calcium
concentration increases [56] and releasing neurotransmitters such
as glutamate [57], ATP [58], and D-serine [59]. However, the
calcium independence of adenosine release observed here makes it
unlikely that it primarily derives from astrocytic, exocyotic release
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Figure 7. 6h sleep deprivation causes iNOS-dependent increas-
es in basal forebrain adenosine release in mice. Comparison of
adenosine release and tone following 6 h sleep deprivation in mice
either with or without 1400 W. (a) AMPA-evoked release was
significantly higher in slices after 6 h SD (n=15) than control (n=10),
but was not significantly greater than 6 h SD incubated with 1400 W.
(b) Basal tone however was significantly greater in 6 h SD mice than
when incubated with 1400 W and also controls (b). Asterisks indicate
significant difference (Mann-Whitney test, p<<0.05). (c) Raw data traces
from representative experiments for control (black) 6 h SD (light grey)
and 6 h SD +1400 W (dark grey) normalised to 10 uM ADO’ calibration
for tone measurements are shown (c). Bold arrows indicate the point of
sensor removal from the slice causing artefacts, and those on the right
tone measured by difference before and after removal.
doi:10.1371/journal.pone.0053814.g007

of ATP. Astrocytes are theorized to act as a homeostatic regulator
of brain function, including monitoring and consequently modu-
lating synaptic activity, a role in at least partly mediated via
purinergic signaling [60]. Astrocytes possess a wide range of
glutamate receptors [61-63] and furthermore are already known
to release ATP that is then converted to adenosine [64,65]. It is
unknown whether astrocytes in the BFB respond to orexin,
histamine and neurotensin, although it should be expected that
some indirect response should be expected through activated
cholinergic cells.

Increased adenosine from prolonged wakefulness. In
vivo microdialysis studies report BB adenosine concentrations of
12-70 nM adenosine in rats and cats [9,47,66,67]. However,
microdialysis probes are estimated to recover only 10-20% of the
adenosine [66], suggesting estimates in the low hundreds
nanomolar range. As adenosine release is activity dependent and
given the increased metabolic rate of the brain during wakefulness
[68,69], elevation of adenosine concentrations have been observed
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Figure 8. Differential adenosine release in basal forebrain due
to seasonal sleep patterns of Djungarian hamsters. Slices from
Djungarian hamsters kept in either long photoperiod (n=15) or short
(n=14) light cycles were sacrificed two hours after the end of the dark
phase were used. Both AMPA-evoked ADO’ release (a) and basal ADO’
tone (b) in the BFB were significantly greater in long day cycle hamsters
(Mann-Whitney test, p<<0.05).

doi:10.1371/journal.pone.0053814.g008

to follow a diurnal rhythm, increasing during the wake phase and
declining during sleep [9,70]. Sleep deprivation for 6 h in cats
induced a 40% increase in BFB adenosine levels [7,8].

In our slices, basal tone should reflect the underlying activity of
cells in a relatively quiescent state, whereas depolarization or
glutamatergic agonists would mimic the role of neuronal activity in
adenosine release by causing generalized cellular activity. Conse-
quently both could reflect changes in the intrinsic mechanisms of
adenosine production and release. Interestingly, tone measure-
ments did not reveal significant differences in rats whereas AMPA-
evoked release did, with the reverse true in mice. This is possibly
due to low basal ADO’ concentrations and the variability of
responses between slices, but may represent a species difference.

Basal extracellular adenosine tones in slices indicate that there is
a constant background degree of adenosine production and release
still evident. Here the tone was measured in the region of 200-
500 nM ADO’ throughout the diurnal cycle, of which 40-50%
was adenosine. This is similar to that observed i vivo. However as
numerous axonal connections are necessarily severed during slice
preparation there is likely to be less cellular activity in slices than
in vivo.

This study demonstrates that our i vifro model substantially
replicates data acquired i viwo. AMPA-evoked adenosine respons-
es varied according to both the diurnal cycle and due to sleep
deprivation, and tone measurements also showed increases due to
sleep deprivation.

The role of iNOS in sleep deprivation. The rise in BFB
adenosine concentrations due to sleep deprivation is dependent on
the neuromodulator NO produced via iNOS. Concentrations of
nitrate and nitrite — indirect measurements for NO — doubled in
the basal forebrain throughout sleep deprivation [17,18]. Inhib-
iting iINOS with a specific inhibitor or non-specific NOS inhibitor,
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or scavenging NO with cPTIO all prevented adenosine increases
from sleep deprivation, indicating adenosine production enhance-
ment is downstream of NO release. More recently, further studies
have indicated an increase in the expression of INOS mRNA and
protein in both the BFB and frontal cortex, although the latter
over 3 h later, with an increase in NO-derivatives preceding
adenosine increase [19].

Importantly, as inhibition of INOS with 1400 W i vivo
inhibited SD-derived increases in adenosine concentrations [18],
so 1400 W also prevented the increase in adenosine concentra-
tions recorded i vitro following SD, but otherwise had no effect on
adenosine release or tone under control conditions. The diurnal
variation of adenosine release must therefore occur through a
mechanism independent of iNOS. This is a powerful indication
that our model represents mechanistic aspects of physiological
conditions, and crucially also suggests that the mechanisms of
increased adenosine release are retained even after sacrifice, so
must be to some extent ‘hard-wired’ into cellular activity.

Brain region specificity. Our results also indicated the
consistent lack of any sleep-status-dependent difference in
adenosine concentrations in the cortex, either in basal tone or
AMPA-evoked release. This reinforces the possibility that alter-
ations of adenosine concentrations due to sleep status are region-
specific in the brain. In vivo, sleep deprivation leads to a slower rise
and smaller increase in adenosine in the cortex compared to BFB
across the first 5 h [19]. Earlier studies suggested no significant
increase in other brain areas associated with sleep such as the
thalamus, dorsal raphe nucleus, pedunculopontine tegmental
nucleus and preoptic hypothalamus [7,8]. After 3 h recovery
sleep, ADO concentrations were only elevated in the BIB.
Perfusion of nitrobenzylthioinosine, a blocker of equilibrative
nucleoside transporters, caused an increase in extracellular BFB
adenosine and subsequent increased slow wave sleep.

Interestingly in the hippocampus, and using similar methods to
those reported here, Schmitt et al. [22] have obtained clear
evidence for a diurnal variation of adenosine tone and its
sensitivity to SD. In this case the adenosine is derived from ATP
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release originating from astrocytes, and the effects of diurnal time
and SD are expressed in transgenic dnSNARE mice that
selectively inhibit exocytosis from astrocytes. The iNOS depen-
dence of this enhanced astrocytic release of ATP following SD has
not yet been examined.

Our data therefore suggest that the mechanisms of adenosine
release and its diurnal control vary between brain regions. This
regional specificity of adenosine release may present a means by
which sleep-sensitive areas of the brain can react selectively to
wakefulness to control sleep pressure that does not necessarily
influence adenosine availability across the whole brain.

Conclusions

Our study has the following important conclusions. Firstly, the
mechanisms of adenosine release (both basal and activity
dependent) measured i vitro depend on diurnal time and sleep
status of the animal prior to sacrifice. Secondly, in the BFB,
induction of iINOS is a key step in the elevation of adenosine
release from sleep deprivation (activity dependent and basal) and
constitutes the biochemical memory of sleep-deprivation in this
brain area. Thirdly, adenosine release varies with brain region and
different mechanisms of regulation according to diurnal time and
sleep status appear to pertain to different regions. Finally,
adenosine release in this model is evoked by only some specific
excitatory stimuli and is not dependent on calcium.
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