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Abstract    25 

Detecting sources of insects attacking grain stores can help to develop more effective pest 26 

management models. This study considers combinations of chemical elements as intrinsic markers 27 

for tracing resource-use by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) a pest of 28 

stored maize which occurs in natural environments where alternative hosts may support reservoirs 29 

of infestation.  30 

 31 

P. truncatus were lab-reared on maize or field-caught in pheromone-baited flight-traps. Beetles and 32 

hosts were screened for multiple elements using Inductively Coupled Plasma Atomic Emission 33 

Spectrometry (ICP-AES).  For elements above detection limits we tested relationships between 34 

determinations for different host plants, and for beetles according to environment where captured.   35 

 36 

An alternative host Spondias purpurea (Linnaeus) (Anacardaceae) contained more Al, B, Ca, Cu, Fe, 37 

Mg, Si and Sr, and less P and Zn than maize. Trends for P were consistent between maize and beetles 38 

infesting maize, but reversed for Ca and Mg. Elemental profiles of beetles were associated with 39 

environment, with significantly lower Al, Ca, Cu, Cr, Fe, P, S, Si, Sr, Ti and Zn determinations in maize-40 

reared beetles than those captured in agricultural or natural environments. Additionally, Al, Ba, K, P, 41 

Sr and Ti determinations of field beetles captured in agricultural vs natural environments were 42 

significantly different. This suggests Al, Sr and Ti as candidate markers for environment, plus other 43 

possibilities likely since elemental concentrations (except B, Ba, Ni, and P) were significantly different 44 

in comparisons of all field beetles vs maize-reared beetles. 45 

  46 

We present a robust practical solution which successfully identified combinations of elemental 47 

markers for remotely tracing resource-use and dispersal by P. truncatus. We discuss the application 48 
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of chemical characterisation for identifying intrinsic markers of pests, particularly species with 49 

alternative hosts. We discuss how to manage the low replication and unbalanced sample sizes 50 

inherent in insect elemental screening, particularly when rarer elements are potential markers.  51 

 52 

Introduction 53 

Flight is the main dispersal mechanism of insect pests, with their establishment and spread 54 

dependent upon reaching suitable environments and hosts, and whilst many species are monitored 55 

for pest management purposes, their natal origin is unknown. Primary storage pests complete their 56 

life cycle inside intact cereals grains where their damage goes undetected, facilitating infestation by 57 

other pests (Munro, 1940). Infestation can be reduced through good hygiene and chemical or 58 

physical control with the solid structure of stores forming a barrier to pests. However, most small-59 

scale tropical stores are open structure experiencing temperatures conducive to insect flight and 60 

reproduction, and may suffer high levels of infestation from incoming pests (Haines, 2000).  61 

This study uses multiple elemental profiles to identify intrinsic markers of dispersal of the larger 62 

grain borer Prostephanus truncatus (Horn)(Coleoptera: Bostrichidae). Such analytical approaches 63 

have the potential to detect the assimilated diet of organisms, including evidence of natal diets in 64 

dispersing adults, in contrast to gut content analyses which reveal recent adult diet (Borgemeister et 65 

al. 1998a).  This insect is native to Mesoamerica and an introduced pest of maize and dried cassava 66 

in Africa (Hodges et al., 1983; Hodges et al., 1985). It is frequently monitored using traps baited with 67 

synthetic analogues of its aggregation pheromone (Hodges et al., 1984) and a similar pheromone-68 

trapping system exists for the lesser grain borer, Rhyzopertha dominica (F.) (Colepotera: 69 

Bostrichidae) (Williams et al., 1981). Such traps have provided insight into their distribution, activity 70 

and relative abundance (Cogburn et al., 1984; Dendy et al., 1989) with both species detected in/near 71 

grain stores as well as environments far from cereal production or storage (Borgemeister et al., 72 

1998a; Mahroof et al., 2010; Nansen et al., 2002; Nansen & Meikle, 2003; Rees et al., 1990; Tigar et 73 
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al., 1994). Systematic searching for P. truncatus around traps with high catches has rarely located 74 

insects suggesting that they are sparsely distributed inside diverse plant structures such as twigs, 75 

deadwood, roots and buried seeds (Nansen et al., 2004).  76 

Most Bostrichidae are wood-borers requiring woody hosts (Lui et al., 2008) and the widespread 77 

occurrence of two bostrichid grain pests in natural environments suggests they may not depend 78 

solely upon stored grains. Evidence of P. truncatus’ non-agricultural hosts include its occurrence in 79 

cerambycid-girdled twigs of S. purpurea (Linnaeus)(Anacardaceae) and Bursera fagariodes Engler 80 

(Burseraceae) in Mexican forests (Ramírez Martínez et al., 1994) and of Lannea nigritana (Sc. Elliot) 81 

Keay (Anacardaceae) in African forests (Borgemeister et al., 1998b), with the effects of twig-girdling 82 

thought to benefit cerambycid larvae and smaller wood-borers including P. truncatus (Calderón-83 

Cortés et al. 2011; Forcella, 1982). Further signs of P. truncatus’ host-flexibility include reproduction 84 

on Delonix negra (Bojer ex Hook) Raf. (Fabaceae), Acacia polyacanthus Willd (Fabaceae), 85 

Commiphora rostrata Engl. (Burseraceae), Commiphora balensis Engl. (Burseraceae) and Euphorbia 86 

tirucalli (Euphorbiaceae), plus boring or limited reproduction on 15 other woody species (Nang’ayo 87 

et al., 2002). It has been reared on Ficus and cassava roots and has limited reproduction on teak 88 

seeds, Tectona grandis Linn. F. (Lamiaceae) (Nansen et al., 2004). Whilst for R. dominica, alternative 89 

hosts include acorns of native North American oaks (Jia et al., 2008) with evidence of other non-90 

grain hosts in natural habitats (Edde & Phillips, 2006).  91 

Multi-elemental loadings of biological materials are commonly used to establish origin, and nutrient 92 

or contaminant levels in foods (Engström et al., 2004; Kelly et al., 2005) but rarely applied to insects, 93 

although used with varying degrees of success to trace host-use and natal origin of aphids, moths 94 

and weevils (Bowden et al., 1984; Bowden et al., 1985a; Bowden et al., 1985b; Burns et al., 1985; 95 

Sherlock et al., 1984; Sherlock et al., 1985; 1986). More recently, Tigar & Waldron (2003) proposed 96 

using elemental profiling to identify remote markers of P. truncatus, and Mahroof & Phillips (2012) 97 

applied the technique to R. dominica and found specific elements were associated with cereal-98 
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consumption or agricultural environments whilst others were indicative of natural host-consumption 99 

or non-agricultural environments.  100 

This study uses ICP-AES to produce multiple elemental profiles of P. truncatus with the aim of 101 

identifying patterns of elements that can distinguish between insects according to their natal host. 102 

We explore elemental profiles of maize and a natural host S. purpurea, and of P. truncatus reared on 103 

maize and collected in Mexico from agricultural areas where maize was present and natural 104 

vegetation far from cereal production or storage. An intrinsic method to trace resource-use and 105 

origin of stored product and other pests routinely captured in biosecurity surveillance monitoring 106 

would increase our understanding of the role of natural reservoirs as sources of infestation, and thus 107 

help inform pest management.  108 

Materials and Methods 109 

 110 

Field and laboratory sampling  111 

 112 

We collected maize grains and S. purpurea branches in Mexico, and captured P. truncatus in 113 

pheromone-baited flight-traps (lures supplied by AgriSense, UK) in August, a peak period of flight 114 

activity (Tigar et al., 1994). Traps were deployed for 48 hours to sample nearby insects based on 115 

knowledge of their likely dispersal towards pheromone-baits (Helbig et al., 1992). Trapping 116 

environments included arable areas where maize was grown and natural environments far from 117 

maize production and storage, further information is given in Table 1 which characterises samples 118 

for comparison and statistical analyses.  119 

 120 

The laboratory-bred beetles (the maize category in Table 1) were a strain of P. truncatus collected in 121 

Tanzania and kept in culture since the 1980s (provided by the Natural Resources Institute, University 122 

of Greenwich, Chatham, Kent, UK and held under DEFRA licence at the University of West of 123 
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Scotland). Insects were kept in honey jars in an incubator at 25˚C ± 0.5 ˚C and reared on Mexican 124 

maize through two generations from egg to adult before extraction and analysis (repeated attempts 125 

to rear P. truncatus on S. purpurea in the laboratory were unsuccessful). Beetles were euthanized by 126 

freezing immediately after field capture or removal from laboratory cultures, and defrosted before 127 

analysis. 128 

 129 

Sample preparation and ICP-AES assays 130 

All materials were rinsed in ultra-pure water and dried overnight at 40°C and homogenized by 131 

grinding in an agate pestle and mortar. Each P. truncatus determination required a bulk sample of 10 132 

adults (approximately 10 mg). Insect samples were heated in a 20 minute microwave digestion 133 

programme reaching 600 W and the cooled digests were made up to 5 ml with ultra-pure water. For 134 

maize and S. purpurea, 0.2-0.3 g samples were mixed with 1 ml H2O2 and 3 ml c. HNO3 in a PFM 135 

digestion bomb using the same digestion program as beetles. When cooled, the digests were made 136 

up to 25 ml with ultra-pure water. 137 

The digests were screened for Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Sr, Ti, V, Zn and Zr 138 

in a Perkin-Elmer Optima 3000 ICP Spectrometer under default conditions (Gal et al., 2008). 139 

Determinations for each analyte were means from four readings off a calibration curve, and those 140 

exceeding the calibration range were diluted as required. Detection Limits (DL) were established for 141 

rarer elements likely to be at low concentrations (see Table 2). We established reference samples for 142 

beetles and maize which were analysed in tandem with test samples and ICP-AES elemental 143 

standards for consistency of determination.  144 

 145 

Data Analysis  146 
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Multi-element loadings of P. truncatus were explored by classifying beetles according to site 147 

characteristics and proximity to maize as described in Table 1. Firstly, we placed them into three 148 

groups (maize, agriculture and natural) and compared loadings of elements between beetles in 149 

these groups. Then we combined all pheromone-trapped beetles (the agriculture and natural 150 

groups) into a single field class and compared their elemental loadings with those of maize-reared 151 

beetles. We also identified trends in elemental loadings of maize and S. purpurea and compared 152 

these with trends in P. truncatus according to environment of capture.  153 

For ease of visual interpretation, elemental determinations were grouped into low and high 154 

concentrations according to their relative values in insects and plant hosts. We used SYSTAT 13 with 155 

Exact tests (Systat Software Inc., 2009) to handle unequal replication and any missing values for 156 

determinations below detection limits (DL). The elemental data distributions were diverse with 157 

many skewed towards very low concentrations. As no single transformation could produce normal 158 

distributions of the data we performed non-parametric Kruskal Wallis (Mann-Whitney U) tests to 159 

examine differences between groups, with post-hoc Dwass-Steel-Chritchlow-Fligner tests to identify 160 

differences between pairs of groups. These make no assumptions about the normality of data 161 

distributions and hence are unlikely to produce significant results when there are no real differences 162 

between groups (Dytham, 2011).  163 

Results 164 

Elemental profiles and concentrations  165 

Of the 20 elements detected Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Sr, Ti, V, Zn and Zr, 166 

there were 14 above DL in all materials tested. Those below DL were Cr, Ni, Ti, V and Zr for maize 167 

and wood, and V and Zr for P. truncatus. Na concentrations in living organisms are often controlled 168 

by regulatory processes and are not considered further. 169 

Comparison of elemental profiles for host plants  170 
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There were differences between elemental determinations of maize and wood, and results for low 171 

and high concentrations are shown in Figures 1 and 2 respectively. The S determinations were 172 

similar for both hosts, and apart from P and Zn which were at higher concentrations in maize than 173 

wood, most elements appear to be at higher concentrations in wood than in maize, including Ba and 174 

Sr which were below DLs in maize. There were significant differences for Al, B, Ca, Cu, Fe, Mg, P, Si, 175 

Sr and Zn between wood and maize determinations (Figures 1 and 2, and Table 3). 176 

Elemental profiles of P. truncatus grouped by environment of capture and host availability 177 

There were differences in the concentration of some elements in P. truncatus classified by their 178 

environment of capture (agriculture, maize or natural). Figures 3 and 4 suggest that agriculture 179 

beetles contained more Al, B, Cr, Fe, Si, Ti, and Zn, and less Ni than maize or natural beetles. Whilst 180 

maize beetles appeared to have lower levels of Al, Ca, Cu, Fe, Mg, Mn, P, S, Si, Sr and Zn than either 181 

agriculture or natural beetles, with Ti below DLs. Elemental concentrations in agriculture and natural 182 

P. truncatus were similar, although agriculture beetles contained more Al, B, Cr, Fe, Si, Ti and Zn and 183 

less Ni than natural beetles. These differences were significant for Al, Ca, Cu, Cr, Fe, S, Si, Sr, Ti and 184 

Zn in a three-way KW comparison between agriculture, maize and natural groups, but not significant 185 

for B, Ba and Ni (Table 4). All pairwise comparisons between elemental determinations of maize 186 

against natural beetles, and agriculture versus maize beetles (except Ti) were significantly different 187 

at P <0.001 (Table 4). However, only Al, Ba, K, P, Sr and Ti were significantly different in a pairwise 188 

comparison between agriculture and natural beetles (Table 4). 189 

 190 

When P. truncatus were grouped according to those with and without known access to maize, the 191 

new field beetle group (all beetles caught in pheromone-baited traps) showed significant differences 192 

in the concentrations of most elements with the exception of B, Ba, Ni, and P compared with maize-193 

reared beetles (Table 4). 194 
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Discussion  195 

This study successfully demonstrates that concentrations of many chemical elements differ between 196 

cereals and a natural host of a grain pest, and between insects infesting maize or collected in 197 

environments where maize is present and those collected far from environments where only natural 198 

hosts are available. Therefore elemental screening of pests can identify potential intrinsic markers of 199 

dispersal between cereal infestations and natural reservoirs on alternative hosts. However, the 200 

elemental trends in host plants and insects differed, and those able to distinguish between insects 201 

reared on maize and others caught in environments without maize, were not the same as those that 202 

distinguished between maize and an alternative host. For P. truncatus, concentrations of Al, Ca, Cu, 203 

Cr, Fe, Si, Sr, Ti and Zn differed with their environment of capture, and Al, Sr and Ti were also 204 

significantly different when all field beetles were compared with those infesting maize suggesting 205 

their application as intrinsic markers. In addition, for the more refractory elements like Si, 206 

environmental associations with resistant mineral phases (quartz) probably restrict their wider 207 

biomarker application.  208 

Mahroof & Phillips (2012) screened R. dominca and three hosts, acorns (Quercus muhlenbergii 209 

(Englelm)), wheat and maize, for 10 elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) and their mean 210 

ICP-AES determinations of maize for elements in common with this study are similar: Fe (20, 30 211 

mg/kg), K (3600, 3800 mg/kg), P (2700, 3000 mg/kg) and S (800, 1000 mg/kg) (this study and 212 

Mahroof & Phillips (2012) respectively). They also found more P and Zn in maize than in a natural 213 

host, but trends for Fe and Mg in maize and natural foods were reversed. They saw no difference in 214 

Ca or Cu concentrations between maize and acorns, but distinguished wheat because it had more Ca 215 

and Mn than either acorns or maize. We screened a wider range of elements, and in addition found 216 

Ba and Sr were above DL in a candidate alternative host but not maize, and also detected more Al, 217 

Ca, Cu, Fe, Mg and Si, and less P and Zn in the alternative host than in maize.  218 
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Five elements, Ca, K, Mg, P, S and Zn, were identified as likely markers for the environment of 219 

capture or known dietary history in both P. truncatus and R. dominica, with Al, B, Ba, Ca, Cu, Fe, K, 220 

Mn S, Sr, Zn and Si concentrations differing between maize-reared and field-captured P. truncatus 221 

suggesting they can distinguish between beetles that complete their life-cycle solely on maize from 222 

those that consume natural foods or mixed diets. It would be useful to test this experimentally and 223 

develop dispersal models for pests based upon unique suites of elements that vary with their natal 224 

hosts, and to investigate temporal changes in the elements present in insects and plants. A limitation 225 

of our study was that only one alternative host was profiled for a species which has many potential 226 

host plants (Nang’ayo et al., 2002). However, if elemental profiles of insects derive from the 227 

geochemistry of their environment we would expect to see chemical differences between those 228 

feeding on plants growing in natural environments and those infesting crops grown in soils that 229 

undergo regular cultivation and agrochemical regimes.  In addition the interpretation of field-230 

captured beetles was limited by lack of successful rearing of P. truncatus on S. purpurea, although 231 

other studies have also experienced negative or inconsistent results with P. truncatus on non-maize 232 

hosts that could not be controlled (Detmers et al., 1993; Nang'ayo et al., 2002, Nansen et al., 2004). 233 

S. purpurea is an appropriate model for alternative hosts as it is widely distributed in Mexico and a 234 

known host of P. truncatus in natural vegetation (Calderón-Cortés et al., 2011).   235 

A number of studies using different analytical techniques have determined multiple chemical 236 

profiles of insects with the aim of tracking dispersal and movement between host plants and field 237 

locations. These include Energy Dispersive X-ray Spectrometry for aphids and moths (Bowden et al., 238 

1984; Bowden et al., 1985b; Sherlock et al., 1986), and IPC-AES for cotton boll weevils (Burns et al., 239 

1985) as well as R. dominica (Mahroof & Phillips, 2012). Technique, local geochemistry and the 240 

nature of materials tested can all influence the selection of particular elements as intrinsic markers, 241 

but multi-elemental screening shows potential for finding appropriate markers for each scenario. In 242 

the future, with recent improved detection and sensitivity of techniques, it will be possible to 243 

determine profiles for individual insects especially larger species. Also non-destructive methods like 244 
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Laser Ablation can allow other analyses such as DNA-sequencing or stable isotope analysis to be 245 

completed on a single insect, increasing the data that can inform the origin of each individual. By 246 

comparison, a bulk sample as used here may miss differences between individuals, but can give an 247 

overall indication of assimilated diet by the population captured. 248 

ICP-AES provides robust evidence for assessing intrinsic markers and identifying consistent trends in 249 

host materials and the herbivores consuming them. These can be tested in controlled field and 250 

laboratory feeding trails, and incorporated into multivariate predictive models in a similar way to the 251 

geospatial isoscape approach applied to stable isotope determinations (West et al., 2010), which can 252 

reveal assimilated and natal diet in holometabolous insects which switch between C3 and C4 plant 253 

hosts (Mahroof & Phillips, 2007). However, when screening for rare or trace elements which 254 

naturally exist at low concentrations in organisms, the data distributions are frequently left skewed 255 

and rarely conform to normal distributions, hence do not fit the assumptions of parametric 256 

techniques such as Linear Discriminant Analysis and Principal Components Analysis.  In this study, as 257 

in many clinical trials and behavioural research, some data were based on small sample sizes or were 258 

imbalanced when a determination was below DLs. We addressed these using non-parametric tests in 259 

an exact inference method (Gibbons JD & Chakraborti S, 2003). Other chemical screening data of 260 

insect pests show similar data distributions, often with low or unequal replication (Burns et al., 1985; 261 

Peng et al., 2012), and in common with good practice in other studies we ensured consistency of 262 

chemical assays by comparing samples with laboratory standards and our reference materials. 263 

Nevertheless multi-elemental analyses are powerful tools for tracing dispersal of organisms 264 

particularly pests which survive in natural reservoirs as well as for elucidating the sources of invading 265 

organisms. Understanding the sources of pests will enable integrated pest management models to 266 

respond to changes in dispersal and new risks to stored commodities and crops. Future studies of 267 

pests and rare organisms will benefit from the increased accessibility of chemical screening and 268 

isotopic profiling as tools for studying the movement of animal pests as well as species of 269 
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conservation concern, and for authenticating the origin of high value biological material including 270 

foodstuffs and organisms protected under CITIES.  271 
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Table 1. Groups used to classify P. truncatus according to the characteristics of their collection sites 402 

and access to maize (n = number of determinations, each consisting of bulk samples of 10 beetles 403 

per determination).  404 

Group for elemental comparison Definition and collection-site characteristics 

Maize (n=32) Reared through two generations from egg to adult on maize  

Agriculture (n=10) Field-caught in pheromone-baited traps in open arable areas 

production, where maize was growing and approaching 

maturity  

Natural (n=8) Field-caught in pheromone-baited traps in areas of natural or 

semi-natural vegetation including dense deciduous and 

coniferous woodland, and semi-arid rangeland with sparse 

trees and shrubs. All at least 12 km from nearest dwellings,  

agriculture or maize stores 

Field n=(18) Combination of all field-caught in pheromone-baited traps 

(agriculture plus natural as defined above) 

  405 
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Table 2. ICP-AES Detection Limits (DL) for elements most likely to occur at low concentrations. These 406 

were determined from the bulk reference samples of P. truncatus and maize (and incorporating 407 

material from all sources to be analysed) and extrapolated for wood from maize.  408 

 409 

 Detection Limit (mg/kg) 

Element P. truncatus Maize and wood  

Al 6 2.4 

Ba 0.2  0.06 

Cu 0.3  0.1 

Cr 0.8  0.4 

Fe 3 1.1 

Mg 1 0.4 

Mn 0.3  0.1 

Ni 2.8  1.1 

Sr 0.03 0.01 

Ti 0.2  0.06 

Zn 3.5 1.3 

  410 
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Table 3. Results of pairwise comparisons between the elemental loadings of maize and wood, for 411 

elements above DLs in both plant hosts. All comparisons assume 1 df. (Results in bold were 412 

significantly different). 413 

 Kruskal-Wallis  (KW) test 

Element Mann-Whitney 

U statistic 

KW statistic 

(Χ2 approximation) 

p-value 

Al 2 8.81 0.003 

B 2 11.75 0.001 

Ba 0 3.82 0.051 

Ca 0 12.03 0.001 

Cu 5 11.96 0.001 

Fe 16 6.49 0.011 

K 44 0.85 0.356 

Mg 13 7.37 0.007 

Mn 47 0.57 0.449 

P 120 12.02 0.001 

S 74 0.65 0.419 

Si 6 9.78 0.001 

Zn 120 12.02 0.001 

  414 
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Table 4. Kruskal Wallis three-way comparison of beetles by agriculture, maize and natural groups, 415 

with post hoc Dwass-Steel-Chritchlow-Fligner pairwise comparisons between groups and Kruskal 416 

Wallis two-way comparison all field-caught and maize-reared beetles. (V and Zr were below DLs.) 417 

(Significant differences are in bold.) 418 

Element Three-way comparison 

agriculture*maize*natural 

p-value for Dwass-Steel-Chritchlow-

Fligner Test for Pairwise Comparisons 

Two-way 

comparison 

field*maize 

 Kruskal-

Wallis Test 

Statistic 

p-value agriculture 

* maize 

agriculture 

* natural 

maize       

* natural 

Kruskal-

Wallis 

Test 

Statistic 

p-

value 

Al 27.09 <0.001 <0.001 0.007 <0.001 27.09 <0.001 

B 1.35 0.51 <0.001 0.83 <0.001 0.72 0.4 

Ba 0.37 0.83 <0.001 0.003 <0.001 0.34 0.56 

Ca 27.59 <0.001 <0.001 0.97 <0.001 26.77 <0.001 

Cr 6.27 0.044 <0.001 0.54 <0.001 5.6 0.02 

Cu 14.41 0.001 <0.001 0.13 <0.001 14.35 <0.001 

Fe 18.69 <0.001 <0.001 0.76 <0.001 17.68 <0.001 

K 4.55 0.10 <0.001 0.004 <0.001 4.43 0.04 

Mg 4.66 0.10 <0.001 0.81 <0.001 4.47 0.03 

Mn 5.26 0.07 <0.001 0.56 <0.001 3.56 0.06 

Ni 1.12 0.52 <0.001 0.08 <0.001 1.12 0.29 

P 16.93 <0.001 <0.001 <0.001 <0.001 1.77 0.18 

S 1.94 0.38 <0.001 0.86 <0.001 16.93 <0.001 

Si 9.95 0.007 <0.001 0.78 <0.001 9.69 0.002 

Sr 16.56 <0.001 <0.001 <0.001 <0.001 15.51 <0.001 

Ti 18.36 <0.001 0.90 <0.001 <0.001 17.86 <0.001 

Zn 12.77 0.004 <0.001 0.43 <0.001 10.6 0.001 

 419 
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