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Abstract

Detecting sources of insects attacking grain stores can help to develop more effective pest
management models. This study considers combinations of chemical elements as intrinsic markers
for tracing resource-use by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) a pest of
stored maize which occurs in natural environments where alternative hosts may support reservoirs

of infestation.

P. truncatus were lab-reared on maize or field-caught in pheromone-baited flight-traps. Beetles and
hosts were screened for multiple elements using Inductively Coupled Plasma Atomic Emission
Spectrometry (ICP-AES). For elements above detection limits we tested relationships between

determinations for different host plants, and for beetles according to environment where captured.

An alternative host Spondias purpurea (Linnaeus) (Anacardaceae) contained more Al, B, Ca, Cu, Fe,
Mg, Si and Sr, and less P and Zn than maize. Trends for P were consistent between maize and beetles
infesting maize, but reversed for Ca and Mg. Elemental profiles of beetles were associated with
environment, with significantly lower Al, Ca, Cu, Cr, Fe, P, S, Si, Sr, Ti and Zn determinations in maize-
reared beetles than those captured in agricultural or natural environments. Additionally, Al, Ba, K, P,
Sr and Ti determinations of field beetles captured in agricultural vs natural environments were
significantly different. This suggests Al, Sr and Ti as candidate markers for environment, plus other
possibilities likely since elemental concentrations (except B, Ba, Ni, and P) were significantly different

in comparisons of all field beetles vs maize-reared beetles.

We present a robust practical solution which successfully identified combinations of elemental

markers for remotely tracing resource-use and dispersal by P. truncatus. We discuss the application
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of chemical characterisation for identifying intrinsic markers of pests, particularly species with
alternative hosts. We discuss how to manage the low replication and unbalanced sample sizes

inherent in insect elemental screening, particularly when rarer elements are potential markers.

Introduction

Flight is the main dispersal mechanism of insect pests, with their establishment and spread
dependent upon reaching suitable environments and hosts, and whilst many species are monitored
for pest management purposes, their natal origin is unknown. Primary storage pests complete their
life cycle inside intact cereals grains where their damage goes undetected, facilitating infestation by
other pests (Munro, 1940). Infestation can be reduced through good hygiene and chemical or
physical control with the solid structure of stores forming a barrier to pests. However, most small-
scale tropical stores are open structure experiencing temperatures conducive to insect flight and

reproduction, and may suffer high levels of infestation from incoming pests (Haines, 2000).

This study uses multiple elemental profiles to identify intrinsic markers of dispersal of the larger
grain borer Prostephanus truncatus (Horn)(Coleoptera: Bostrichidae). Such analytical approaches
have the potential to detect the assimilated diet of organisms, including evidence of natal diets in
dispersing adults, in contrast to gut content analyses which reveal recent adult diet (Borgemeister et
al. 1998a). This insect is native to Mesoamerica and an introduced pest of maize and dried cassava
in Africa (Hodges et al., 1983; Hodges et al., 1985). It is frequently monitored using traps baited with
synthetic analogues of its aggregation pheromone (Hodges et al., 1984) and a similar pheromone-
trapping system exists for the lesser grain borer, Rhyzopertha dominica (F.) (Colepotera:
Bostrichidae) (Williams et al., 1981). Such traps have provided insight into their distribution, activity
and relative abundance (Cogburn et al., 1984; Dendy et al., 1989) with both species detected in/near
grain stores as well as environments far from cereal production or storage (Borgemeister et al.,

1998a; Mahroof et al., 2010; Nansen et al., 2002; Nansen & Meikle, 2003; Rees et al., 1990; Tigar et
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al., 1994). Systematic searching for P. truncatus around traps with high catches has rarely located
insects suggesting that they are sparsely distributed inside diverse plant structures such as twigs,

deadwood, roots and buried seeds (Nansen et al., 2004).

Most Bostrichidae are wood-borers requiring woody hosts (Lui et al., 2008) and the widespread
occurrence of two bostrichid grain pests in natural environments suggests they may not depend
solely upon stored grains. Evidence of P. truncatus’ non-agricultural hosts include its occurrence in
cerambycid-girdled twigs of S. purpurea (Linnaeus)(Anacardaceae) and Bursera fagariodes Engler
(Burseraceae) in Mexican forests (Ramirez Martinez et al., 1994) and of Lannea nigritana (Sc. Elliot)
Keay (Anacardaceae) in African forests (Borgemeister et al., 1998b), with the effects of twig-girdling
thought to benefit cerambycid larvae and smaller wood-borers including P. truncatus (Calderén-
Cortés et al. 2011; Forcella, 1982). Further signs of P. truncatus’ host-flexibility include reproduction
on Delonix negra (Bojer ex Hook) Raf. (Fabaceae), Acacia polyacanthus Willd (Fabaceae),
Commiphora rostrata Engl. (Burseraceae), Commiphora balensis Engl. (Burseraceae) and Euphorbia
tirucalli (Euphorbiaceae), plus boring or limited reproduction on 15 other woody species (Nang’ayo
et al., 2002). It has been reared on Ficus and cassava roots and has limited reproduction on teak
seeds, Tectona grandis Linn. F. (Lamiaceae) (Nansen et al., 2004). Whilst for R. dominica, alternative
hosts include acorns of native North American oaks (Jia et al., 2008) with evidence of other non-

grain hosts in natural habitats (Edde & Phillips, 2006).

Multi-elemental loadings of biological materials are commonly used to establish origin, and nutrient
or contaminant levels in foods (Engstrom et al., 2004; Kelly et al., 2005) but rarely applied to insects,
although used with varying degrees of success to trace host-use and natal origin of aphids, moths
and weevils (Bowden et al., 1984; Bowden et al., 1985a; Bowden et al., 1985b; Burns et al., 1985;
Sherlock et al., 1984; Sherlock et al., 1985; 1986). More recently, Tigar & Waldron (2003) proposed
using elemental profiling to identify remote markers of P. truncatus, and Mahroof & Phillips (2012)

applied the technique to R. dominica and found specific elements were associated with cereal-
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consumption or agricultural environments whilst others were indicative of natural host-consumption

or non-agricultural environments.

This study uses ICP-AES to produce multiple elemental profiles of P. truncatus with the aim of
identifying patterns of elements that can distinguish between insects according to their natal host.
We explore elemental profiles of maize and a natural host S. purpurea, and of P. truncatus reared on
maize and collected in Mexico from agricultural areas where maize was present and natural
vegetation far from cereal production or storage. An intrinsic method to trace resource-use and
origin of stored product and other pests routinely captured in biosecurity surveillance monitoring
would increase our understanding of the role of natural reservoirs as sources of infestation, and thus

help inform pest management.

Materials and Methods

Field and laboratory sampling

We collected maize grains and S. purpurea branches in Mexico, and captured P. truncatus in
pheromone-baited flight-traps (lures supplied by AgriSense, UK) in August, a peak period of flight
activity (Tigar et al., 1994). Traps were deployed for 48 hours to sample nearby insects based on
knowledge of their likely dispersal towards pheromone-baits (Helbig et al., 1992). Trapping
environments included arable areas where maize was grown and natural environments far from
maize production and storage, further information is given in Table 1 which characterises samples

for comparison and statistical analyses.

The laboratory-bred beetles (the maize category in Table 1) were a strain of P. truncatus collected in
Tanzania and kept in culture since the 1980s (provided by the Natural Resources Institute, University

of Greenwich, Chatham, Kent, UK and held under DEFRA licence at the University of West of
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Scotland). Insects were kept in honey jars in an incubator at 25°C + 0.5 °C and reared on Mexican
maize through two generations from egg to adult before extraction and analysis (repeated attempts
to rear P. truncatus on S. purpurea in the laboratory were unsuccessful). Beetles were euthanized by
freezing immediately after field capture or removal from laboratory cultures, and defrosted before

analysis.

Sample preparation and ICP-AES assays

All materials were rinsed in ultra-pure water and dried overnight at 40°C and homogenized by
grinding in an agate pestle and mortar. Each P. truncatus determination required a bulk sample of 10
adults (approximately 10 mg). Insect samples were heated in a 20 minute microwave digestion
programme reaching 600 W and the cooled digests were made up to 5 ml with ultra-pure water. For
maize and S. purpurea, 0.2-0.3 g samples were mixed with 1 ml H,0, and 3 ml c. HNO; in a PFM
digestion bomb using the same digestion program as beetles. When cooled, the digests were made

up to 25 ml with ultra-pure water.

The digests were screened for Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Sr, Ti, V, Zn and Zr
in a Perkin-Elmer Optima 3000 ICP Spectrometer under default conditions (Gal et al., 2008).
Determinations for each analyte were means from four readings off a calibration curve, and those
exceeding the calibration range were diluted as required. Detection Limits (DL) were established for
rarer elements likely to be at low concentrations (see Table 2). We established reference samples for
beetles and maize which were analysed in tandem with test samples and ICP-AES elemental

standards for consistency of determination.

Data Analysis
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Multi-element loadings of P. truncatus were explored by classifying beetles according to site
characteristics and proximity to maize as described in Table 1. Firstly, we placed them into three
groups (maize, agriculture and natural) and compared loadings of elements between beetles in
these groups. Then we combined all pheromone-trapped beetles (the agriculture and natural
groups) into a single field class and compared their elemental loadings with those of maize-reared
beetles. We also identified trends in elemental loadings of maize and S. purpurea and compared

these with trends in P. truncatus according to environment of capture.

For ease of visual interpretation, elemental determinations were grouped into low and high
concentrations according to their relative values in insects and plant hosts. We used SYSTAT 13 with
Exact tests (Systat Software Inc., 2009) to handle unequal replication and any missing values for
determinations below detection limits (DL). The elemental data distributions were diverse with
many skewed towards very low concentrations. As no single transformation could produce normal
distributions of the data we performed non-parametric Kruskal Wallis (Mann-Whitney U) tests to
examine differences between groups, with post-hoc Dwass-Steel-Chritchlow-Fligner tests to identify
differences between pairs of groups. These make no assumptions about the normality of data
distributions and hence are unlikely to produce significant results when there are no real differences

between groups (Dytham, 2011).

Results

Elemental profiles and concentrations

Of the 20 elements detected Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Sr, Ti, V, Zn and Zr,
there were 14 above DL in all materials tested. Those below DL were Cr, Ni, Ti, V and Zr for maize
and wood, and V and Zr for P. truncatus. Na concentrations in living organisms are often controlled

by regulatory processes and are not considered further.

Comparison of elemental profiles for host plants
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There were differences between elemental determinations of maize and wood, and results for low
and high concentrations are shown in Figures 1 and 2 respectively. The S determinations were
similar for both hosts, and apart from P and Zn which were at higher concentrations in maize than
wood, most elements appear to be at higher concentrations in wood than in maize, including Ba and
Sr which were below DLs in maize. There were significant differences for Al, B, Ca, Cu, Fe, Mg, P, Si,

Sr and Zn between wood and maize determinations (Figures 1 and 2, and Table 3).

Elemental profiles of P. truncatus grouped by environment of capture and host availability

There were differences in the concentration of some elements in P. truncatus classified by their
environment of capture (agriculture, maize or natural). Figures 3 and 4 suggest that agriculture
beetles contained more Al, B, Cr, Fe, Si, Ti, and Zn, and less Ni than maize or natural beetles. Whilst
maize beetles appeared to have lower levels of Al, Ca, Cu, Fe, Mg, Mn, P, S, Si, Sr and Zn than either
agriculture or natural beetles, with Ti below DLs. Elemental concentrations in agriculture and natural
P. truncatus were similar, although agriculture beetles contained more Al, B, Cr, Fe, Si, Ti and Zn and
less Ni than natural beetles. These differences were significant for Al, Ca, Cu, Cr, Fe, S, Si, Sr, Ti and
Zn in a three-way KW comparison between agriculture, maize and natural groups, but not significant
for B, Ba and Ni (Table 4). All pairwise comparisons between elemental determinations of maize
against natural beetles, and agriculture versus maize beetles (except Ti) were significantly different
at P <0.001 (Table 4). However, only Al, Ba, K, P, Sr and Ti were significantly different in a pairwise

comparison between agriculture and natural beetles (Table 4).

When P. truncatus were grouped according to those with and without known access to maize, the
new field beetle group (all beetles caught in pheromone-baited traps) showed significant differences
in the concentrations of most elements with the exception of B, Ba, Ni, and P compared with maize-

reared beetles (Table 4).
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Discussion

This study successfully demonstrates that concentrations of many chemical elements differ between
cereals and a natural host of a grain pest, and between insects infesting maize or collected in
environments where maize is present and those collected far from environments where only natural
hosts are available. Therefore elemental screening of pests can identify potential intrinsic markers of
dispersal between cereal infestations and natural reservoirs on alternative hosts. However, the
elemental trends in host plants and insects differed, and those able to distinguish between insects
reared on maize and others caught in environments without maize, were not the same as those that
distinguished between maize and an alternative host. For P. truncatus, concentrations of Al, Ca, Cu,
Cr, Fe, Si, Sr, Ti and Zn differed with their environment of capture, and Al, Sr and Ti were also
significantly different when all field beetles were compared with those infesting maize suggesting
their application as intrinsic markers. In addition, for the more refractory elements like Si,
environmental associations with resistant mineral phases (quartz) probably restrict their wider

biomarker application.

Mahroof & Phillips (2012) screened R. dominca and three hosts, acorns (Quercus muhlenbergii
(Englelm)), wheat and maize, for 10 elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) and their mean
ICP-AES determinations of maize for elements in common with this study are similar: Fe (20, 30
mg/kg), K (3600, 3800 mg/kg), P (2700, 3000 mg/kg) and S (800, 1000 mg/kg) (this study and
Mahroof & Phillips (2012) respectively). They also found more P and Zn in maize than in a natural
host, but trends for Fe and Mg in maize and natural foods were reversed. They saw no difference in
Ca or Cu concentrations between maize and acorns, but distinguished wheat because it had more Ca
and Mn than either acorns or maize. We screened a wider range of elements, and in addition found
Ba and Sr were above DL in a candidate alternative host but not maize, and also detected more Al,

Ca, Cu, Fe, Mg and Si, and less P and Zn in the alternative host than in maize.
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Five elements, Ca, K, Mg, P, S and Zn, were identified as likely markers for the environment of
capture or known dietary history in both P. truncatus and R. dominica, with Al, B, Ba, Ca, Cu, Fe, K,
Mn'S, Sr, Zn and Si concentrations differing between maize-reared and field-captured P. truncatus
suggesting they can distinguish between beetles that complete their life-cycle solely on maize from
those that consume natural foods or mixed diets. It would be useful to test this experimentally and
develop dispersal models for pests based upon unique suites of elements that vary with their natal
hosts, and to investigate temporal changes in the elements present in insects and plants. A limitation
of our study was that only one alternative host was profiled for a species which has many potential
host plants (Nang’ayo et al., 2002). However, if elemental profiles of insects derive from the
geochemistry of their environment we would expect to see chemical differences between those
feeding on plants growing in natural environments and those infesting crops grown in soils that
undergo regular cultivation and agrochemical regimes. In addition the interpretation of field-
captured beetles was limited by lack of successful rearing of P. truncatus on S. purpurea, although
other studies have also experienced negative or inconsistent results with P. truncatus on non-maize
hosts that could not be controlled (Detmers et al., 1993; Nang'ayo et al., 2002, Nansen et al., 2004).
S. purpurea is an appropriate model for alternative hosts as it is widely distributed in Mexico and a

known host of P. truncatus in natural vegetation (Calderén-Cortés et al., 2011).

A number of studies using different analytical techniques have determined multiple chemical
profiles of insects with the aim of tracking dispersal and movement between host plants and field
locations. These include Energy Dispersive X-ray Spectrometry for aphids and moths (Bowden et al.,
1984; Bowden et al., 1985b; Sherlock et al., 1986), and IPC-AES for cotton boll weevils (Burns et al.,
1985) as well as R. dominica (Mahroof & Phillips, 2012). Technique, local geochemistry and the
nature of materials tested can all influence the selection of particular elements as intrinsic markers,
but multi-elemental screening shows potential for finding appropriate markers for each scenario. In
the future, with recent improved detection and sensitivity of techniques, it will be possible to

determine profiles for individual insects especially larger species. Also non-destructive methods like
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Laser Ablation can allow other analyses such as DNA-sequencing or stable isotope analysis to be
completed on a single insect, increasing the data that can inform the origin of each individual. By
comparison, a bulk sample as used here may miss differences between individuals, but can give an

overall indication of assimilated diet by the population captured.

ICP-AES provides robust evidence for assessing intrinsic markers and identifying consistent trends in
host materials and the herbivores consuming them. These can be tested in controlled field and
laboratory feeding trails, and incorporated into multivariate predictive models in a similar way to the
geospatial isoscape approach applied to stable isotope determinations (West et al., 2010), which can
reveal assimilated and natal diet in holometabolous insects which switch between C3 and C4 plant
hosts (Mahroof & Phillips, 2007). However, when screening for rare or trace elements which
naturally exist at low concentrations in organisms, the data distributions are frequently left skewed
and rarely conform to normal distributions, hence do not fit the assumptions of parametric
techniques such as Linear Discriminant Analysis and Principal Components Analysis. In this study, as
in many clinical trials and behavioural research, some data were based on small sample sizes or were
imbalanced when a determination was below DLs. We addressed these using non-parametric tests in
an exact inference method (Gibbons JD & Chakraborti S, 2003). Other chemical screening data of
insect pests show similar data distributions, often with low or unequal replication (Burns et al., 1985;
Peng et al., 2012), and in common with good practice in other studies we ensured consistency of
chemical assays by comparing samples with laboratory standards and our reference materials.
Nevertheless multi-elemental analyses are powerful tools for tracing dispersal of organisms
particularly pests which survive in natural reservoirs as well as for elucidating the sources of invading
organisms. Understanding the sources of pests will enable integrated pest management models to
respond to changes in dispersal and new risks to stored commodities and crops. Future studies of
pests and rare organisms will benefit from the increased accessibility of chemical screening and

isotopic profiling as tools for studying the movement of animal pests as well as species of
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conservation concern, and for authenticating the origin of high value biological material including

foodstuffs and organisms protected under CITIES.
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Table 1. Groups used to classify P. truncatus according to the characteristics of their collection sites

and access to maize (n = number of determinations, each consisting of bulk samples of 10 beetles

per determination).

Group for elemental comparison

Definition and collection-site characteristics

Maize (n=32)

Reared through two generations from egg to adult on maize

Agriculture (n=10)

Field-caught in pheromone-baited traps in open arable areas
production, where maize was growing and approaching

maturity

Natural (n=8)

Field-caught in pheromone-baited traps in areas of natural or
semi-natural vegetation including dense deciduous and
coniferous woodland, and semi-arid rangeland with sparse
trees and shrubs. All at least 12 km from nearest dwellings,

agriculture or maize stores

Field n=(18)

Combination of all field-caught in pheromone-baited traps

(agriculture plus natural as defined above)
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406  Table 2. ICP-AES Detection Limits (DL) for elements most likely to occur at low concentrations. These
407  were determined from the bulk reference samples of P. truncatus and maize (and incorporating
408 material from all sources to be analysed) and extrapolated for wood from maize.

409
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Detection Limit (mg/kg)

11 Element P. truncatus Maize and wood

13 Al 6 2.4

Ba 0.2 0.06

16 Cu 0.3 0.1

18 Cr 0.8 0.4

Fe 3 11

21 Mg 1 0.4

23 Mn 0.3 0.1

Ni 2.8 11

26 Sr 0.03 0.01

28 Ti 0.2 0.06

Zn 3.5 13

31 410
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411  Table 3. Results of pairwise comparisons between the elemental loadings of maize and wood, for
412 elements above DLs in both plant hosts. All comparisons assume 1 df. (Results in bold were

413  significantly different).

©CoO~NOUTA,WNPE

414

Kruskal-Wallis (KW) test
Element Mann-Whitney KW statistic p-value
U statistic (X2 approximation)
Al 2 8.81 0.003
B 2 11.75 0.001
Ba 0 3.82 0.051
Ca 0 12.03 0.001
Cu 5 11.96 0.001
Fe 16 6.49 0.011
K 44 0.85 0.356
Mg 13 7.37 0.007
Mn 47 0.57 0.449
P 120 12.02 0.001
S 74 0.65 0.419
Si 6 9.78 0.001
Zn 120 12.02 0.001
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Table 4. Kruskal Wallis three-way comparison of beetles by agriculture, maize and natural groups,

with post hoc Dwass-Steel-Chritchlow-Fligner pairwise comparisons between groups and Kruskal

Wallis two-way comparison all field-caught and maize-reared beetles. (V and Zr were below DLs.)

(Significant differences are in bold.)

Element Three-way comparison p-value for Dwass-Steel-Chritchlow- Two-way
agriculture*maize*natural | Fligner Test for Pairwise Comparisons comparison
field*maize
Kruskal- p-value agriculture | agriculture maize Kruskal- p-
Wallis Test * maize * natural * natural Wallis value
Statistic Test
Statistic
Al 27.09 <0.001 <0.001 0.007 <0.001 27.09 | <0.001
B 1.35 0.51 <0.001 0.83 <0.001 0.72 0.4
Ba 0.37 0.83 <0.001 0.003 <0.001 0.34 0.56
Ca 27.59 <0.001 <0.001 0.97 <0.001 26.77 | <0.001
Cr 6.27 0.044 <0.001 0.54 <0.001 5.6 0.02
Cu 14.41 0.001 <0.001 0.13 <0.001 14.35 | <0.001
Fe 18.69 <0.001 <0.001 0.76 <0.001 17.68 | <0.001
K 4.55 0.10 <0.001 0.004 <0.001 4.43 0.04
Mg 4.66 0.10 <0.001 0.81 <0.001 4.47 0.03
Mn 5.26 0.07 <0.001 0.56 <0.001 3.56 0.06
Ni 1.12 0.52 <0.001 0.08 <0.001 1.12 0.29
P 16.93 <0.001 <0.001 <0.001 <0.001 1.77 0.18
S 1.94 0.38 <0.001 0.86 <0.001 16.93 | <0.001
Si 9.95 0.007 <0.001 0.78 <0.001 9.69 0.002
Sr 16.56 <0.001 <0.001 <0.001 <0.001 15.51 | <0.001
Ti 18.36 <0.001 0.90 <0.001 <0.001 17.86 | <0.001
Zn 12.77 0.004 <0.001 0.43 <0.001 10.6 0.001
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