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Abstract. The exceptional sorptive ability of carbon nanomaterials (CNMs) for hydrophobic organic contam-

inants (HOCs) is driven by their characteristically large reactive surface areas and highly hydrophobic nature.

Given these properties, it is possible for CNMs to impact on the persistence, mobility and bioavailability of con-

taminants within soils, either favourably through sorption and sequestration, hence reducing their bioavailability,

or unfavourably through increasing contaminant dispersal. This review considers the complex and dynamic na-

ture of both soil and CNM physicochemical properties to determine their fate and behaviour, together with their

interaction with contaminants and the soil microflora. It is argued that assessment of CNMs within soil should be

conducted on a case-by-case basis and further work to assess the long-term stability and toxicity of sorbed con-

taminants, as well as the toxicity of CNMs themselves, is required before their sorptive abilities can be applied

to remedy environmental issues.

1 Introduction

With the continued upscaling of carbon nanomaterial (CNM)

production (Nowack and Bucheli, 2007) as well as the di-

verse array of consumer (Sharma and Ahuja, 2008), medical

(Peretz and Regev, 2012) and industrial applications in which

they are increasingly becoming incorporated, widespread

environmental release of these physically and chemically

unique macromolecules has become inevitable (Köhler et al.,

2008). Once released, soils are likely to be a primary repos-

itory (Mueller and Nowack, 2008; Gottschalk et al., 2009),

with the quantities anticipated to increase on an annual basis

(Gottschalk et al., 2009). In spite of this, studies focused on

CNMs within soils are scarce, and many areas of uncertainty

remain. Understanding the interactions between CNMs, soils

and components therein is therefore an urgent and essential

aspect of any risk assessment process.

In their pristine form, CNMs are broadly characterised

by their large reactive surface areas, highly hydrophobic

characteristics and high degree of biogeochemical recalci-

trance. They are known to be toxic to various soil micro-

biota (Riding et al., 2012a, b), and possess a high affinity for

the sorption of a range of hydrophobic organic compounds

(HOCs), such as polycyclic aromatic hydrocarbons (PAHs),

and polychlorinated biphenyls (PCBs) (Pan and Xing, 2010).

As both PAHs and PCBs are important classes of hydropho-

bic, toxic organic compounds, which are both abundant and

persistent in soils (Stokes et al., 2005), the potential for

CNMs to modify the availability and mobility of HOCs, ei-

ther favourably through sorption and sequestration, or un-

favourably through increasing contaminant dispersal, is cur-

rently unknown. Presently, there is only limited and occa-

sionally contradictory information regarding the implications

of contaminants while sorbed to CNMs, as well as the fate

and behaviour of CNMs in uncontaminated soils. Exploring

these issues in light of the emerging nature of CNMs as xeno-

biotic soil components is therefore essential.

This review seeks to answer three key questions. (i) What

factors influence the behaviour and fate of CNMs within the

soil environment? (ii) To what extent can CNMs influence the

sorption, desorption and mobility of contaminants in soils?

(iii) What are the impacts of CNMs on soil microorganisms

and the biodegradation of contaminants in soils?

Published by Copernicus Publications on behalf of the European Geosciences Union.



2 M. J. Riding et al.: Carbon nanomaterials in clean and contaminated soils

2 Carbon nanomaterial diversity and detection

Within the environment, some CNMs can occur naturally or

have close naturally occurring relatives due to various en-

vironmental events (Heymann et al., 1994; Chijiwa et al.,

1999; Velasco-Santos et al., 2003; Esquivel and Murr, 2004).

However, concentrations occurring naturally are likely to be

relatively small (0.1–0.2 parts per million) (Heymann et al.,

1994; Chijiwa et al., 1999). Therefore, when referring to

CNMs, this review explicitly focuses on those that are an-

thropogenic in origin.

The properties of CNMs vary dramatically between the

different methods of production, functionalization status

and cleaning/purification methods employed (Nowack and

Bucheli, 2007). Hence, determining their environmental be-

haviour is all the more challenging, and generalisation of the

characteristics of CNMs is not possible, with each type re-

quiring careful characterisation (Nowack and Bucheli, 2007).

Of the many different forms of CNMs available, this re-

view focuses specifically on carbon nanotubes (CNTs) and

C60 fullerene, which are two of the most widely utilised and

investigated classes of CNMs (Mueller and Nowack, 2008;

Gottschalk et al., 2009, 2010; Petersen and Henry, 2012).

To date, CNTs are arguably the most promising of all

nanomaterials produced (Giles, 2006). In their pristine form,

CNTs are extremely hydrophobic and consist of graphene

sheets rolled into nanoscale diameter cylinders, the ends

of which may contain spherical fullerene cappings (Mauter

and Elimelech, 2008). One single-rolled graphite sheet is

called a single-walled carbon nanotube (SWCNT), while

several SWCNTs nested together in a concentric fashion

comprise a multi-walled carbon nanotube (MWCNT) (Pan

and Xing, 2008). They consist of sp2 carbon atom arrange-

ments in a fused benzene ring configuration, which results in

exceptional physicochemical properties and consequentially

their incorporation into a vast array of composite materials

(Liu et al., 1999; Snow et al., 2005; Mauter and Elimelech,

2008; Almecija et al., 2009). An excellent and more detailed

discussion about the unique physicochemical properties of

CNTs is provided by Mauter and Elimelech (2008).

Fullerenes are spherically arranged carbon atoms resem-

bling a geodesic dome. The size of the fullerene dome can

vary depending on the number and spherical configuration of

carbon atoms. C60 fullerene (buckminsterfullerene or bucky-

ball) has arguably the best defined physicochemical parame-

ters, produced in the largest quantities, and has been the fo-

cus of most scientific engagement (Campbell and Rohmund,

2000; Petersen and Henry, 2012). C60 is comprised of a

spherical configuration of 5- and 6-carbon rings, consisting

of 60 carbon atoms in total. It commonly exists as nano-

C60 (nC60) particles (regarded as the most environmentally

relevant form), which are crystalline structures containing

100–1000 C60 molecules (Colvin, 2003; Sayes et al., 2004).

Presently, fullerenes have proposed applications in biology

(Lucafò et al., 2012) and electronic/optical devices as thin

films combined with polymers (Richards et al., 2012).

Unlike most organic chemicals with well-defined struc-

tures, the diversity of particle sizes, lengths, diameters,

charges, surface areas, coatings, molecular weight, impu-

rities and aggregation states are not necessarily constant.

These are often tailored to the intended end use of the parti-

cles and can be modified by the environmental compartments

in which they reside, which limits their detection and charac-

terisation in soils and other complex environmental matrices

through chromatographic techniques (Petersen et al., 2011).

A summary of methods used to detect CNMs within soils and

sediments is presented in Table 1.

In addition, as the lifecycles of CNM-containing products

are likely to vary greatly, the means by which these mate-

rials enter the soil environment are also likely to be highly

variable (Pan and Xing, 2012). An excellent review of dif-

ferent CNM exposure scenarios, for both humans and the

environment, is provided by Köhler et al. (2008). Further

complicating their detection is the emerging nature of man-

ufactured CNMs as soil xenobiotic components, and hence

their presently low concentrations, together with their inter-

action with naturally occurring nanomaterials and other en-

vironmental components, which leads to particles with sizes

and compositions that significantly differ from their native

forms (Nowack and Bucheli, 2007; Darlington et al., 2009;

Chen et al., 2011). As such, careful consideration of multiple

environmental variables is required to determine their impact

on CNM fate and behaviour.

3 CNM behaviour and fate within the soil

environment

Once released into the soil, the fate and behaviour of

CNMs is governed by their interactions with various compo-

nents within the environment. Derjaguin–Landau–Verwey–

Overbeek (DLVO) interactions, such as electrostatic interac-

tions and van der Waals (vdW) forces, and non-DLVO in-

teractions, such as hydrogen bonding and steric hindrance,

ultimately determine the mobility, aggregation and adhesion

of CNMs within soils. These forces may operate in concert

to various extents, with the predominating force controlled

by factors such as the properties and quantity of soil organic

matter (SOM), characteristics of inorganic matter, and the

type and quantity of clays, together with the properties of

CNMs themselves. Each of these factors are heavily influ-

enced by variables that are not necessarily constant over time,

such as pH and ionic strength.

3.1 The impact of soil organic matter

Soil organic matter plays a substantial role in both the fate

and behaviour of CNMs through alterations in the dom-

inance of the various DLVO and non-DLVO interactions.

SOM (which consists primarily of decomposed plant and

SOIL, 1, 1–21, 2015 www.soil-journal.net/1/1/2015/
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animal remains (Lee et al., 1981)) is an all-encompassing

term describing organic matter (OM) dispersed ubiquitously

throughout the soil environment, and is composed of a

heterogeneous mixture of lipids, carbohydrates, carboxylic

acids, humic substances, hydrophilic acids, proteins, carbo-

hydrates, hydrocarbons and amino acids. However, the mech-

anism by which SOM maintains the CNM stability in sus-

pension is still under investigation and debate (Dinesh et al.,

2012). Specifically, the aim of this section is therefore to pro-

vide an overview of recent investigations in which the man-

ner of solid SOM, dissolved organic matter (DOM), humic

acid (HA) and tannic acid (TA) influence the behaviour of

CNMs.

Adsorption of molecular DOM onto CNMs occurs through

either aromatic ring sorption or binding of aliphatic chains

via π–π or CH–π interactions, leaving the hydrophilic moi-

eties exposed (Lin and Xing, 2008). Consequentially, the

surfaces of CNMs significantly change from a hydropho-

bic, aromatic-like structure to that of the organic, hydrophilic

functional groups in DOM (Zhang et al., 2011a), with poten-

tially large implications for other DLVO and non-DLVO in-

teractions. In studying nC60, Kwon (2012) found the type of

DOM-determined suspension stability, with those containing

long, hydrophobic carbon backbones readily adsorbing via

vdW interactions onto nC60 surfaces, promoting their sta-

bility. However, Zhang et al. (2011a) found that peat (di-

agenetically young SOM) in dissolved form (DOM) also

prevented MWCNT aggregation through both steric hin-

drance and electrostatic repulsion in sodium concentrations

> 4 mM or in solutions of pH≥ 4 (Zhang et al., 2011a).

Increasing ionic strength resulted in greater adsorption of

DOM onto MWCNTs (Hyung et al., 2006; Hyung and Kim,

2008; Zhang et al., 2011a) due to reduced electrostatic re-

pulsion between the DOM and the particle surface. As a re-

sult, cations impairing electrostatic interactions at high ionic

strengths in the presence of DOM may slightly shift the rela-

tive importance of suspension mechanisms from electrostatic

repulsion, in favour of steric hindrance (Zhang et al., 2011a);

broadly similar results have been identified with nC60 (Qu

et al., 2012). Ionic strength therefore primarily affects the

balance between electrostatic repulsion and steric hindrance

mechanisms of particle suspension in the presence of DOM.

Typically, frequently occurring cations within the environ-

ment (K+, Na+, Ca+ and Mg2+) induce aggregation and

deposition in systems devoid of SOM through reductions

in electrostatic repulsion between particles, hence reducing

CNM stability (Zhang et al., 2012b). The influence of cations

on the behaviour of CNMs is well illustrated by the extent

to which physical straining (filtering out) of nC60 occurs

in saturated porous media. Zhang et al. (2012a) found that

columns of pure quartz resulted in very limited nanoparticle

deposition even at low flow velocities, whereas a heteroge-

neous sandy soil with low OM content and small, irregular

and rough grains of sand, significantly inhibited nC60 trans-

port. With the addition of CaCl2, greater deposition of nC60

www.soil-journal.net/1/1/2015/ SOIL, 1, 1–21, 2015
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was observed in both sand and soil; however, significantly

more straining occurred in the soil due to the greater num-

ber of complexation sites for Ca2+ clay and OM fractions

relative to sand (Zhang et al., 2012a). For both the sand and

soil columns, Ca2+ had a much larger effect on the trans-

port of nC60 than Na+ at the same ionic strengths (Zhang et

al., 2012a). This most likely occurred due to efficient neu-

tralisation of surface charges on both nC60 and sand and soil

particles by Ca2+ relative to Na+, which reduced the electro-

static repulsion (Kuznar and Elimelech, 2004; Zhang et al.,

2012a).

When considering the fate and behaviour of CNMs in

soils, solid peat may have a different impact to that of molec-

ular DOM under environmentally relevant ionic conditions.

This could be caused by the alteration of particle-phase dis-

tributions due to the direct sorption of CNMs, as well as

the possibility of DOM or cations being release from the

soil particles themselves (Zhang et al., 2011a). In the ab-

sence of sodium ions, Zhang et al. (2011a) found no adsorp-

tion of MWCNTs to solid peat, indicating a limited affinity

of DOM-MWCNT composites towards the solid phase rel-

ative to the aqueous phase, possibly due to electrostatic re-

pulsion and hydrophilicity of DOM-coated nanotubes. With

the addition of Na+ ions, the relative affinity between DOM-

MWCNTs and peat was increased due to reductions in the

charge potential and subsequent increase in interactions oc-

curring through hydrophobic interactions and/or vdW attrac-

tion (Zhang et al., 2011a). Zhang et al. (2011a) concluded

that with increasing ionic strength (such as in environments

containing seawater or hard freshwater), an increased pre-

cipitation of MWCNTs from the aqueous phase will occur,

impeding their transport within the environment.

Consideration of the ζ potential (diffuse surface charge) of

CNMs in relation to the soil matrix is important when con-

sidering the dynamics of smaller particles’ dispersal, trans-

port and deposition, for which charge forces are likely to be

highly influential relative to larger particles or agglomerates

(Darlington et al., 2009). Its measure, in part, provides infor-

mation on the likely mobility, rates of interaction and aggre-

gation status due to electrostatic forces generated by charged

surfaces (Hu et al., 2005; Jafar and Hamzeh, 2013). Pris-

tine CNTs typically express a limited surface charge (Mo-

hanty et al., 2007); however, P. Wang et al. (2008) found that

the ζ potential of CNTs with a HA coating was highly neg-

ative, which resulted in electrostatic repulsion between the

particles and hence stability when partitioned into the aque-

ous phase. They concluded that mobility and environmental

transport within typically negatively charged porous media,

such as certain types of soils, was highly likely, with par-

ticles remaining stable over a wide range of ionic strengths

(P. Wang et al., 2008). A reduction in pH to the point at which

the CNTs had no charge was identified as an effective means

of causing CNTs to precipitate, through the destabilization of

the HA coatings (P. Wang et al., 2008).

The properties of the humic substances determine the ex-

tent to which DLVO and non-DLVO interactions influence

particle behaviour. TA (Chibowski et al., 1998) and HA

sorbed to CNTs enhance stabilisation in water through reduc-

ing vdW forces between particles and increasing steric repul-

sion (Terashima and Nagao, 2007; Ren et al., 2011). How-

ever, Qu et al. (2012) identified that high molecular weight

(HMW) HAs were more effective in promoting suspension

stability due to stronger steric repulsion than that of low

molecular weight (LMW) HAs. Similarly, HAs containing

large quantities surfactive domains, such as those which are

strongly hydrophilic and lipophilic, promote the dispersal of

CNTs in solutions, while those containing carbohydrates and

predominantly hydrophilic domains resulted in limited dis-

persal (Chappell et al., 2009).

The composition of SOM in relation to ionic strength and

pH dictates the behaviour of CNMs within soils. Presently,

however, insufficient data regarding the relative impact of

different SOM fractions and combinations on DLVO and

non-DLVO forces in soils is lacking, reducing the ability to

estimate how CNMs may behave based on analysis of soil

OM content. Furthermore, in addition to the organic fraction

of soils and coating of CNMs, the role of the inorganic frac-

tion in determining particle behaviour must also be consid-

ered.

3.2 The impact of soil inorganic matter

In addition to the organic fraction, CNM stability in satu-

rated soil–water suspensions is strongly influenced by the

impact of the inorganic fraction, and is largely neglected

within the present literature. Han et al. (2008) studied the

impact of kaolinite and montmorillonite clay minerals with

particle sizes of around 2 µm on the stability of MWC-

NTs (18 mg L−1) suspended in three different surfactants

(either cetyltrimethylammonium bromide (CTAB), dodecyl-

benzenesulfonic acid, sodium salt (SDBS), or octylphenol

ethoxylate (TX100), each at 40 mg L−1). The study showed

that MWCNTs stabilised by CTAB, became deposited in

the presence of montmorillonite or kaolinite particles, which

suggests MWCNTs may not move through soils or sediments

containing these minerals, or that the addition of montmoril-

lonite or kaolinite could be used to reduce their mobility and

transport (Han et al., 2008). However, no investigation such

as soil column leach testing was performed to specifically

measure the movement of MWCNTs, and further direct mea-

surements are required to verify the results in soils. Suspen-

sions of CNTs in SDBS were not affected by the presence of

either montmorillonite or kaolinite, and TX100 suspensions

were not altered by kaolinite but were destabilised partially

in montmorillonite (Han et al., 2008). The authors suggested

that CNTs may be able to move through soils and sediments

containing these clay minerals if suspended using SDBS or

TX100. It was proposed that the destabilisation of surfactant-

dispersed MWCNTs occurs by two mechanisms: (i) removal

SOIL, 1, 1–21, 2015 www.soil-journal.net/1/1/2015/
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of surfactants from solution by clay minerals and (ii) clay

minerals bridging between MWCNTs and surfactants (Han

et al., 2008).

Furthermore, the charge characteristics of soils can also

influence the behaviour and fate of CNMs. Broadly, all soils

can be divided into two groups: permanent-charge (P-C)

and variable-charge (V-C) soils (Sollins et al., 1988). In P-

C soils, the substitution of ions with lower valence for ions

with higher valence results in the alteration of crystal lattice

structures within layer-silicate clays (illite, smectite, chlo-

rite and kaolin) and a permanent charge deficit, which per-

sists irrespective of variations in the composition of soil so-

lutions and pH (Sollins et al., 1988). In V-C soils, protonation

and deprotonation of surface hydroxyl groups results in the

positive charge and hence anion exchange capacity (AEC),

whereas deprotonation results in cation exchange capacity

(CEC) (Sollins et al., 1988). The structure of V-C soils is

also modified in response to increasing pH, resulting in in-

creased repulsion and more limited aggregation (Sollins et

al., 1988). Both P-C and V-C surfaces are present in all soil

types; however, only one charge system typically dominates,

dictated largely by soil mineralogy (Sollins et al., 1988).

While V-C soils occur more frequently in tropical regions

due to the typical mineralogical composition which forms

under humid, warm conditions, they do not occur ubiqui-

tously, and many areas with predominantly P-C characteris-

tics occur (Sanchez, 1976; Sollins et al., 1988). Hence, while

V-C soils represent a small fraction of global soil types, inter-

actions between nanoparticles and soils are likely to be much

more dynamic relative to those with a P-C. Despite this, al-

most all investigations have predominantly focused on P-C

soils, restricting the applicability of CNM fate and behaviour

investigations.

The behaviour of CNMs in V-C soils has been assessed by

Zhang et al. (2012b), who investigated the stability of MWC-

NTs suspended in water containing either kaolinite, smec-

tite or shale over a range of sodium concentrations. Without

additional Na+, no significant difference in the stability of

MWCNTs between each of the soil minerals was observed;

however, with increasing ionic strength, the removal of

MWCNTs from the aqueous phase followed the order smec-

tite> kaolinite > shale (weakest-to-largest MWCNT associ-

ation). As ionic strength increased, the MWCNT removal

tendency for smectite and kaolinite was inversely corre-

lated to the mineral surface potential. However, the elec-

trostatic potential of shale is higher than either kaolinite or

smectite, yet shale demonstrated the strongest sorption of

MWCNTs (Zhang et al., 2012b). This was attributed to the

large, hydrophobic, organic content of shale, which is able to

strongly sorb MWCNTs. Hence, under these soil conditions,

the transport of CNMs in soils is directly correlated with min-

eral hydrophobicity, but inversely correlated with surface po-

tential (Zhang et al., 2012b). It is therefore imperative that

studies of nanomaterial fate and behaviour in soils include

detailed information regarding soil mineralogy.

3.3 The impact of CNM preparation methods, functional

groups and UV exposure

In addition to the influence of soil type and properties, the

properties of CNMs themselves vary greatly depending on an

array of parameters. As commercial applications of CNMs

will likely employ surface functional groups and a variety

of different preparation techniques, nanoparticle properties

and behaviour within the environment will become increas-

ingly complex (Turco et al., 2011). For example, the physic-

ochemical properties of pristine nC60, such as surface charge

and particle size, heavily depend on the method of prepara-

tion, with a corresponding impact upon the stability of the

nanomaterial (Chen and Elimelech, 2008, 2009; Isaacson et

al., 2011). As discussed previously, deposition and aggrega-

tion of CNMs in their pristine state is highly susceptible to

variations in soil water ionic strength; however, the exact ex-

tent of sensitivity is known to vary significantly according to

the method of preparation. For example, in an aqueous so-

lution, the deposition of nC60 occurs in NaCl at concentra-

tions of 18 mM when prepared by sonication (100 W probe,

30 min) (Qu et al., 2012) and 30 and 32 mM NaCl when pre-

pared by solvent exchange methods (Chen and Elimelech,

2008; Smith et al., 2008). However, most investigations have

been conducted in simple solutions of electrolytes using pris-

tine nC60 and in complex environmental systems (Qu et al.,

2012). As a result, the effects of cation valence on the stabil-

ity of CNMs may substantially differ from those in a labora-

tory setting.

Typically, agglomeration of CNMs in the presence of di-

valent (Ca2+) cations occurs to a greater extent than with

monovalent (Na+) cations. However, when exposed to so-

lar irradiation, nC60 can undergo surface oxidation and de-

composition (Hou and Jafvert, 2008, 2009), with large im-

plications for environmental behaviour and fate (Qu et al.,

2012). Following exposure to UV-A (the largest component

of UV radiation in sunlight), the oxygen-containing func-

tional groups formed on nC60 hindered aggregation in NaCl

solutions due to their elevated hydrophilicity and negative

surface charge (Hou and Jafvert, 2009). Conversely, neutrali-

sation of the negative surface charge on oxidised nC60 due

to interactions with Ca2+ ions when suspended in CaCl2
can result in particle agglomeration (Li and Liang, 2007).

This potentially occurs due to the charge screening ability of

Ca2+ relative to Na+, which reduces the stability of colloids

(Li and Liang, 2007). Qu et al. (2012) expanded upon this

work through studying the effects of UV-A exposure for ei-

ther 20 h or 7 d on the rate of deposition and the attachment

efficiency of nC60 onto silica bead surfaces. The stability of

nC60 increased proportionally with increasing UV-A expo-

sure time against aggregation in solutions containing NaCl,

which was attributed to the increase in surface oxidation and

hydrophilicity (Qu et al., 2012). Furthermore, while the at-

tachment efficiency of nC60 exposed to UV-A for 7 d was

at a maximum in NaCl concentrations of 250 mM, attach-
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ment decreased following an increase in NaCl concentration

to 300 mM. This indicates that stability of nC60-containing

oxygen surface functional groups was attributed to the hydra-

tion force and not DLVO forces, which was more significant

with the 7 d UV-exposed nC60 than either the pristine or the

20 h UV due to the greater hydrophilicity (Qu et al., 2012).

In other investigations, surface immobilisation of macro-

molecules, such as HAs at environmentally relevant concen-

trations, has increased the solubility of C60 due to the effect

of steric hindrance caused by the sorbed SOM and a reduc-

tion in the hydrophobicity of the nanoparticle surface, pre-

venting reaggregation and reducing attachment efficiency (Li

et al., 2009; Qu et al., 2012). However, Qu et al. (2012) found

7 d UV-exposed nC60 had negligible surface sorption of ei-

ther HWM or LMW HAs due to the negative surface charge

and elevated surface hydrophilicity. Hence, DOM is likely to

be less significant in determining the suspension stability of

irradiated nC60 (Qu et al., 2012). A similar relationship may

occur due to the formation of oxygen-containing hydroxyl-

and carboxyl-groups on MWCNTs due to surface oxidation,

which can promote colloidal stability and hydrophilicity of

CNTs in addition to inducing alterations to surface charge

(Shieh et al., 2007; Smith et al., 2009). This is illustrated by

Hu et al. (2005), in which carboxylic acid groups as a result

of nitric acid treatment of SWCNTs had high ζ potentials

(−28 mV) over a pH range of 2–10, indicating their mod-

erate stability in water in contrast to pristine CNTs (Hu et

al., 2005). Reduced deposition of pristine nC60 occurred on

silica glass beads coated in HMW HA rather than LMW HA

due to steric hindrance (Qu et al., 2012). The effect was more

pronounced at lower ionic strengths due to electrostatic re-

pulsion between charge groups resulting in a more stretched-

out conformation of HA molecules (Qu et al., 2012). How-

ever, both HMW and LMW HA-coated beads facilitated the

deposition of 7 d UV-exposed nC60, with reduced sensitiv-

ity to changes in ionic strength as a result of reduced steric

hindrance (due to the compact conformation of HAs at high

ionic strengths (∼ 60 mM)), lower surface potential and in-

creased hydrogen bonding between the oxygen-containing

groups of the functionalised nC60 and nitrogen and oxygen

groups on the HA (Qu et al., 2012).

Comparatively determining the relative importance of

CNM functionalization and ionic strength on CNTs and nC60

behaviour in soils is difficult due to the myriad of differ-

ent experimental configurations. To overcome this, Jaisi and

Elimelech (2009) used carboxyl-functionalised SWCNTs

and nC60 (radius of 51 nm) in natural soil columns, contain-

ing 29 % clay and pore sizes of 22 µm, to determine the im-

pact of ionic strength on particle transport and deposition. As

ionic strength increased (0.03–100 mM), the rate of SWCNT

deposition within the soil column also increased, with the

observed effect more apparent with divalent cations (Ca2+)

than monovalent cations (K+). Interestingly, while nC60 was

highly sensitive to variations in ionic strength, far lower de-

position rates were observed. It was proposed that the struc-

ture and shape of SWCNTs, in particular their large aspect

ratio and bulky agglomerated states, in addition to soil par-

ticle heterogeneity increased the straining effect and reten-

tion by the soil matrix (Jaisi and Elimelech, 2009). Nano-

material structural conformation is therefore a further con-

sideration in the relative extent to which CNMs will be dis-

persed and transported within the soil, with nC60 more likely

to experience leaching than SWCNTs under a variety of so-

lution chemistries (Jaisi and Elimelech, 2009) within nega-

tively charged soil media.

Functionalization status is therefore a fundamental consid-

eration to the behaviour of CNMs, resulting in distinct char-

acteristics, which significantly modify behaviour in relation

to their unfunctionalised counterparts. However, key ques-

tions as to the behaviour of CNMs within the environment

remain unaddressed; for example, how does the repeated ex-

posure of CNMs to weathering cycles within the soil influ-

ence their fate and behaviour?

3.4 CNM-contaminant sorption, desorption and mobility

in soils

The ability of natural colloids to assist in the transport of or-

ganic contaminants has been well documented and reviewed

(De Jonge et al., 2004; Sen and Khilar, 2006; Li et al., 2013).

Typically, hydrophobic compounds such as PCBs and PAHs

have limited environmental mobility due to strong sorption

to SOM. Kan and Tomson (1990), however, demonstrated

that high concentrations of colloidal materials such as DOM

may enhance the transport of hydrophobic compounds such

as phenanthrene and naphthalene by a factor of 1000 or

greater, with possible implications for the spread of con-

tamination and groundwater quality (De Jonge et al., 2004).

Although CNMs may be tailored to suit specific require-

ments, their behaviour is not necessarily different to colloids

naturally occurring in the environment (Colvin, 2003; Lead

and Wilkinson, 2006). To determine the relevance of natural

nanoparticle-facilitated transport of contaminants in porous

media such as soils, Kretzschmar et al. (1999) identified four

key factors that will be used as a framework for this section:

1. sufficiently high concentration of nanoparticles

2. mobility of the nanoparticles carrying sorbed HOCs

3. sorbate toxicity even when present in trace quantities

4. the ratio of sorption to desorption relative to the

timescale of particle mobility.

The sorption affinity of CNMs for common environmen-

tal contaminants such as PAHs, known to pose significant

risks to both the environment and human health due to their

toxic properties (Menzie et al., 1992; Shaw and Connell,

1994; Cebulska-Wasilewska et al., 2007), has been reported

as over 3 orders of magnitude greater than that of natural

soil/sediments (Yang et al., 2006b). The potential for these
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emerging materials to become widespread in the soil environ-

ment, particularly those with a strongly hydrophobic nature

and large reactive surface area such as CNMs, raises ques-

tions and concerns about the environmental consequences of

their release (Pan and Xing, 2010).

3.5 CNM contaminant sorption and desorption in soils

Understanding the adsorption and desorption of HOCs to

CNMs in soils is critical to the environmental risk assess-

ment processes, as well as determining their potential appli-

cations as environmental adsorbents (Yang et al., 2006a). As

the fundamentals of CNM-HOC sorption have been exten-

sively reviewed, the reader is referred to a review by Ren

et al. (2011) for a comprehensive overview. This section ad-

dresses the manner in which soils may alter the HOC sorp-

tion/desorption properties of CNMs, focusing specifically on

two conflicting effects: (i) CNM dispersal by DOM (increas-

ing the surface area and hence the number of adsorption sites;

Hyung et al., 2006; Lin and Xing, 2008), versus (ii) the for-

mation of CNM-DOM coatings (blocking and/or competing

for adsorption sites reducing the number available for organic

contaminants (Chen et al., 2008; Wang and Keller, 2009; Cui

et al., 2011; Wang et al., 2011; Zhang et al., 2011)). The rel-

ative importance of these two phenomena is poorly under-

stood in relation to their sorption and desorption of organic

contaminants (Zhang et al., 2011; Pan and Xing, 2012), and

it is highly dependent on both the nanoparticle properties, as

well as the nature of SOM and the sorbate (Wang et al., 2009;

Zhang et al., 2011; Lerman et al., 2013).

In assessing the impact of OM on CNM sorption in the

environment, further complications arise as contaminants

are able to sorb to both the CNM and CNM-OM coating

(X. Wang et al., 2008). Hyung and Kim (2008) identified

that SOM adsorption to nanotubes was highly variable de-

pending on the type of SOM, occurring proportionally to its

aromatic carbon content. This has implications for determin-

ing the ability of CNMs to sorb organic compounds, yet most

investigations fail to consider the role of different OM frac-

tions in CNT-pollutant interactions (Lerman et al., 2013).

X. Wang et al. (2008) assessed the extent to which HAs

and peptone altered the sorption of phenanthrene, naphtha-

lene or 1-naphthol onto MWCNTs (outer diameter of 40 nm),

by fitting sorption data with Freundlich and Polanyi models.

Their results showed that each type of DOM resulted in non-

linear sorption isotherms to the MWCNTs, following the or-

der peptone>HAs. Although the inherent sorptive ability of

HA for each of the contaminants was more limited than that

of pristine MWCNTs, HA coatings did not result in large

changes to the sorption of any of the contaminants, which

is inconsistent with models indicating that “fouling” of sorp-

tion sites by DOM will reduce contaminant sorption capacity

(Carter and Weber, 1994; X. Wang et al., 2008). The authors

proposed that either uneven coating of the MWCNT by HA

occurred, or that the anticipated sorption reduction as a re-

sult of polar moieties from the HA coating was offset due to

the increase in O-containing moieties resulting in particle re-

pulsion and dispersal, exposing new sites available for HOC

sorption. Contrastingly, peptone, due to the large quantity

sorbed relative to each of the other DOM fractions, resulted

in the largest reduction in available sorption sites (X. Wang et

al., 2008). Similar interactions as to the relative ability of dif-

ferent OM coatings to alter CNM sorption have been identi-

fied by Cui et al. (2011) and Gai et al. (2011). Although direct

comparison of the studies is not possible due to the different

particles used, Cui et al. (2011) found HAs, TAs and pep-

tone pre-interacted with SWCNTs resulting in the formation

of polar functional groups on the nanotube surface, reducing

the area available for phenanthrene sorption in the order of

peptone>TAs>HAs. Similarly, Gai et al. (2011) identified

a reduction in C60 agglomerate sizes due to the dispersal ef-

fects of HA, increasing atrazine sorption due to dispersal and

rearrangement, rather than interactions between the atrazine

and HA (Gai et al., 2011). Hence, it may be argued that the

impact of DOM on CNM-HOC sorption is dependent on the

type of OM present and possibly also CNM type.

Within a soil environment, Li (2012) identified the sorp-

tion behaviour of naphthalene, phenanthrene and fluorine in

a sandy loam soil, silt loam soil and Ottawa sand was unaf-

fected following amendment of MWCNTs at concentrations

of 2 mg g−1. For each contaminant investigated, sorption in

both the MWCNT-amended and -unamended samples fol-

lowed the same order, silt loam> sandy loam> sand, indi-

cating the sorptive ability was driven by the organic carbon

content (Li, 2012). Additionally, no difference between sorp-

tion isotherms of MWCNT-amended and -unamended sam-

ples was apparent, indicating that MWCNTs held no influ-

ence over the sample’s inherent sorption capacity (Li, 2012).

Similarly, the order in which PAHs sorbed was unaffected

by the MWCNTs, occurring as anticipated according to the

PAH’s Kow values (Li, 2012). After 24 h of hydroxypropyl-

β-cyclodextrin (HPCD) desorption, no statistically signifi-

cant differences in the percentage desorbed were detected be-

tween nanotube-amended and -unamended samples. Hence,

the sorptive properties of MWCNTs in the environment may

be similar to hard carbon, and did not influence the sorp-

tion/desorption behaviour of PAHs (Li, 2012). When this is

related to factor 4 proposed by Kretzschmar et al. (1999),

in which the sorption to desorption ratio over a timescale of

particle transport is considered, MWCNTs at 2 mg kg−1 con-

centration may not be considered significant in determining

the behaviour of some PAHs in soils over the duration of

their experiment. It may be, however, that factor 1 was not

met, and the lack of MWCNT influence on PAH behaviour

was merely a result of an insufficient quantity added to the

soils, although a concentration of 2 mg kg−1 in environmen-

tally relevant terms is likely to be unrealistically high. Hence,

while this study indicates the sorption of multiple contami-

nants in the different soil types considered will not present

an environmental concern in terms of pollutant mobilisation
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at 2 mg kg−1, it was not possible to consider the desorption

of contaminants if transport were to occur.

An excellent study by Towell et al. (2011) assessed the

extent to which HPCD extraction of HOCs with different

physicochemical properties desorbed from soils amended

with CNMs at concentrations between 0.05 and 0.5 % (sub-

stantially larger than that employed by Li, 2012). At con-

centrations ≥ 0.05 %, Towell et al. (2011) identified signif-

icantly less 14C-B[a]P extracted from CNM-amended soils

than 14C-phenanthrene due to the high hydrophobicity and a

log Kow value reducing the ability of 14C-B[a]P to partition

into the aqueous phase. This was exacerbated by the rela-

tively HMW of 14C-B[a]P, which has been proven as a criti-

cal factor determining the bonding energy between SWCNTs

and PAHs (Debnath et al., 2008; Towell et al., 2011). In rela-

tion to factor 4, the nature of the sorbate may therefore influ-

ence the extent of desorption, and therefore the duration for

which contaminants will remain sorbed. It may be proposed

that CNM-sorbed HMW HOCs represent a greater risk of

increased distance of transport within the environment than

LMW HOCs.

While sorption of HOCs to CNMs in soils can occur, the

extent of sorption and desorption is dependent on the type of

OM and concentration of CNMs. With a view into the man-

ner in which the properties outlined above potentially facil-

itate the transport of contaminants sorbed to CNMs in soils,

studies in which mobility has been directly investigated will

also be discussed.

3.6 CNM-HOC mobility

Once sorbed to freely suspended CNMs within the soil ma-

trix, the mobility of HOCs is potentially increased; however,

very few studies have focused on determining the impact of

CNMs on contaminant movement in soils. An overview of

the basic principal of CNM-facilitated HOC transport is pre-

sented in Fig. 1. Using column leach tests, Li (2012) ex-

amined the behaviour of phenanthrene, fluorine, naphtha-

lene and pyrene in a saturated sandy loam soil amended

with MWCNTs, functionalised MWCNTs (f-MWCNTs) and

functionalised SWCNTs (f-SWCNTs) at a concentration of

5 mg kg−1. Significant retention of PAHs within the soil col-

umn was observed, due to the strong sorption of contam-

inants by CNTs and their limited mobility within the soil

column (Li, 2012). In control soils and those amended with

MWCNTs and f-MWCNTs, retention of PAHs occurred in

the order naphthalene<fluorine< phenanthrene< pyrene,

with hydrophobic interactions between the CNTs and PAHs

cited as the predominant cause of the observed pattern (Li,

2012). Contrastingly, retention of contaminants within soils

amended with f-SWCNTs occurred in the order of naph-

thalene >fluorine> phenanthrene> pyrene, the sorption of

which could not be accounted for by hydrophobic forces

alone (Li, 2012). The trend was negatively correlated to

molecular size, indicating that larger sorbate molecules may

have less space for sorption due to the additional hydrophilic

functional group (Yang et al., 2006b; Li, 2012). It was con-

cluded that leaching behaviours were determined by physical

characteristics of both CNTs and contaminants (Yang et al.,

2006b; Li, 2012).

To determine the extent to which CNMs facilitated the

movement of contaminants relative to various types of

DOM, Zhang et al. (2011b) used saturated, sandy soil

columns contaminated with either PCBs or phenanthrene

to comparatively assess the mobilising ability of nC60 at

1.55–12.8 mg L−1 relative to DOM at 10–11 mg L−1. In

this experiment, PCB (12.4–13.9 µg L−1) or phenanthrene

(14.8 µg L−1) was added to a sonicated suspension of nC60

(1.55–12.8 mg L−1 in electrolyte solution of 0.5 mM NaCl),

and tumbled end-over-end (3 rpm) for 7 d to reach adsorp-

tion equilibrium. The suspension was then added to the

columns. The results showed that even the lowest concen-

tration of nC60 significantly enhanced the dispersal of both

PCB and phenanthrene, whereas columns containing only

various types of DOM had no effect on contaminant trans-

port (Zhang et al., 2011b). The enhanced contaminant mo-

bilisation ability of nC60 relative to naturally occurring DOM

was attributed to its unique porous structure and surface en-

thalpies of interaction, which generate a large sorption affin-

ity together with an irreversibly or slowly desorbable frac-

tion of adsorbed phenanthrene/PCBs (Hofmann and von der

Kammer, 2009; Zhang et al., 2011b; Wang et al., 2012a).

CNMs may therefore be much more efficient at enhancing

the mobility of contaminants than natural colloidal materi-

als.

Different processes of nC60 formation have also been

identified as contributing to large differences in their ability

to alter the fate and transport of contaminants (Wang et al.,

2012b). Wang et al. (2012b) assessed nC60 samples prepared

using either the standard solvent exchange method, eight dif-

ferent types of SOM or surfactant modifications, or by the

phase transferring of nC60 from a solution of toluene to either

SOM or a surfactant (Wang et al., 2012b). Their results in-

dicated that while the mobility of nC60 was similar between

each of the preparation methods, the contaminant mobilising

capability significantly differed. Relative to the unmodified

nC60, transport of PCBs through a saturated column of sandy

soil increased by 42.2–227 % with surfactant-modified nC60,

and by 233–370 % with SOM-modified samples (Wang et al.,

2012b). The results were attributed to both increased adsorp-

tion affinities and enhanced resistance to desorption due to

alterations to nC60 aggregation properties as a result of the

SOM surfactant (Wang et al., 2012b). During the process of

aggregate formation, it is possible that a fraction of SOM

or another surfactant was intercalated within the C60 aggre-

gates, significantly influencing the porosity and geometry of

the resulting nC60 aggregates, contributing to the enhanced

desorption resistance of PCBs (Wang et al., 2012b). With dif-

fering types of SOM and surfactants, variations in the quan-

tity and geometry of pores will occur, with the possibility that
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Figure 1. “Worst case scenario” processes by which CNMs may facilitate the transport of HOCs. Top-left panel: (A) HOC equilibrates

with CNM and is (B) transported. The top-right panel shows the processes by which CNMs may be transported. The centre-right panel (1)

shows the transport and rapid desorption of HOCs from CNMs. Equilibrium is achieved between the liquid phase, CNM and matrix. The

bottom-right panel (2) shows slow desorption kinetics, with no desorption from the CNM (Hofmann and von der Kammer, 2009). Re-printed

with permission from Elsevier © 2014.

nC60 could be tailored to specific physicochemical proper-

ties for use in in situ site remediation (Wang et al., 2012b).

Hence, the adsorption, desorption and transport of contami-

nants by nC60 will vary greatly depending on the condition

of its formation (Wang et al., 2012a).

Using a different approach, Hofmann and von der Kam-

mer (2009) computer modelled the extent to which CNMs

could result in the movement of HOCs in soils under various

scenario-based conditions, to determine when relevant CNM

transport of sorbed HOCs might occur. Worst-case scenar-

ios were adopted, assuming fully mobile CNMs within the

porous medium, over a range of realistic yet high CNM con-

centrations (100 mg L−1–1 g−1) occurring in aggregate sizes

of 10–100 mM. It was also assumed that CNMs were pre-

equilibrated with the HOC at source and that diffusion was

the rate-limiting step for desorption (Hofmann and von der

Kammer, 2009). From this, it was possible to estimate the

fraction of contaminants bound to CNMs at different dis-

tances from the source over different time periods (days to

years) using the Streamtube Model for Advective and Reac-

tive Transport (SMART) (Finkel et al., 1998), combined with

the application of retarded pore diffusion approximations

(Bold et al., 2003) and combinations of two first-order rate

expressions (Cornelissen et al., 1997). The results showed

that for aggregates of 100 mM, 2, 7, 40, 75, and 82 % of

bound contaminants were transported > 1 m at nanoparti-

cle concentrations of 0.1, 1, 10, 100, and 1000 mg L −1, re-

spectively. Conversely, modelled transportation of contami-

nants sorbed to aggregates of 10 mM in size were reduced

to 0.1, 0.5, 3.6, and 8 % for the same respective concentra-

tions. Breakthrough of the 1 m modelled column did not oc-

cur in any of the considered scenarios and all contaminants

remained bound to the nanoparticle.

Parameterisation of the ratio of desorption to sorption and

particle transportation is achieved by the Damköhler number

(Da) (Eq. 1) (Jennings and Kirkner, 1984), which was em-

ployed to simulate the HOC desorption from CNMs.

DaNP = λs, (1)
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where DaNP is the Damköhler number for the NP, λ the

rate constants (first order) for the reaction (s−1), and s

the average residence time within the system, which may

also be expressed as average flow velocity (Hofmann and

von der Kammer, 2009). A ratio of 0 identifies equilibrium

between particle-contaminant interactions, whereas 1 indi-

cates a decoupled transport (i.e. the HOC in the solution

will be transported independently of contaminants sorbed to

the CNM) and < 0.01 indicates fully decoupled transport.

In these instances, HOCs sorbed to CNMs will not desorb

over the transportation time frame, but rather relocate within

the media (Hofmann and von der Kammer, 2009). At Da

numbers> 100, an equilibrium exists between the immobile

porous media and mobile CNM (Kretzschmar et al., 1999;

Bold et al., 2003), resulting in limited nanoparticle relocation

of the contaminant (Hofmann and von der Kammer, 2009).

Hofmann and von der Kammer (2009) calculated

Damköhler numbers for CNM aggregates of different sizes

and partitioning coefficients according to the rate constant

data shown in Fig. 2, and based on different flow velocities

of 1 m in 50 d (fast flow)–1 m in 10 years (slow movement).

It was inferred that the CNM-contaminant transport mecha-

nisms are strongly dependent on the size of CNM agglomer-

ates together with the distribution coefficients (logKd) (Hof-

mann and von der Kammer, 2009). For example, Fig. 2 shows

contaminants sorbed to 1 mM aggregates at a flow velocity of

1 m 50 d−1 will not experience contaminant desorption until

the log Kd of HOC CNMs is 8 m3 kg−1, reaching equilib-

rium at log Kd 1 m3 kg−1 (Hofmann and von der Kammer,

2009). However, at a flow velocity of 1 m yr−1, decoupled

transport will predominate for 1 mM aggregates at a log Kd

of 9 m3 kg−1 reaching equilibrium at log Kd of 2 m3 kg−1

(Hofmann and von der Kammer, 2009). It was concluded that

under equilibrium sorption/desorption conditions, CNM mo-

bility resulted in negligible transport of sorbed contaminants

(Hofmann and von der Kammer, 2009). However, the mobil-

ity and concentration of CNMs becomes increasingly impor-

tant in instances with slow to very slow desorption (Hofmann

and von der Kammer, 2009). While there are many assump-

tions and simplifications associated with every modelling

technique, the model identifies scenarios in which transport

and desorption of sorbed contaminant could potentially oc-

cur, possibly providing useful guidelines for risk assessment

if applied on a case-by-case basis. However, further work

aimed specifically at validating the model against traditional

column leach tests in both V-C and P-C soils and additional

desorption kinetics are urgent prerequisites.

From the above discussion, it can be concluded that each

of the four factors identified by Kretzschmar et al. (1999) for

significant transport of contaminants by CNMs have been

met. However, more work examining the subsurface trans-

port of CNMs through well-defined soils of various types

(such as clays, peats and silts) and CNMs with a variety

of functional groups, sizes and sorbed compounds in both

saturated and unsaturated conditions are required (Jaisi and

Elimelech, 2009; Petersen et al., 2011). Of studies that are

available, variation in experimental conditions between the

investigations renders comparisons of the efficiency of con-

taminant mobility between CNM types tentative until stan-

dardised comparative testing is conducted. Additionally, the

molecular weights and sizes of CNMs may not be constant

during their transport within the soil environment, due to

their physical, chemical or biological interaction with soil

components, which will likely influence their aggregation

status, shape, surface charge (Pan and Xing, 2012), and pos-

sibly also their ability to sorb and mobilise contaminants

over long timescales. Furthermore, definitive data of the des-

orption kinetics of HOCs from CNMs in soils are essen-

tial to understanding their ability to transport contaminants

(Ibaraki and Sudicky, 1995; Choi and Yavuz Corapcioglu,

1997; Corapcioglu et al., 1999; Bold et al., 2003; Hofmann

and von der Kammer, 2009), with slow desorption identi-

fied as a critical requirement (Roy and Dzombak, 1998). The

lack of experimentally derived desorption kinetic data from a

range of soil types and conditions makes determining the ex-

tent to which HOC sorption is strong enough and desorption

slow enough to allow CNMs to transport sorbed HOCs, and

the associated implications of transport, difficult to predict

(Qu et al., 2012).

4 CNM–microorganism interactions

As soils represent one of the ultimate sinks for nanomateri-

als (Nowack and Bucheli, 2007), terrestrial microorganisms,

which are a large component of soils, may be significantly

affected (Navarro et al., 2008). The reader is directed to an

excellent review by Holden et al. (2014), which evaluates the

possible exposure concentrations of anthropogenic nanoma-

terials in a range of environmental compartments, and as-

sesses their relevance. However, understanding the impact of

CNMs on the soil microbial community is a subject still in

its infancy (Dinesh et al., 2012). The extent to which CNMs

interact with microflora will (in part) determine the extent

of possible disruptions to bio-geochemical processes within

soils that they may cause (Neal, 2008). This section discusses

recent literature related to the modification of CNM fate and

behaviour by microbiota, the toxicity of CNMs in soils and

the possible implications for the biodegradation of contami-

nants.

4.1 Biological modification of CNMs in soils

The influence of microbial populations on the physical and

chemical state of nanoparticles must be considered when

discussing the ultimate fate of nanomaterials (Aruguete and

Hochella, 2010). Degradation of C60 in aqueous solutions

through photochemical processes have been identified by nu-

merous investigations (Sect. 3.3) (Hou and Jafvert, 2008;

Lee et al., 2009; Li et al., 2009), which may be an impor-

tant step in both its breakdown and the activation of pre-
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Figure 2. Simulation of diffusion-limited desorption using of pore water velocities (va) between 1 m 50 d−1 and 1–10 m year−1 (where

“a”= annum). The solid line represents the Damköhler number of 100 (representing equilibrium transport above which the HOC will equi-

librate between the CNM and soil matrix), the dashed line indicates a Damköhler number of 0.01 (decoupled transport below which HOC

desorption will not occur within the time frame of transport). If Damköhler numbers are< 100 or> 0.01, the kinetics of sorption should be

considered in transport models (Hofmann and von der Kammer, 2009). Re-printed with permission from Elsevier © 2014.

cursors for subsequent biological interactions (Turco et al.,

2011). While C60 photochemical reactions at the soil sur-

face have not been studied, its oxidation and transforma-

tion to the more reactive fullerol (i.e. C60–OH) has been ob-

served in water and in the presence of oxygen (Turco et al.,

2011). Following the abiotic photochemical modification of

C60 through sunlight into fullerols, white-rot fungi was able

to attack and subsequently incorporate a small amount of

fullerol carbon into fungal biomass (lipids) after 32 weeks of

decay (Schreiner et al., 2009). By contrast, unmodified C60

was recalcitrant to such attack (Schreiner et al., 2009); hence,

following minor surface alterations, biological interactions

with C60 were substantially altered, changing the fate of the

particle. Similarly, the potential for horseradish peroxidase

to biodegrade CNTs is strongly related to the presence of

carboxyl groups on the nanotubes’ surface, which permitted

enzyme-mediated oxidation relative to pristine CNTs (Allen

et al., 2008, 2009). Furthermore, Fenton’s reagents oxi-

dised carboxyl-functionalised SWCNTs (SWCNT-COOH)

through the formation of hydroxyl radicals (Allen et al.,

2008, 2009). It has therefore been suggested that both white

and brown rot mediated fungal activity could modify surface

functionalised CNTs in a similar manner to fullerols (Turco

et al., 2011).

Ultimately, Turco et al. (2011) suggested that the fate of

C60 in soil is potentially controlled by the rate of abiotic

alterations to the formation of more reactive precursors, as

opposed to a simple dose response, and the toxicity of UV-

modified CNMs in soils has not yet been investigated. If

degradation of CNMs by fungi were to occur on a large scale

in the natural environment, their potential environmental risk

would be significantly reduced; however, it is unlikely to oc-
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cur in sufficiently large quantities to efficiently reduce any

possible burden of CNM presence in soils.

4.2 CNM toxicity to soil microorganisms

The toxicity of CNMs is dependent upon the bioaccessibil-

ity of nanoparticles to bacteria, and retention of some the

nanoparticles’ reactivity (Neal, 2008). Currently, little lit-

erature is available related to the toxicity of CNMs within

soils (Dinesh et al., 2012). Hence, the discussion presented

here provides a theoretical estimation of the specific micro-

bial communities that may be more vulnerable to soilborne

CNMs, followed by an overview of recent CNM-amended

soil toxicity findings published within the literature.

Soil conditions will ultimately dictate the extent to which

CNMs are able to interact with terrestrial microflora. Based

on the discussion earlier relating to the fate and behaviour

of CNMs in soils, in addition to information regarding cell

properties (Mehmannavaz et al., 2001), it may be possible

to tentatively speculate as to the bioavailability or bioacces-

sibility of CNMs to different microbial populations. When

assessing nanotoxicity, consideration must be given to both

the likelihood of a nanoparticle coming into contact with mi-

crobial cells and the initial concentration added to soils in

order to provide an accurate means of estimating the parti-

cle availability (Dinesh et al., 2012). A strong interplay ex-

ists between the dispersal status of nanoparticles and their

bioaccessibility to specific soil microbial populations (Turco

et al., 2011). As bacteria frequently adhere to surfaces in the

soil environment, attached cells within biofilms constitute a

large proportion of the bacterial community in the subsur-

face environment (Neal, 2008). Neal (2008) therefore pro-

posed that the study of nanotoxicity towards biofilm com-

munities is a more appropriate measure of toxicity in envi-

ronmental systems than planktonic cells. However, it is con-

ceivable that given appropriate DLVO and non-DLVO forces

between CNMs, microorganisms and the soil matrix, CNMs

could also become available to planktonic cells. One exam-

ple of which may be that CNM-SOM coatings could result in

easier access to the cell surface relative to uncoated particles

due to the similarities in solubility between the cell mem-

brane and surfactant; however, the coating itself may atten-

uate the toxicity due to a lack of physical contact between

the CNM and a microbial cell (Lubick, 2008). Further work

into the conditions under which CNMs will be available to

different microbial communities in soils is needed.

The extent to which soils with different properties deter-

mine the toxicity of some CNMs was directly investigated

by Chung et al. (2011). The impact of MWCNTs at 50,

500 and 5000 µg−1 soil on the activity of soil microorgan-

isms in a sandy loam (pH 6.98, OC content 17.69 g kg−1,

CEC 13.51± 0.78) and loamy sand (pH 5.21, OC content

8.33 g kg−1, CEC 9.05± 0.10) was considered. Based on an

analysis of the activity of enzymes involved with cycling car-

bon (1,4-β-glucosidase, cellobiohydrolase, xylosidase), ni-

trogen (1,4-β-acetylglucosaminidase) and phosphatase to-

gether with lower microbial biomass nitrogen and carbon in

soil, their results indicated that MWCNTs exhibited antimi-

crobial properties within both soil types (Chung et al., 2011).

As these findings are consistent with culture studies outside

of the soil environment, in which reduced microbial activity

was a result of membrane damage, physical piercing and ox-

idative stress (Kang et al., 2007; Simon-Deckers et al., 2009),

the authors assumed that these antimicrobial mechanisms of

action may be responsible, with their impact not attenuated

by the different soil properties investigated.

Other investigations of nanotoxicity within soil using nC60

have found more limited toxicity effects. For example, Jo-

hansen et al. (2008) found microbial respiration and biomass

to be unaffected by pristine C60 agglomerates (50 nm–50 µm

size) applied at concentrations of 0, 5, 25 and 50 mg kg−1 to

dry, clay-loam-textured soil containing 2.5 % OM and with

a pH of 6.7. However, polymerase chain reaction and dena-

turing gradient gel electrophoresis (PCR-DGGE) measure-

ments of the diversity and number of bacteria over a 14 d

period showed that a three- to fourfold reduction in rapidly

growing bacteria occurred immediately following the addi-

tion of C60 (Johansen et al., 2008). The authors proposed the

results may have been observed as a direct consequence of

ROS formed by the C60, which disrupted DNA and lipids

within membranes (Johansen et al., 2008). However, con-

firmation of ROS damage could not be acquired due to the

complexity of the soil environment (Dinesh et al., 2012), and

a recent publication by Chae et al. (2012) casts some doubt

on the extent to which ROS are generated in the presence of

SOM. It may therefore be considered more likely that the ob-

served alterations to the diversity and number of bacteria may

be an indirect result of a reduction in nutrient bioavailability

due to adsorption by C60 (Johansen et al., 2008).

In a similar investigation, Tong et al. (2007) assessed the

role aggregation status plays in determining nanotoxicity

within soils. The impact of either nC60 at 1 µg C60 g−1 soil,

or 1000 µg C60 g−1 soil in granular form on the function and

structure of soil microbial community was assessed (Tong et

al., 2007). The silty clay loam soil (pH of 6.9, OM content

4 %) was incubated with each of the nanoparticle treatments

for 180 d (Tong et al., 2007). Both C60 and nC60 resulted in

limited alteration to either the function or structure of mi-

crobial processes or communities (Tong et al., 2007). These

findings are similar to those of Johansen et al. (2008), and

consistent with other investigations in which the bioavailabil-

ity and antibacterial activity of nC60 reportedly diminished

following sorption to soil, with the overall sorption capacity

dictated by the soil OM content (Li et al., 2008).

Despite differences in experimental setups between the

studies by Johansen et al. (2008) and Tong et al. (2007), from

the data presented, it is not possible to rule out the bioaccessi-

bility and toxicity of C60 to a proportion of microbiota within

soils. Although alterations to microbial respiration as a re-

sult of fullerene addition to soil were not observed in either
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study, functional substitution of specific impaired microor-

ganisms may have occurred, masking any apparent variation

(Ekelund et al., 2003; Johansen et al., 2008). The studies pre-

sented here provide credible insight into the possible toxicity

of CNMs within the environment; however, insufficient data

comparatively analysing the impact of all CNMs on micro-

bial populations within a range of well-defined soil types is

a major obstacle in determining their potential environmen-

tal impact. Experimental work aimed at addressing the real-

world implications for particle toxicity to different microbial

communities, systematically testing the factors determining

the behaviour and fate of CNMs in soils highlighted previ-

ously, is required before firm conclusions can be drawn re-

garding the impact of CNMs on soil microbial activity and

structure. Specifically, the implications of abiotic alterations

and methods of CNM preparation on the bioaccessibility and

toxicity to soil microbiota have received little investigation.

4.3 The bioavailability and bioaccessibility of

CNM-associated contaminants

Sorption of contaminants is a fundamental mechanism in the

regulation of organic compound bioavailability (Lou et al.,

2011). Given their strong sorptive capability, the addition of

CNMs to soil may result in the sequestration of organic con-

taminants, reducing their extractability and bioaccessibility,

operating in a similar manner to hard or black carbon (Chen

et al., 2007). However, the extent to which the processes

identified in Sect. 4.1 impact upon the bioaccessibility of

contaminants and biodegradation has not received much re-

search within soils.

The conditions under which CNMs enter the soil are

also critical to determining their impact upon contami-

nant bioaccessibility. Zhou et al. (2013) incubated 14C-2,4-

dichlorophenol (14C-2,4-DCP) in a soil (sandy loam, pH

6.31, 2.5 % OC, 46.7 % clay. 37.9 % silt, 15.4 % sand) con-

taining either 0, 2, 20 or 2000 mg kg−1 SWCNTs or MWC-

NTs to determine the impact of carbon nanomaterials on the

mineralisation, degradation and distribution of 14C-2,4-DCP

in the soil. The impact of the order in which the nanoma-

terials were added to the soil was also assessed, with nano-

materials added either after spiking with 14C-2,4-DCP, sim-

ulating disturbance of CNTs on pre-existing contamination

in soils, or CNMs as a mixture with 14C-2,4-DCP, simulat-

ing HOC degradation when carried or accumulated (concen-

trated) by CNMs within the environment from other sources.

The CNMs were homogenised using ultrasonication at 90 w,

20 Hz, for 5 min in deionized water, followed by shaking at

100 rpm for 1 d prior to use. The results showed that CNTs

added at concentrations≤ 20 mg kg−1 to soil after spiking

with 14C-2,4-DCP resulted in no significant effects on the

time course of mineralisation, indicating that the activity of

microorganisms was not significantly influenced, nor did the

desorption from CNTs reduce 14C-2,4-DCP bioavailability

in soil (Zhou et al., 2013). Following the addition of CNTs

at 2000 mg kg−1 added after 14C-2,4-DCP spiking, mineral-

isation of 14C-2,4-DCP was significantly (P < 0.05) inhib-

ited, which was attributed to a reduction in the aqueous phase

concentration of 14C-2,4-DCP in soil solution by 1/5 and

1/12 for SWCNTs and MWCNTs, respectively (Zhou et al.,

2013). However, significant inhibitory effects on the degra-

dation of 14C-2,4-DCP when pre-sorbed to CNTs occurred

at a CNT concentration of 20 mg kg−1.

These results show that CNT interactions with contam-

inants within the soil environment reduced the number of

available sorption sites, with their sorptive ability further re-

duced by CNM aggregation and interaction with soil com-

ponents such as humic substances, DOM, peptone and TA,

which potentially coat CNTs modifying surface polarity, re-

ducing surface area and hence reducing HOC sorption ca-

pacity as discussed in Sect. 4.1 (X. Wang et al., 2008; Cui

et al., 2011; Zhou et al., 2013). As the adsorption of 14C-

2,4-DCP to CNTs was reversible, the bioaccessibility of 2,4-

DCP was not reduced; however, it may be possible that the

indigenous microorganisms were not able to mineralise des-

orbed 14C-2,4-DCP at the same rate of desorption due to

the possible toxicity effects of CNTs on microbial activity

(Zhou et al., 2013). CNTs are therefore potentially able to

increase the persistence of organic pollutants within soil by

reducing biodegradation, with greater effects observed for

pre-adsorbed contaminants (Zhou et al., 2013). However, it

is possible to speculate about the environmental relevance

of the investigation, as a concentration of 2000 mg kg−1 is

likely several orders of magnitude higher than could realis-

tically be assumed to exist (outside of localised “hotspots”)

within the environment (Zhou et al., 2013).

Similar results were obtained by Cui et al. (2011).

Sediments (20 g) were first amended with either biochar

(100 mg), charcoal (20 mg) or SWCNTs (20 mg), then spiked

with phenanthrene (0.50 mg kg−1). The mineralisation of

phenanthrene by Mycobacterium vanbaalenii PYR1) was

inhibited by 40.3± 1.5, 40.5± 2.6 and 29.5± 3.5 % for

biochar, charcoal or SWCNTs, respectively. It was proposed

that the larger surface area and pore volume of SWCNTs rel-

ative to the other sorbents was responsible for the reduced

phenanthrene mineralisation. However, following the coat-

ing of SWCNTs with either HAs, TAs or peptone, a reduc-

tion in phenanthrene sorption occurred due to reduced pore

volumes and surface area, ultimately also reducing the extent

to which sorption to SWCNTs reduced mineralisation (Cui

et al., 2011).

In addition to the impact of soil types on the impact of

CNMs on organic contaminant sorption, properties of the

organic chemicals within soils are also influential in dic-

tating their interaction with different types of CNMs. Tow-

ell et al. (2011) assessed the impact of fullerene soot (FS),

SWCNTs and MWCNTs at 0, 0.05, 0.1 and 0.5 % con-

centrations, on the HPCD extractability (proven as an in-

dicator of PAH bioaccessibility to soil microflora (Reid et

al., 2000; Doick et al., 2005; Stokes et al., 2005; Rhodes
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et al., 2008b) and mineralisation of 14C-phenanthrene, and

HPCD extractability of 14C-benzo[a]pyrene (14C-B[a]P) in

soils over an 80 d period. Soils were first amended with

CNMs, and then spiked with the contaminant. At concentra-

tions≥ 0.05 % CNMs, 14C-phenanthrene mineralisation was

significantly inhibited, suggesting enhanced PAH sorption

reduced the aqueous substrate available for microbial miner-

alisation (Towell et al., 2011). Differences were also appar-

ent between CNM types, with SWCNTs generally resulting

in greater mineralisation inhibition in relation to MWCNTs

and FS (Towell et al., 2011). However, at a concentration of

0.5 % CNMs, 14C-phenanthrene was mineralised to a greater

extent with SWCNT amendments than FS. This disparity

was attributed to variation in rates of phenanthrene desorp-

tion from the solid to aqueous phase, as desorption hystere-

sis occurs more commonly with fullerenes than CNTs due

to differences in aggregate structure and availability of sorp-

tion sites (Cheng et al., 2005; Yang and Xing, 2007; Towell

et al., 2011). The HPCD extractability of 14C-phenanthrene

was significantly reduced as a result of CNM amendment in

a concentration-dependant manner due to increased numbers

of sorption sites resulting in enhanced phenanthrene sorption

(Towell et al., 2011). However, while the HPCD extractabil-

ity of 14C-B[a]P decreased with increasing concentrations

of SWCNTs and MWCNTs, no significant concentration-

dependant differences were observed with FS (Towell et al.,

2011). The ability of CNMs to sorb and hence modify the

bioaccessibility of HOCs is therefore dependent on the dif-

ferences in physicochemical properties of the PAH in rela-

tion to the properties of the CNM. However, the study did

not consider possible differences in the toxicity of CNMs be-

tween particle types when discussing variations in minerali-

sation trends.

When considering the fraction of contaminants sorbed to

CNMs within these investigations, and the resulting reduced

bioavailability, two schools of thought may be adopted:

(i) over time the nondegradable, bound fraction may innocu-

ously degrade (Gevao et al., 2000a), or (ii) the bound fraction

is potentially remobilised over long timescales with potential

environmental implications (Gevao et al., 2000b). This draws

on the discussion by Semple et al. (2013), in which the signif-

icance of distinguishing between bioavailability and bioac-

cessibility is significant, particularly when dealing with en-

vironmental “super sorbents” such as CNMs with reference

to remediation of contaminated land and risk assessment.

Semple et al. (2004) defined bioavailability as “that which

is freely available to cross an organism’s cellular membrane

from the medium the organism inhabits at a given time”, and

is considered as a rate of substrate delivery to cells. While

bioaccessibility encompasses this fraction, it additionally ex-

tends to those which are potentially available over time, but

are currently chemically or physically removed from the mi-

croorganism (Semple et al., 2004). In other words, it pro-

vides a definition of the total extent of substrate that will

be available to cells. Arguably, bioaccessibility is of rela-

tively greater importance when considering the fate and be-

haviour of CNM-sorbed contaminants, due to the larger tem-

poral range and lack of implied immediacy. However, un-

der some environmental conditions, microbial colonisation

of CNM agglomerates can occur, with potential implications

for the bioaccessibility of the bound contaminant fraction.

4.4 Microbial sorption and biofilm formation

While the toxicity of CNMs in soil is dependent on their

bioaccessibility in addition to retention of reactivity, if ag-

glomerates of CNMs are present with a reduced cytotoxic na-

ture, it is conceivable that interstitial gaps in the agglomerate

with mesopore dimensions will result in their increased suit-

ability for the sorption of microorganisms (Agnihotri et al.,

2005; Upadhyayula and Gadhamshetty, 2010). When this is

related to the previous discussion of CNM contaminant sorp-

tion and the implications for biodegradation, it is possible to

reconsider the lack of bioaccessibility of CNM-sorbed con-

taminants reported in some studies, and consider their poten-

tial to increase contaminant bioaccessibility in certain situa-

tions. Properties of particular importance when considering

CNMs for such applications include (i) structures with high

porosities readily colonisable by microorganisms, (ii) poten-

tial ability to encourage biofilm formation through offering

a buffering capacity, and (iii) the ability to adsorb high con-

centrations of contaminants from bulk solution yet regulate

the microbial biodegradation through desorption (Abu-Salah

et al., 1996).

Biofilms are groups of well-organised, adjoining cells en-

capsulated within a matrix of insoluble, extracellular poly-

metric substances (EPS) (Morikawa, 2006). EPS encapsu-

lation supports cell substance and growth through the trap-

ping, binding and dissemination of external nutrients by

charged polysaccharide groups (Cheng et al., 2007), and of-

fers greater protection against external stresses within the

environment relative to those residing in a planktonic state

(Pang et al., 2005). Materials that allow a high degree of bac-

terial colonisation and possibly biofilm formation are poten-

tially suited to facilitating biodegradation (Upadhyayula and

Gadhamshetty, 2010), which is typically most effective when

microorganisms are in a biofilm state as opposed to plank-

tonic, due to greater bioavailability, protection and adapt-

ability to toxic conditions and hence more rapid pollutant

degradation (Singh and Cameotra, 2004; Singh et al., 2006).

Furthermore, bacterial colonisation may stabilise nanoparti-

cle aggregates as polysaccharides, such as those generated by

bacteria, have been observed to significantly increase the ag-

gregation of C60 fullerene, reducing particle mobility within

the environment (Espinasse et al., 2007).

Upadhyayula and Gadhamshetty (2010) conducted hypo-

thetical calculations to determine the quantity of cells that an

agglomerate of CNTs could potentially sorb. The dimensions

of a typical bacterium such as Shewanella oneidensis are

2 µm in height with a radius of 0.5 µm, resulting in a surface
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area of 7.85× 10−12 m2. Assuming that 10 % of the surface

area of 0.1 g of CNTs added to media was available for bac-

terial sorption, the CNTs would be able to sorb 3.18× 1013

S. oneidensis cells (Upadhyayula and Gadhamshetty, 2010).

Furthermore, Upadhyayula et al. (2009) confirmed the ad-

sorptive capacity of nanotubes for the bacterial strain Bacil-

lus subtilis to be 37 times greater than the capacity of acti-

vated carbon; however, this may vary depending upon pore

volumes and surface area, which are key determinants of

immobilisation capacity (Upadhyayula and Gadhamshetty,

2010). Given these parameters, it is conceivable that biofilms

could develop on CNM aggregates given sufficient pore vol-

umes and diminished CNM reactivity.

When the potential for biofilm development on CNMs

is considered in relation to their HOC sorptive ability and

aggregation within soils, it has been suggested that CNMs

may be useful for enhancing biodegradation of organic pol-

lutants that cannot be easily concentrated. With CNM ag-

gregates behaving as an organic chemical collector and ac-

cumulator, biofilm development on CNMs potentially in-

creases the bioavailability/bioaccessibility of the contami-

nant (Yang et al., 2006b). Given adequate reversibility of or-

ganic compound adsorption and limited desorption hystere-

sis, sorption of bacterial cells to the surface of CNM ag-

gregates may shorten the diffusion distance, facilitating the

utilisation of the sorbed organic compound by the bacteria.

This is well illustrated by Yan et al. (2004), who studied

the removal efficiency of microcystin (MC) toxins from so-

lution by Ralstonia solanacearum bacteria (Gram-negative

cells which are able to readily coalesce on fibrous mate-

rial) immobilised as a biofilm on a nontoxic form of CNTs.

Their results showed that the removal efficiencies of MCs

were 20 % greater by CNT biological composites than ei-

ther CNTs or bacteria alone (Yan et al., 2004). The find-

ings were explained through absorption of large amounts of

MCs and R. solanacearum by CNTs, resulting in a concerted

biodegradation reaction (Yan et al., 2004). In a similar in-

vestigation, Kanepalli and Donna (2006) used CNT-bacteria

nanocomposites to assess the bioremediation of highly per-

sistent trichloroethylene (TCE) in groundwater. The study re-

vealed that TCE instantly sorbed to bacteria nanocomposites,

which was later released to bacteria that were immobilised on

the surface and metabolised.

Xia et al. (2013) studied the bioavailability and desorption

(Tenax TA) of 14C phenanthrene aged over 60 d with four

different MWCNTs with varying surface areas in aqueous so-

lution. MWCNTs significantly (P < 0.05) reduced the min-

eralisation of phenanthrene in accordance with their proper-

ties, with particles possessing larger specific surface areas to-

gether with large meso- and micropore volumes resulting in

the lowest mineralisation efficiencies. Bacteria were also ob-

served to colonise the surface of MWCNT aggregates, pro-

portional to the quantity of phenanthrene desorbed through

Tenax TA extractions (Xia et al., 2013). Although slight

changes to the physical appearance of the bacteria were ob-

served when sorbed to MWCNT aggregates, potentially indi-

cating a toxicity effect, the ability of the cells to metabolise

phenanthrene sorbed to low surface area particles may not

have been significantly reduced (Xia et al., 2013). However,

the lack of a control sample in which the metabolism of

cells under conditions devoid of CNMs was assessed lim-

ited the ability of the paper to determine the overall impact

of MWCNT aggregates on phenanthrene mineralisation.

Very little information is available on how CNMs act

within soil matrices, especially in relation to their adsorp-

tion to organic fractions, organic pollutants and their sub-

sequent toxicity (Dinesh et al., 2012). With an angelus sor-

bents such as black carbon (BC), elevated mineralisation of

a phenanthrene substrate has been observed as a direct result

of BC addition to soil, which was tentatively attributed to

microbial sorption and utilisation of phenanthrene from the

sorbed phase (Rhodes et al., 2008a, 2012). Only one study

has identified an increase in contaminant mineralisation in

soils following the addition of CNMs. Xia et al. (2010) stud-

ied phenanthrene biodegradation and desorption characteris-

tics (using XAD-2) in 21–40 d aged MWCNT-amended soils

relative to soils amended with wood char and black carbon.

Following each ageing interval, Agrobacterium (the degrad-

ing inoculum) was added to the soil, and the contaminant

degradation efficiency was measured. After 28 and 40 d age-

ing, the degradation efficiency in MWCNT-amended soils

was 54.2 and 24.6 %, respectively,; wood char amended 73.5

and 25.1 %, respectively, and black carbon amended 83.8 and

38.3 %, respectively. Thus, a reduction in bioavailability of

contaminants sorbed to each of the sorbents with increas-

ing soil contact time is observed (Xia et al., 2010), together

with the relatively low bioavailability of contaminants sorbed

to MWCNTs relative to other environmental sorbents. Des-

orption studies identified similar residual concentrations of

phenanthrene; however, during rapid stages of degradation,

desorption rates were found to underpredict the rate of degra-

dation (Xia et al., 2010). This potentially suggests that for

each of the sorbents, phenanthrene was available to bacteria

either through the promotion of desorption or direct access

(Xia et al., 2010).

Given the discussion above, it is possible to consider

an additional factor to those proposed by Kretzschmar et

al. (1999) in Sect. 4, to determine the significance of

contaminant-facilitated transport by CNMs. If the CNM-

sorbed contaminant is available to the cells through utilisa-

tion from the sorbed phase, the importance of desorption of

sorbed compounds from CNMs during transport is reduced.

It is therefore proposed that incorporation of a fifth factor,

“the bioavailability and bioaccessibility of CNM sorbed con-

taminants to microorganisms from the solid phase” may be

appropriate, inferring that bioaccessibility through desorp-

tion investigations may lead to incorrect assumptions. How-

ever, substantially more work is required to identify the ex-

act mechanism involved in these findings, and the specific

conditions under which contaminant and microbial sorption
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to CNMs could potentially result in toxicity from the CNM

itself, from the sorbed contaminant or both (Nowack and

Bucheli, 2007). It is also possible that under some environ-

mental conditions, rapid desorption or excessive bioavailabil-

ity of sorbed contaminants may shock load sorbed bacte-

ria and prove toxic (Upadhyayula and Gadhamshetty, 2010).

Biodegradation of contaminants sorbed to CNMs therefore

still requires substantial investigation into specific combina-

tions of pollutants and microorganisms (Upadhyayula and

Gadhamshetty, 2010), to determine whether the bioacces-

sibility of sorbed contaminants is either increased or de-

creased, and if the addition of CNMs will increase the mobil-

ity of contaminants in the environment. The general paucity

of knowledge regarding the duration for which contaminants

will remain sorbed to CNMs requires addressing to deter-

mine the long-term stability of contaminants sorbed to dif-

ferent nanoparticle types. Furthermore, the extent to which

CNMs influence the transformation residues of HOCs in

soils such as bound residues formed during organic pollution

degradation in soil is unknown (Barriuso et al., 2008; Shan

et al., 2011; Zhou et al., 2013).

5 Summary and conclusions

The complex and dynamic nature of both soil environments

and CNM physicochemical properties generates enormous

uncertainty in attempting to predict their behaviour and im-

pact on contaminant sorption, sequestration and transport as

well as microbial interactions. This review argues that the

fate and behaviour of CNMs in soils is influenced by mul-

tiple parameters such as the type and quantity of SOM, the

type of clay particles present, the dominant charge character-

istics of the matrix as dictated by the soil inorganic fraction,

and the properties of the CNM, each of which is heavily in-

fluenced by pH and ionic strength. In addition, to a small ex-

tent, biological activity has been shown to modify the carbon

nanomaterial fate. However, presently no research has been

conducted into the manner in which these factors interact and

collaboratively influence the fate and behaviour of CNMs in

real environmental scenarios; therefore additional research is

required.

The extent to which CNMs are able to modify the be-

haviour of contaminants in soils and facilitate their transport

is dependent on the CNM concentration, the properties of

SOM, molecular weight of the HOC and the interaction of

the CNM with the HOC before its addition to soils. When

present in sufficient concentrations, CNMs have the ability

to facilitate the transport of co-existing contaminants such

as PAHs to a greater extent than naturally occurring col-

loids such as DOM, the extent of which is dependent on the

physicochemical properties of the contaminant, CNM func-

tionalization status, aggregation size and method of prepa-

ration. Further work derived from experimental research is

needed to address the lack of data relating to the transport

of CNMs through soils of different properties. Additionally,

CNM-HOC desorption kinetics within soils require defining,

as this presently limits our understanding of the significance

of CNM-facilitated transport.
Finally, CNMs are undoubtedly efficient sorbents for a

range of HOCs. However, while a reduction in the bioac-
cessibility of contaminants in soils following the addition
of CNMs has been demonstrated (Towell et al., 2011),
further research is required before their sorbtive abilities
can be applied to the remediation of contaminated soils.
Specifically, information regarding the stability of sorbed
contaminants, as well as their potential to increase contam-
inant mobilisation together with other secondary effects,
are as yet too poorly understood to fully anticipate the
possible environmental impact of CNMs. To determine the
behaviour of CNMs within soils, it is concluded that no one
set of environmental or CNM characteristics can be viewed
in isolation. Hence, given the diverse array of variables,
it is argued that risk assessment of CNMs within the soil
environment should be conducted on a case-by-case basis.
A detailed analysis of other environmental compartments in
which CNMs can potentially accumulate, such as sediments,
should also be considered.

Edited by: R. Zornoza
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