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Abstract In eukaryotic cells, chromatin transformation
from euchromatin into heterochromatin as a means of
controlling gene expression and replication has been
known as the “accessibility hypothesis”. The interplay of
epigenetic changes including histone modifications, DNA
methylation, RNA interference (RNAi) and other func-
tional epigenetic components are intricate. It is believed
that these changes are well-programmed, inherited and can
be modified by environmental contaminant stressors.
Environmentally-driven epigenetic  alterations during
development, e.g. embryonic, foetal or neonatal stage, may
influence disease susceptibility in adulthood. Therefore,
understanding how epigenome modifications develop in
response to environmental chemicals and, how epigenetic-
xenobiotic interactions influence human health will shed
new insights into gene-environment interactions in the
epidemiology of several diseases including cancer. In this
review, we consider studies of chemical modifiers includ-
ing nutritional and xenobiotic effects on epigenetic com-
ponents in vitro or in vivo. By examining the most-studied
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epigenome modifications and how their respective roles are
interlinked, we highlight the central role of xenbiotic-
modified epigenetic mechanisms. A major requirement will
be to study and understand effects following environmen-
tally-relevant exposures. We suggest that the study of
epigenetic toxicology will open up new opportunities to
devise strategies for the prevention or treatment of at-risk
populations.

Keywords DNA methylation - Epigenetics -
Environmental stressor - Epigenetic toxicology -
Histone modifications - Noncoding RNA (ncRNA)

In eukaryotic cells, chromatin transformation from
euchromatin into heterochromatin as a means of control-
ling gene expression and replication has been known as the
“accessibility hypothesis”. Various epigenome modifica-
tions can remodel chromatin accessibility [1, 2]. Within the
cell nucleus, the most actively transcribed chromatin is
lightly-packed euchromatin, which is characteristically
hyperacetylated at N-terminal lysine residues in core His-
tones H3 (H3Kac; i.e. H3 lysine-9/14 acetylation) and H4
(H4Kac; i.e. Histone H4 acetylated lysine) along with hy-
pomethylated CpG islands in related gene promoter
regions. Some constitutive euchromatin may be “always
turned on”, including regions encoding housekeeping
genes. Rendering it inaccessible, tightly-packed hetero-
chromatin usually expresses different variations of hypo-
acetylated histones ranging between the two extreme levels
representing constitutive and facultative. Constitutive het-
erochromatin is poorly expressed and consists mainly of
repetitive structures such as (peri) centromeric satellites
and telomeric repeats with typically tri-methylated lysine
residues H3K9 (H3K9me3; i.e. Histone H3 trimethyl
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Lysine 9), in which the histone methyltransferases (HMTs)
and heterochromatin protein 1 (HP1) are specifically bound
to H3K9me3 [3-5].

For some genes subject to developmental regulation,
sequences may be either tightly packaged in facultative
heterochromatin containing hypermethylated CpG islands
in one cell whilst in another, they may occur in euchro-
matin with hypomethylated CpG islands; this could include
the X chromosome genes that are inactive in female
mammals but active in males and the inactive alleles of
methylated genes with monoallelic expression subject to
imprinting [6]. In facultative heterochromatin, H3K9 (i.e.
Histone H3 Lysine 9) and H4K20 (i.e. Histone H4 Lysine
20) are in general di- or mono-methylated; the silenced
gene is maintained by H3K27me3 (i.e. Histone H3 tri-
methyl Lysine 27) and mono-ubiquitylated H2AK119 [5].
Histone modifications also include phosphorylation, ubiq-
uitinylation, sumoylation, ADP-ribosylation, carbonyl-
ation, deimination and proline isomerization [7].

In addition, chromatin architecture is regulated by
ncRNAs; microRNAs (miRNAs) often act in concert with
various components of the cell’s chromatin and DNA
methylation machinery to achieve stable silencing via the
RNAIi pathway, with associated alterations to chromatin
structure [8]; these are believed to regulate up to one-third
of all human genes by interfering with mRNA functions
[9]. Heterochromatin formation appears to be broadly
regulated by small RNAs, i.e. RNAi-related processes [8].
Several additional classes of ncRNAs, such as repeat-
associated small-interfering (si) RNAs (RasiRNAs) in
Drosophila and their mammalian counterparts Piwi pro-
tein-interacting RNAs (piRNAs), are found to be involved
in the regulation of genomic architecture, the maintenance
of germline genomic integrity and the ageing process [7,
8]. Moreover, as parental imprinting is intimately linked to
ncRNAs [8], this reflects the fact that RNA-directed reg-
ulatory processes may also transfer epigenetic information
not only within cells but also between cells and organ
systems, as well as being trans-generational [10]. Recent
research suggests LINE-1 retrotransposon RNA is an
essential structural and functional epigenetic component
for centromeric activity [11] and non-coding genes Xist (X-
inactive specific transcript), an RNA gene on the X chro-
mosome of placental mammals that acts as an effector of
the X-inactivation process, can regulate the expansion of
heterochromatin [12].

Although cross-talk with constitutive processes is a
major epigenomic regulator [13—16], one also needs to
consider the role that chemical modifiers, including nutri-
tional and xenobiotic, play in modifying epigenetic com-
ponents in vitro or in vivo. The core focus of this review
will be on how xenobiotics-induced adverse epigenetic
alterations or epigenetic toxicity beyond the DNA
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sequence
phenotype.

impacts on heritable gene expression or

1 Chemical-induced epigenetic component alterations

Whilst one inherits their genetic sequence code, the
expression or silencing of individual genes can be modified
by environmental factors [10, 17]. Recent research suggests
that exposure to environmental stressors, including nutri-
tional factors and chemical or physical pollutants can alter
gene expression via altered epigenetic components [18—
22]. Such epigenetic processes play a significant role in
acclimation to environmental stresses. A wide range of
environmental factors, including xenobiotic chemicals,
diet, stress, behaviour, geographic location and even
weather patterns have been shown to alter gene expression
via epigenetic alterations [20, 21, 23]. Certain environ-
mental stressor-stimulated epigenetic alterations can be
passed from one generation to the future generations [24,
25]; however, these findings need to be robustly tested in
future studies.

1.1 Inorganic chemicals

Acetylation has been linked with transcriptional stimula-
tion [3]. Recent studies have associated nickel with histone
modifications and altered chromatin organization. At non-
toxic levels, it induces decreases of Histone H4 acetylation
in yeast [26]. Post-nickel exposure, decreased gene
expression coincided with three major histone modifica-
tions, including loss of acetylation (of H2A, H2B, H3 and
H4), increased H3K9me?2 (i.e. Histone H3 dimethyl Lysine
9), and increased ubiquitinylation of H2A and H2B [27-
29]. Chromium exposure was linked to epigenetic-con-
trolled gene expression alterations via interactions with
histone acetyltransferases (HATs) and histone deacetylases
(HDACS) [30], the enzymes that catalyze histone deacet-
ylation and acetylation, respectively. Chromium reduces
phosphorylation and trimethylation in H3, modifies a
variety of acetylation marks in H3 and H4, and influences
P16 hypermethylation in lung cancer tissues [30-32].
Developmental mouse exposure to low levels of methyl-
mercury may induce epigenetic suppression via DNA hy-
permethylation of gene expression particularly of the brain-
derived neurotrophic factor (BDNF) promoter region in the
hippocampus, an increase in histone H3K27me3 (i.e. His-
tone H3 trimethyl Lysine 27) and a decrease in H3ac (i.e.
acetylated Histone H3) at the promoter IV [33].
Occupational or environmental exposure to cadmium,
arsenic, nickel, chromium, methylmercury or lead can
result in altered DNA methylation [21]; following heavy
metal (cadmium, arsenic or nickel) exposures, the resulting
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pathologies in rodents exhibit an epigenetic profile that
resembles that of animals fed a methyl-deficient diet.
Short-term cadmium exposure inhibits DNA methyltrans-
ferases (DNMT) activity, but prolonged exposure increases
DNA methylation and DNMT activity, resulting in neo-
plastic transformation in rat hepatocytes [34, 35]. Cad-
mium alterations of DNA methylation may be responsible
for its carcinogenic properties. By promoter hypermethy-
lation in human lung adenocarcinoma, plutonium can tar-
get P16 for inactivation [36]. Arsenic is also associated
with gene-specific hypermethylation as well as global DNA
hypomethylation, which depletes SAM (S-adenosyl
methionine) and represses DNMT1 and DNMT3A activity
[37]. Adult mice exposed to sodium arsenite exhibit
reduced DNA methylation whilst co-exposure of sodium
arsenite with a methyl-deficient diet results in gene-specific
hypomethylation in the promoter region of the oncogene
Ha-ras [38]. An India-based human study showed a dose—
response relationship between hypermethylation and
arsenic exposure from drinking water [39]. Similarly, a
dose-dependent hypermethylation in blood DNA was
associated with chronic arsenic exposure in Bangladeshi
adults [40].

1.2 Organic chemicals

Exposure to some endocrine disruptors has been linked
with epigenetic alterations that are inherited trans-genera-
tionally [24, 25] via germ line transmission of imprinted
genes exhibiting an altered methylation pattern. Transient
exposure to the oestrogenic insecticide methoxychlor and
the antiandrogenic fungicide vinclozolin at the time of sex
determination appeared to alter methylation of two
imprinted genes of LPLase and cytokine-inducible SH2
protein in the male germ line of pregnant rats [24]. Adverse
effects were reported to last for four subsequent genera-
tions in approximately 90 % of males and, suggested
vinclozolin-induced DNA methylation changes are inher-
ited [41]. Vinclozolin may also target Sertoli cells in mice,
and exploit miRNAs to elicit its anti-androgenic effects
[42]. The oestrogenic diethylstilbestrol (DES) caused the
aberrant DNA methylation of oestrogen-regulated genes
such as lactoferrin (LF) in mice exposed in utero or peri-
natally and transgenerational effects were observed in
DES-exposed individuals [43-45]. Neonatal exposure to
oestradiol and environmental levels of bisphenol A (BPA)
resulted in multiple changes in cell signalling gene-specific
DNA methylation patterns in rat prostate [46]. Exposure to
BPA during early development was found to decrease
agouti gene methylation. When pregnant yellow agouti
mothers were fed BPA, yellower and unhealthier offspring
compared to those on control diets were born. However,
pregnant yellow mice administered BPA but kept on a
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methyl-rich diet had offspring that were predominantly
brown [47]. Nonylphenol-treated cell lines (MCF-7 and
HepG2 cells) exhibited altered miRNA profiles of let-7c,
miR-16, -195, -200b, 200c, 205, -589, which are related to
metabolism, immune responses, apoptosis, and cell dif-
ferentiation [48]. Pre-implantation exposure of mice
embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
resulted in altered methylation status of imprinted genes
HI9 and IGF2 (insulin-like growth factor 2) [49]. Other
endocrine disruptors including phthalates, polychlorinated
biphenyls (PCBs) and organochlorine pesticides may also
affect the reproductive system or induce tumour develop-
ment by altering DNA methylation [50-53].

Many other chemical stressors can alter epigenetic
markers. Exposure to oxidative stressor-like H,O,
increased HAT activity, which promoted acetylation and
induced chromatin remodelling in alveolar epithelial cells
[54]. Nucleoside analogues such as azacitidine that are
incorporated into replicating DNA, inhibit methylation and
reactivate previously-silenced genes [55]. The antisense
oligonucleotide drug MG98 that down-regulates DNMT1
showed promise in phase I clinical trials [56]. Similarly,
small molecules such as valproic acid that down-regulate
HDAC:S are being used to induce growth arrest and tumour
cell death [57]. Pogribny et al. [58] found Fisher 344 rat
exposure to tamoxifen, a potent hepatocarcinogen in rats,
leads to a significant up-regulation of known oncogenic
miRNAs, such as the 17-92 cluster, miR-106a, and miR-34.

1.3 Lifestyle-related and nutritional chemicals

Polyphenols such as genistein, catechins and bioflavonoids
in green tea can inhibit DNMTs and further inhibit
methylation of candidate genes [59-63]; the pathways by
which these chemicals affect DNA methylation remain
obscure [60, 62, 64]. When a woman is exposed during
pregnancy to polycyclic aromatic hydrocarbons (PAHs)
from tobacco smoke, methylation of specific genes in the
developing foetus is affected, and this is associated with a
fourfold increase in asthma symptoms in children
<5 years [65]. Exposure to airborne PAHs during preg-
nancy resulted in methylation of ACSL3 (expressed in
lung and thymus tissue) with associated parental reporting
of increased prevalence of child’s asthma <5 years age;
73 % of children with asthma exhibited ACSL3 methyla-
tion compared to 41 % who were asymptomatic [66].
Cigarette smoking can also stimulate the demethylation of
metastatic genes [67] and aberrant promoter hypermethy-
lation of death-related protein kinase genes [67] in lung
cancer, and downregulate miRNA expression in the lungs
of rats [68]. A detrimental effect on the physical and
mental development of offspring due to paternal chronic
alcohol consumption, even in the absence of in utero
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alcohol exposure, was suggested to be the result of
incorrect H19 methylation and intergenic differentially-
methylated region (IG-DMR) [69]. Cocaine abuse may
lead to histone acetylation and activation of genes, alter-
ing locomotor and rewarding responses to the drug [70].
Long-term PM,, exposure was inversely associated with
methylation in both Alu and LINE-1 (long interspersed
nuclear element 1) [71]. Jardim et al. [72] found disrup-
tion of miRNA expression in human airway cells by diesel
exhaust particles is linked to tumorigenesis-associated
pathways. A human study showed that miRNA expression
(miR-222, miR-21, and miR-146a related with oxidative
stress and inflammatory processes) could be a novel
mechanism mediating responses to PM (i.e. particulate
matter) and its metal components [73].

Chemicals sourced from nutritional sources are also
involved in DNA methylation pathways. Folic acid,
vitamin B, and SAM are key elements in some one-
carbon metabolism pathways, which can couple the DNA
methylation pathway. DNMTs catalyze the transfer of a
methyl group from the methyl donor SAM onto the 5'-
position of the cytosine ring residing, in most cases, at the
dinucleotide CG sequence. DNMTs use the molecule
SAM as their primary source of methyl groups. SAM is
manufactured via the folate and methionine pathways,
using methionine, choline, folic acid and vitamin B,
ingested in the diet. Studies have shown that DNA
methylation correlates positively with folate status in the
human body [74]. Diets with high methyl-donating
nutrients quickly modify the epigenome, especially in
early development. It has been reported [75-78] that
feeding female mice with methyl donor diets before and
after pregnancy permanently increased DNA methylation
in their offspring at the viable yellow agouti (A"Y)
metastable epiallele; the feeding resulted in brown, heal-
thy offspring. The deficiency of methyl-donating folate or
choline during the late foetal or early postnatal develop-
mental stages led to hypomethylation [77]. In adults, a
methyl-deficient diet can also result in a decrease of DNA
methylation, but this is reversible with a normal diet [79].
However, high maternal dietary intake of methyl donors
during gestation was associated with a higher incidence of
asthma in mice offspring; decreased transcriptional
activity of Runx3, a gene associated with suppression of
allergic airway disease, was caused by increased DNA
methylation and this was reversible through the admin-
istration of a demethylating agent [80]. Aberrant meth-
ylation mediated by folate levels has been a suggested
risk factor in Alzheimer’s disease [81]. Dietary selenium
may also influence DNA methylation status and further
influence disease predisposition, e.g. cancer [57, 82, 83],
by affecting one-carbon metabolism in a different way
compared to folate.

@ Springer

2 Chemical-epigenetic interactions

Chemical-modified gene activation may involve the
ordered cascade of epigenetic events that begin with his-
tone modifications and finalize with alterations in DNA
methylation in promoter CpG islands [3, 84]. A general
hypothesis of environmental chemicals as lifelong modu-
lators of DNA hypomethylation is that such xenobiotics,
including metals, influences one-carbon metabolism
directly or indirectly [85, 86]. This may explain the pop-
ulation cohort studies that exhibit significant inverse linear
relationships between POPs or metals exposures and blood
global DNA methylation [87-89]. Patients with athero-
sclerotic vascular disease often exhibit higher homocyste-
ine and S-adenosyl homocysteine (SAHC) and lower
genomic DNA methylation status [90, 91], which is
directly connected with one-carbon pathways. Indirectly,
oxidative stress mechanisms generated by xenobiotics may
also involve aberrant epigenetic modification of DNA [85]
and histones [92] via the depletion of glutathione (GSH)
and changing the ratio of reduced GSH and its oxidized
form, GSSG (i.e. GSH disulphide). Oxidative stress may
also alter epigenetic modification via mitochondrial dys-
function [93-95]. To be inhibitors, isoflavones, polyphenol,
zinc and cadmium may inhibit DNMTs directly and indi-
rectly, and further inhibit methylation of candidate genes
[34, 59, 60, 62, 64].

Coinciding with gene-specific aberrant methylation
following exposure to endocrine disrupting chemicals,
DNMTs were abnormally expressed in some cases [45, 49].
Endocrine disrupting chemicals induced aberrant methyl-
ation of oestrogen-regulated genes [43—45]; steroid hor-
mone interacts with chromatin-modifying enzymes by
binding the receptors [16] may suggest other pathways by
which chemicals alter epigenetic markers, i.e. they may
involve the expression of target genes by modifying their
epigenetic regulators directly.

3 Concluding remarks

In the broadest sense, environmental chemicals appear to
alter epigenomic marking and, subsequently gene expres-
sion. Particular gene expression profiles can pre-dispose
both parental and subsequent generations to an elevated
susceptibility to disease [10]. Therefore, these stressors
very probably modulate disease susceptibility. The field of
environmental epigenomics is still in its infancy; however,
a growing body of information is improving our under-
standing of the interplay between epigenetic alterations,
gene expression and environmental stressors. There’s an
urgent need to study the consequences of exposures at
environmentally-relevant levels; this will allow the
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determination of real-world effects and the true relevance
of epigenetic mechanisms. It is probable that such epige-
netic markers will be used for early molecular diagnosis in
those with a predisposition to developing adult diseases
due to environmental exposure. For instance, the abnormal
methylation of Igf2 and H19 gene expression in sperm of
adults may indicate a susceptibility to diabetes in sub-
sequent generations [96]. Furthermore, as the epigenome is
modifiable or reversible, this allows for the implementation
of strategies to allow disease prevention and targeted
treatment. In summary, pollutant-induced epigenetic tox-
icities turn on or determine latent alterations in gene reg-
ulation (Tables S1, S2 and S3 online), such epimutagenic
events open up a new horizon in assessment of environ-
mental health.
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