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Intelligent system for spoken term detection using the belief combination

Wasiq Khan', Kaya Kuru®
School of Engineering, University of Central Lancashire, PR1 2HE, United Kingdom

Emails: 'wkhan4@uclan.ac.uk; *kkuru@uclan.ac.uk

Abstract

Spoken Term Detection (STD) can be considered as a sub-part of the automatic speech recognition which
aims to extract the partial information from speech signals in the form of query utterances. A variety of STD
techniques available in the literature employ a single source of evidence for the query utterance
match/mismatch determination. In this manuscript, we develop an acoustic signal processing based approach
for STD that incorporates a number of techniques for silence removal, dynamic noise filtration, and evidence
combination using Dempster-Shafer Theory (DST). A ‘spectral-temporal features based voiced segment
detection’ and ‘energy and zero cross rate based unvoiced segment detection’ are built to remove the silence
segments in the speech signal. Comprehensive experiments have been performed on large speech datasets and
consequently satisfactory results have been achieved with the proposed approach. Our approach improves the
existing speaker dependent STD approaches, specifically the reliability of query utterance spotting by

combining the evidences from multiple belief sources.

Keywords: Spoken term detection, Acoustic keyword spotting, Query-by-example, Dempster-Shafer’s

theory, Speech recognition, Speech processing.
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l. Introduction

There is a long-standing interest in STD with regard to both theoretical and practical issues. Nowadays, it is
receiving much importance due to the large volume of multimedia information. Research and technology
improvements in automated speech recognition successfully achieved the information retrieval by using the
transcribed textual form of the spoken contents [1]. Similarly, due to the exponential growth of internet and
multimedia contents, the STD methods have been achieving much popularity. However, dynamic properties of
speech signal make the STD task more challenging. Literature contains a variety of STD techniques that use
different approaches to match the query utterance with reference speech. Template matching based utterance
spotting has been recently proposed as one of the most commonly used methods [2]. For instance, speech

recognition using Vector Quantization (VQ) and Dynamic Time Warping (DTW) models is the most relevant
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example of these systems. However, there are some challenges associated with DTW approach that are needed
to be resolved [3], [4], and [5].

In relation to acoustic keyword spotting, Query-by-Example (QbyE) methods, keyword/filler methods, and
large vocabulary continuous speech recognition methods have also been used in the literature. Most of the
existing QbyE methods [4], [6], [7], [8], [9], [10] and STD approaches [11], [12], [13], [14] use DTW and its
variations [3], [15], [16]. Over the past decade, mass of the related research is focused on novelty of the
template representation methods [17], [18], [19], [20], [21]. An acoustic segmentation model based STD is
presented in [10] that amalgamates the self-organising models, query matching, and query modelling processes.
Similarly, [14] introduced a template combination based STD method that deploys segmental DTW and a self-
similarity matrix comparison between speech utterances. In addition to QbyE and STD methods, isolated word
recognition is also related to STD however; it is less complicated as compared to STD due to the discreteness
and isolation of the speech signal. Literature consists of several variations of isolated word matching that
exploits different approaches for pattern recognition. For instance, isolated word recognition is presented by
[22] where extracted features for test and reference utterances in the form of Mel-Frequency Cepstrum
Coefficients (MFCCs) vectors are forwarded to DTW model that measure the warping distance. Similarly, a
signal dependent matching for isolated word recognition is proposed in [23] producing a better performance
using fast Fourier transform for feature extraction and enhanced version of DTW. Likewise, an improved DTW
technique is proposed in [24] based on cross correlation for digit recognition. It uses a new approach of slacked
start and end point which depends upon the performance of end point detection.

Despite of fact that the existing methods have been improving the DTW based STD to deal the time
warping phenomenon more effectively, the trade-off between distance matrix pruning and DTW performance in
terms of warping distance accuracy is still challenging [3], [4], and [5]. The boundary constraints on distance
matrix improve the computation cost but sacrifice a significant amount of DTW performance [3]. In addition,
the uni-source information used in DTW to measure the warping distance provides an unreliable spotting
decision. Because of the unsupervised model of DTW, it would be much better to use multi-source information
for distance calculation to make spotting decision which would increase the system reliability. This manuscript
introduces a novel STD approach which amalgamates a number of techniques to improve the existing STD
template matching based methods. For the first time, a temporal-spectral feature based silence removal is
deployed along-with the DST to fuse the evidences from multiple information resources to produce a reliable
spotting decision for query utterance. A detailed mathematical formulation of the DST for the proposed task

along with the experimental results and performance analysis is presented in the following sections.

1. Material and Methods

The proposed STD methodology entails data collection, mathematical modelling, experimental setup, and
analysis of statistical results to evaluate the performance of proposed approach. Experiments are conducted
using a large dataset available online as described in Table I. For the long speech phrase STD experiments; two
speech corpuses, Mobio [25] and Wolf [26] are requested from IDIAP research institute. These dataset consist
of very large-scale spoken contents recorded by variety of speakers as a composition of single, binary, and

group discussions. In addition, a case study is conducted on speech dataset acquired from 30 speakers from



diverse ethnic background, age, and gender. The data is recorded in noiseless Lab environment using a vocal

dynamic microphone with built-in noise filter (SENNHEISER €935).

Table I: Speech Corpuses used for experimental results and performance evaluation

No. of
Corpus name Gender Length Availability
Speakers
Mobio 152 M, F 135 GB Licence agreement
Wolf 12 M, F 100 GB, 81 hours Licence agreement
CMU ARCTIC 4 M, F 1150 utterances Open source
Online Children Stories 65 F 65 stories & poems Open source
Connected words (500), Authorised user
Case Study Dataset 30 M, F Short phrases (450), onl
Spoken paragraphs (210) Y

A. Formulation of the Spoken Term Detection

A composite of techniques are sequentially combined to build the proposed STD system. The input to the
system are query and reference speech utterances which are then processed by a sequence of speech
enhancement, framing, feature representation, similarity belief calculation, and probabilistic modelling
approaches to make the final decision of query utterance match/ mismatch. Figure I show the workflow for

proposed STD approach followed by the detailed formulation of all sub-components.

O .
Similarity Belief Calculation
1 Pro-brocessin @ Feature Extraction
cre-processing e Calculation of test and reference
) ¢ MFCC features (mean) speech frames spotting beliefs
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reduction _ using based frequency bands distance
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A resources
O r—— (67 Belief Combination
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. . Filtration e Combination of evidences
¢ Vqlced frgme detection from Euclidean distance
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Figure I: Processes workflow in the proposed spoken term detection approach

a) Pre-processing

Existence of silence segments and background noise interference in speech signal cause misidentification
and therefore resolved in a pre-processing step. In the first step, background noise is reduced to a minimum
level of signal-to-noise ratio by using the spectral subtraction [27] that is performed independently in the
frequency bands corresponding to the auditory critical bands. Next step is to remove the silence segments from

speech signal. Literature contains several methods for silence removal that are based on signal energy, spectral

3



centroid, and Zero Cross Rate (ZCR) [28], [29]. For the ‘Voiced’ segments we used a robust pitch tracking
method [30] to estimate the fundamental frequency (F,) using the temporal-spectral information. As the F
doesn’t exist in the silence part of speech, these frames can be eliminated. All frames having the F, components
are produced as ‘Voiced’ segments. For the unvoiced frame detection, energy and ZCR features are used as
proposed by [28]. Output ‘voiced and unvoiced’ frames produced from aforementioned approaches are
combined together to reconstruct a silence free speech signal which is used for further processing. Fig. II shows

the sequential steps used for the silence segments removal and reconstruction of the silence free speech signal.

Voiced frame detection | Voiced frames

» using pitch tracking
Input speech algorithm )
signal Voiced and / ;
. . * ™ » Unvoiced frames ——»/ Elence freeh
Integration output speec
Unvoiced frame detection

using frame energy and
Z€ro cross rate Unvoiced frames

Figure II: Silence removal from speech signal using the spectral-temporal pitch estimation, ZCR, and signal energy

b) Dynamic Speech Filter and Feature Representation

The silence free speech signal is then decomposed into overlapped frames of 30 milliseconds duration and
forwarded to a dynamic noise filter that uses the wavelet decomposition to filter out unnecessary frequency
bands and temporal information. Wavelet decomposition has successfully been used as a powerful spectral
analysis tool which can effectively compress the information about the non-stationary signal into a piece of
local information. Moreover, it reveals the scale-wise organization of singularities, thus allowing for the

selection of the interesting strongest events using a simultaneous time-frequency domain representation [31].

Speech Frame | pgply | Windowed , | Calculate speech frame | Apoly Wavelet Approximation Apply

— Windowi , > FET —> Tans — & P Threshold to
R Signal ransiorm Detailed Coeff | Spectrum

Spectrum Filtered spectrum
Apply Mel- ; Threshold in
Mel Filtered Coeff
MFCC€— Apply DCT €— Spectrum™ | frequency Features€—— CalcEl::::yWD —— Time
Wrapping Domain

Figure III: Block diagram for MFCC and wavelet decomposition based features extraction

A block diagram for the MFCC and wavelet energy feature extraction process is presented in Fig. III.
Energy in a frequency level is measured by integrating the intensity magnitudes over time and can be

represented as:



Where ‘N’ represents the total number of coefficients in a frequency scale, Egg, is the total energy

measure for a scale, and ° Y ’ represents the output coefficients produced by wavelet decomposition for a scale.

The above procedure is applied to each scale and corresponding energy vector is measured.

ROC for Filter Boundary Setting

L -0B

Threshold

05

True +ve Rate 0.5
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Figure IV: Optimal threshold value selection for dynamic speech filter

Scales containing energy magnitude less than a pre-set threshold are eliminated. The optimal threshold
value is chosen by conducting experiments on a large dataset presented in Table I. A Receiver Operating
Characteristic (ROC) curve is achieved (Fig.IV) by varying threshold values from 0 to 1 with a lag of 0.01. It is
observed that the best compromise between sensitivity and specificity for STD performance is achieved with a
threshold value of 0.7. The energy magnitude of noise free approximation and detailed coefficients is then used
as one feature set. Simultaneously, the MFCCs features are extracted from the query and reference speech
utterance that has been used as the most powerful and distinctive in terms of human speech representation [32,
22]. In the next step, feature vectors (i.e. MFCCs and energy) for query and reference frames are normalised
and used by Euclidean distance to measure the degree of similarities between query and reference frames.
Output similarity scores from Euclidean distance represent the evidences (i.e. beliefs) provided by MFCCs and

energy based features that are further processed by DST for belief combination.

C) Mathematical Formulation of Multiple Belief Combination

The similarity beliefs from previous step are then forwarded to the evidence combination process that uses
the DST to provide a combined spotting belief while taking into account the corresponding weights and model
incomprehension. One of the interesting advantages of the DST is the model simplicity for the complex multi-

layered situations where the system can be decomposed into many layers of simpler states and then the beliefs



can be propagated upwards, combined with sibling layer states to get overall belief. A detailed study on DST

advantages, disadvantages, and its application areas is presented in [33].

For the proposed STD method, let E ={(mfcc),WDe} represent the set of belief resources in the form
of MFCC and wavelet spectral energy. The exclusive assessment classes consist of two elements, i.e.
H ={match, mis _match}. For each belief resource in * E > and assessment class* H °, a degree of belief
B, is allocated by the Euclidean distance described earlier that indicates the confidence measure when
evaluating the degree of fulfilment of a certain feature. The relative weights for belief resources are set by

=0.75

conducting offline experiments (discussed in results section) such thatOSa)I SlandWmeC

W, =0.25.

Basic Probability Assignments for Each Belief Resource

Let M, ; represent the basic probability mass indicating the level to which the i" belief resource is assessed.

The assumption that the general belief resource is evaluated to the N assessment class H , will be:

m.. = . .
n,i 1/~ n,i 2
The remaining probability mass M, ; un-allocated to belief resources can be represented as:
N 2
my ; :1_Zmn,i =1-w ) B,
n=1 n=1 3

Where, ° N =2’ represents the total number of assessment classes and M, ; can be further dissolved into

m,, ; and rﬁH,i as:

My, =1l-o

2
My = |1- E D
n=1 5
Eq". 4 calculates the amount to which final belief resources have not yet been evaluated to separate classes

due to the relative significance of belief resources after their aggregation. Eq". 5 calculates the amount to which

belief resources cannot be evaluated to separate classes due to the imperfect evaluation of belief resources.

Combined Probability Assignments

The next step is to aggregate the probability masses of E ={z(mfcc),WDe}to compose a combined
evaluation for query utterance match/mismatch decision that is formalised by the following equations.
{H.}:
My i = Ki+1[mn,i My £ My My +My .My ,i+1]
n=1...,N



Where i = {1, 2} denotes the number of belief resources and N = 2 represents the total count for assessment

classes. The termM, ;.M ,in Eq".6 estimates the probability of E ={x(mfcc), WDe}endorsing the output
decision to be evaluated to Hn. The probabilities of z(mfcc) and WDe supporting the final decision to be

evaluated to H nare denoted by m, ;.M ,and M, ;.M , respectively.

My =My +My; 7
rﬁH,i+1 = I<i+1[rﬁH,i'rﬁH,i+1 m rnH i+1 + I’T]H,i+1'rﬁH,i] 3
mH,i+1 = Ki+1[mH,i'mH,i+1] 9
-1
N=2 N=2
1_szt,i' mj,i+l Jfor i={1,...,.L-1} 10
t=1 j=1

J#t
In Eq". 8, M, Yl.mHz estimates the probability of final decision cannot be evaluated to any distinct class
match, mis _match because of the imperfect evaluation for E ={u(mfcc),WDe}. Term My, .M, ,and
mH’Z.mH’l estimate the probabilities of decision cannot be evaluated because of the imperfect evaluation for
{WDe}and z(mfcc) respectively. In Eq™. 9, M,, ;.M,, , estimates the probability of final decision has not yet

been evaluated to separate classes because of the relative significance of z(mfcc) and{WDe} after both belief

resources have been integrated. The M , M, are normalised using K as a normalization factor such that

Calculation of the Combined Degree of Belief

Finally, the amount of combined belief ﬂn for the query utterance evaluation to class H , can be assessed by

integrating the evaluation for all associated belief resources E ={zz(mfcc),WDe} as:

{H}: B, =—"— n=1.,N 0

n
m H,L

31

Y=o 2

—my

The degree of belief that remained un-allocated during the evaluations is represented by ﬁH . The set of

equations (Eq". 2 to Eq". 12) provides a combined degree of belief for the evaluation grades that are further

used for the decision making of query utterance spotting.



I1l. Results and Discussions

Performance of the proposed STD approach has been evaluated using different statistical metrics used for
binary classification [34, 35] in the form of query utterance match/mismatch decision. These metrics include

sensitivity, specificity, accuracy, likelihood ratios, absolute error, execution time, and F-score.
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Figure V: Statistical results comparison for spoken term detection by different approaches using case study
dataset

Individual performances of the proposed STD approaches are compared with the existing constrained DTW
and conventional DTW based STD techniques as shown in Fig.V. It is observed that in terms of sensitivity, the
performance of DST based STD is better than the individual performances of MFCC and wavelets based
approaches by a factor of 2% and 5% respectively. This implies that the deployment of DST increases the STD
as well as it empowers the performance in terms of decision making. Despite of the fact that the search space in
DTWC is less than traditional DTW; yet the traditional DTW is better than DTWC in terms of STD outcomes.
Similarly, the likelihood ratios (LR+, LR-) are used to measure the diagnostic accuracy which indicate that LR-
for the DST based approach is negligible (i.e. 0.03) as compared to 0.2 for DTW and 0.9 for DTWC. These
statistics also empowers the superiority of the proposed STD over the existing DTW based STD approaches.

Furthermore, the F-score is measured that indicated the effectiveness of proposed STD.



ROC Analysis
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Figure VI: The ROC curves for varying threshold values for query utterance match/mismatch decision

Decision Boundary Selection

The spotting decision for query utterance varies with respect to decision boundary setting. An optimal
threshold value for decision boundary is selected using the ROC curve that shows the trade-off between true
positive and false positives rate for various threshold settings. Smaller the threshold for decision boundary
means higher sensitivity and vice versa. Experiments are conducted on dataset described earlier and ROC
curves are achieved by changing threshold scales (from 0 to 1) for various approaches as shown in Fig. VI. It is
observed that the decision boundary at 0.85 thresholds value provides the optimistic trade-off between true
positive and false positive rate. In addition to optimal threshold value selection, the ROC curves in Fig.VI
manifest the superiority of the DST based STD as compared to state of the art DTW. Another aspect of the
ROC curves shown in Fig. VI is validation of the silence removal approach introduced in this manuscript. It is
clear that area under the curve for energy and spectral centroid based silence removal is far less than proposed
pitch detection, ZCR, and energy based approach.

oelection of optimistic decision boundary Weight selection for belief resources 1
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Figure VII: Setting the weights for belief resources and decision boundary value using ROC curves

Weight Allocation to Basic Attributes

Equation 2 and Eq".3 indicate the dependencies of basic probabilities in DST upon the relative weights
allocated to the belief resources{(mfcc),WDe}. To set up the optimal weights, experiments are conducted

on the aforementioned dataset with discrete values for attribute weights (from 0 to 1 with a lag of 0.01) to

retrieve the ROC curve as shown in Fig. VII. The ROC indicates the optimal compromise between false
9



positive rate and sensitivity is achieved atW_, = = 0.75; W = 0.25. The higher weight for MFCC feature

set indicate higher dependency of spotting decision as compared to wavelet based spectral features. However,

the individual performances of both attributes{zz(mfcc),WDe} are less than the combined beliefs as shown in

Fig.V that validates the importance of DST for the STD.

Table II: Results comparison of proposed STD approach with existing methods for multi-lingual utterances

: . (Mf:fﬁg‘zicﬁwji‘;z . DTW+MFCC DTW-Restricted+MFCC
< TE[SF g le|z|s|lslg|lelzlslslglgele]|s]|5
g fz|lex |z | & | |® | " |z | & |e|=| " |&|&|g|=®]|"
2 |gg | |2 E|E | =8 | & |7 SlEl& |
- g | & | g Z = g | & |
‘most | 14 | IMA2F|075| 1 |095| 0 |025]|075] 095 |091] 012|027 0 | 1 |08 | NaN| 1
‘today’ | 15 | 2M/IF | 1 | 090 [ 092 [009] 0 | 08 | 093 | 092 06 | 0 | 1 |o086]|NaN| 1
fish’ 8 | IMIF| 1 | 087|088 |012| 0 |075] 087 | 085 018 | 028 ] 025| 1 | 091 | 018 | 0.78
‘agai® | 12 | IMIF| 1 |095]|095[005| 0 | 1 | 080 | 081|016 |028] 05| 1 [095| o | 075
& 15 |3M2F| 1 |08l |082]o018| 0 | 06 | 084 | 082 | 025 | 047 | 02 | 098 | 092 | 0.08 | 081
‘dog’ 4 | IMAF| 1 |093|093]006] 0 |025] 089 |081| 0 |075]025]| 1 | 09 | NaN | 1
Gohm® | 15 | 2M/IF | 1 | 086|088 013| 0 | 08 | 081 | 08 | 016|023 0 | 1 | 08 | NaN| 1
wood” | 9 | IM2F| 1 | 1 | 1 | 0] 0o | 1 |09 |[092] 02 [071| 0 | 1 |088|NaN| 1
collect | 9 | IM2F| 1 |096|096|003| 0 | 06 ] 09 |093| 0 [033] o | 1 | 09 | NaN| 1
“found’ | 8 |2M2F| 1 097|097 002| o | 1 | 085 [086| 01 |027 075 1 |097 | NaN| 1
‘enough’ | 8 | 2MR2F| 1 |097]097]002] 0 | 1 | 097 |097] 08 | 1.1 | 075 | 1 |097 | NaN | 1
‘cap’ 12 | 2M/IF | 075 | 0.94 | 091 | 007 | 026 | 075 | 1 ] 095| 07 |091] 0 | 1 | o082 | NaN| 1
Al 10 | 2M |08 | 1 |096| o | 02 | 08 | 0955|092 ] 005|021 ] 0 | 1 |08 | NaN| 1
‘bed’ 4 |2MiaF| 1 087|088 012| o | 1 | 09 |091] 005|026 0 | 1 |091 | NaN| 1
‘throw’ | 4 | IM2F| 1 |095]|095|004] 0 | 1 | 093 093] 0 | 05| 0o | 1 |09 | NaN| 1
“tim’ 12 |2M/IF| 1 | 080|081 ]019] 0 | 1 | 083 | 085|025 |057] 1 | 1 | 1 |NaN| 1
‘thought’ | 16 | IM/IF | 0.75 | 0.91 | 090 | 0.11 | 027 | 0.5 | 085 [082] 019 | 078 | 025 | 1 | 094 | NaN | 1
‘dog’ 12 | IMIF| 1 091|092 008| 0 | 1 | 08 | 09 |026] 08 | 05 | 1 | 096 ]| NaN | 1
‘declin® | 12 | IM2F| 1 | 086|087 |013]| 0 | 1 | 083 |085| 0 | 0 |025| 1 |092|NaN| 1
‘said’ 10 | iM2F| 1 |074] 076|025 0o | 06 | 086 |084| 013|043 | 04 | 1 |095] NaN | 1
J 2 [2M1F| 1 | 1 | 1 ] 0o | 0 |075] 084 | 083|021 [029] 025 1 | 09| 0 |o075
fish’ 10 |2M2F | 1 | 087 088|012 0 | 06 | 094 | 09 |013 |022]| 02| 1 | 09| 0 | 08
Gaber | 12 |2MiF| 1 | 1 | 1 | o | o | 1 ) 1 o1 | 027|025 1 |088|NaN| 1
‘threw’ | 16 | IM2F | 1 | 079|081 |020| 0 | 1 | 08 |084| 0 | 05| 05| 1 |09 |NaN| 1
‘spect’ 8 |MIE| 1 | 1 | 1 | o | o | 1 |092 093] 04 [062]025] 1 | 09 | NaN| 1
collect | 12 |IMAF| 1 | 1 | 1 | 0 | 0 |075] 1 [096] 005|026 0 | 1 |086]|NaN| 1
pilled” | 12 | IMIF| 1 | 086|088 ] 013]| 0 | 1 | 073 |076] 02 |055] 05 | 1 |095| NaN | 1
‘please’ | 12 | 2M2F | 1 097|097 002 0 | 1 | 094 | 094 008 | 0 | 05| 1 |o094|NaN| 1
‘main | 16 |2M2F| 1 | 1 | 1 | 0 | 0 |075] 1 |093]|015| 0 025 1 |08 | NaN| 1
Slas 20 [smiE| 1 | 1 | 1 | o] o | 1 1 1 | o | o o2 1 |08 o | 08
& 25 | 4w/iF |080| 1 |094| o |02 |oso| 1 |o094] o o2 | o | 1 |o72|NaN]| 1
“scare 8 |2M/IF| 1 090|091 01| 0 |075] 09 |087] 012 0 |025] 1 |087 | NaN | 1
‘port’ 6 |2m2F| 1 | 1 | 1 | o | o | 1 |08 |09]037] 061 025 1 | 09 |NaN| 1
‘quickly’ | 12 | IM/IF | 1 | 090|092 009] 0 |075]| 095 092 [NaN| 1 | 0 | 1 |o084 | NaN| 1
hort® | 9 | IMAF| 1 | 090|091 ]009| 0 | 1 | 08 |084| 045|078 0 | 1 |093 | NaN| 1
Avg. Sensitivity, Specificity, | 97 | 993 | 0.92 | 0.06 | 0.03 | 0.83 | 0.90 | 0.88 | 0.17 | 0.43 | 0.24 | 0.99 | 0.89 | NaN | 0.96

Accuracy, 1/LR+, LR-




Detailed experimental results for a case study conducted over multi-lingual utterances are presented in
Table II. Information about the dataset is shown in terms of total number of occurrences, length, gender,
language, and query utterances. As the proposed STD is based on the feature based template matching without
the model training, the system performance is independent of query and reference phonemes structure and
spoken language. It can be observed from the output statistical metrics (e.g. sensitivity, specificity, accuracy,
LR+, and LR-) that the query utterance detection rate is achieved consistently regardless the spoken keywords.
The statistical results also demonstrated the robustness of the proposed STD approach as compared to DTW

and constrained DTW based methods.

Test Case for Query Uterance Spotting in Reference Speech

Keyward Keyward Keyword Keyword
Albert' Albert' Albert’ Albert'
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Figure VIII: Test case using the proposed STD for multiple occurrences of query utterance ‘Albert’

Figure VIII demonstrates the proof of concept using a test case for query utterance ‘Albert’ that indicates
the robustness of the proposed approach in terms of synchronised spotted locations (peaks) in the reference

speech corresponding to each query utterance position (i.e. ground truth).
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Table III: Impact of silence removal techniques on the performances of STD approaches in terms of accuracy,
sensitivity, and mean square error using the dataset described in Table I

Proposed approaches Existing approaches
Combined Wavelet DTW
Evidence 1 (MFCC) Energy DTW Constrained
E >
£= 2
2 é 5 0.8044 0.8265 0.8265 0.7616 0.7624
] )
23 | <
<
£ 3 2
g5 + g
T = RS 0.5544 0.7806 0.7806 0.2928 0
o N B
R =
-
g = oy
£%E | £
) é g g 0.9266 0.8695 0.8695 0.7616 0.9110
Gz | ¢
=R
=82 | 2
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Table III demonstrates ‘p’ (mean) and ‘c’ (standard deviation) values of Type I and Type II errors for five
different approaches that indicate the superiority of proposed DST based STD over the existence approaches.
Detailed results are presented that demonstrate the silence removal methods impacts on different STD
approaches. It can be observed that the sensitivity and accuracy increased from 56% and 80% to 97.5% and
93% respectively by using the proposed pitch tracking, energy, and ZCR based silence removal as compared to
existing techniques presented in [28], [36]. Furthermore, the pitch detection based silence removal not only
enhances the DST based performance but improves the performances of other approaches also that validate the

effectiveness of the proposed silence removal approach.
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Figure IX: Trade-off between query utterance detection rate and computational cost

The execution time for aforementioned STD approaches is calculated for 50 query utterances as shown in
Fig.IX. The efficient computation cost (0.0013 sec) is achieved by using the mean MFCC based approach.
However; a very small overhead in terms of computation time (i.e. 0.00005 sec) needed for DST
implementation produced a significant improvement in STD performance as shown in Table III. The accuracy
rate increased to 92% by using the proposed DST based approach comparing to 86% of MFCC, wavelet, and
76% of DTW based approaches. Despite of the efficient accuracy rate (i.e. 91%) produced by constrained
DTW, the true detection of query utterances dramatically decreased to only 26% which fails the main objective
of STD. Also, the conventional DTW and constrained DTW use high dimensional features set which increases
the search space [37] resulting high execution time (0.02 sec). Similarly, the simultaneous time-frequency
analysis in wavelet decomposition needs comparatively higher computation time (0.019 sec). These statistics
validate the significance of information combination from multiple belief resources to make a reliable decision

for query utterance spotting.

IVV. Conclusions and Future Directions

In this manuscript, a comprehensive overview of the research contribution towards the query utterance
spotting in continuous speech is presented. An experimental setup was built up comprising speech enhancement
using a newly introduced silence removal method, dynamic noise filtration, feature extraction, belief
combination and reasoning based decision making. A novel approach for ‘pitch tracking based voiced segment
detection” and ‘energy and zero cross rate based unvoiced segment detection’ is introduced to remove the
silence segments from speech signal. The statistical results were obtained that validated the proposed approach
and its contributions towards the spoken term detection. In the future, these outcomes serve to explore different
aspects in the related area. For instance, vocal tract normalisation can be used for speaker independent spoken
term detection. Similarly, quantity of the information sources can be increased to analyse the impact on system

performance.
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