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Abstract 

Spoken Term Detection (STD) can be considered as a sub-part of the automatic speech recognition which 

aims to extract the partial information from speech signals in the form of query utterances. A variety of STD 

techniques available in the literature employ a single source of evidence for the query utterance 

match/mismatch determination. In this manuscript, we develop an acoustic signal processing based approach 

for STD that incorporates a number of techniques for silence removal, dynamic noise filtration, and evidence 

combination using Dempster-Shafer Theory (DST). A „spectral-temporal features based voiced segment 

detection‟ and „energy and zero cross rate based unvoiced segment detection‟ are built to remove the silence 

segments in the speech signal. Comprehensive experiments have been performed on large speech datasets and 

consequently satisfactory results have been achieved with the proposed approach. Our approach improves the 

existing speaker dependent STD approaches, specifically the reliability of query utterance spotting by 

combining the evidences from multiple belief sources. 

Keywords: Spoken term detection, Acoustic keyword spotting, Query-by-example, Dempster-Shafer‟s 

theory, Speech recognition, Speech processing. 
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I. Introduction 

There is a long-standing interest in STD with regard to both theoretical and practical issues. Nowadays, it is 

receiving much importance due to the large volume of multimedia information. Research and technology 

improvements in automated speech recognition successfully achieved the information retrieval by using the 

transcribed textual form of the spoken contents [1]. Similarly, due to the exponential growth of internet and 

multimedia contents, the STD methods have been achieving much popularity. However, dynamic properties of 

speech signal make the STD task more challenging. Literature contains a variety of STD techniques that use 

different approaches to match the query utterance with reference speech. Template matching based utterance 

spotting has been recently proposed as one of the most commonly used methods [2]. For instance, speech 

recognition using Vector Quantization (VQ) and Dynamic Time Warping (DTW) models is the most relevant 
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example of these systems. However, there are some challenges associated with DTW approach that are needed 

to be resolved [3], [4], and [5].  

In relation to acoustic keyword spotting, Query-by-Example (QbyE) methods, keyword/filler methods, and 

large vocabulary continuous speech recognition methods have also been used in the literature. Most of the 

existing QbyE methods [4], [6], [7], [8], [9], [10] and STD approaches [11], [12], [13], [14] use DTW and its 

variations [3], [15], [16]. Over the past decade, mass of the related research is focused on novelty of the 

template representation methods [17], [18], [19], [20], [21]. An acoustic segmentation model based STD is 

presented in [10] that amalgamates the self-organising models, query matching, and query modelling processes. 

Similarly, [14] introduced a template combination based STD method that deploys segmental DTW and a self-

similarity matrix comparison between speech utterances. In addition to QbyE and STD methods, isolated word 

recognition is also related to STD however; it is less complicated as compared to STD due to the discreteness 

and isolation of the speech signal. Literature consists of several variations of isolated word matching that 

exploits different approaches for pattern recognition. For instance, isolated word recognition is presented by 

[22] where extracted features for test and reference utterances in the form of Mel-Frequency Cepstrum 

Coefficients (MFCCs) vectors are forwarded to DTW model that measure the warping distance. Similarly, a 

signal dependent matching for isolated word recognition is proposed in [23] producing a better performance 

using fast Fourier transform for feature extraction and enhanced version of DTW. Likewise, an improved DTW 

technique is proposed in [24] based on cross correlation for digit recognition. It uses a new approach of slacked 

start and end point which depends upon the performance of end point detection.  

Despite of fact that the existing methods have been improving the DTW based STD to deal the time 

warping phenomenon more effectively, the trade-off between distance matrix pruning and DTW performance in 

terms of warping distance accuracy is still challenging [3], [4], and [5]. The boundary constraints on distance 

matrix improve the computation cost but sacrifice a significant amount of DTW performance [3]. In addition, 

the uni-source information used in DTW to measure the warping distance provides an unreliable spotting 

decision. Because of the unsupervised model of DTW, it would be much better to use multi-source information 

for distance calculation to make spotting decision which would increase the system reliability. This manuscript 

introduces a novel STD approach which amalgamates a number of techniques to improve the existing STD 

template matching based methods. For the first time, a temporal-spectral feature based silence removal is 

deployed along-with the DST to fuse the evidences from multiple information resources to produce a reliable 

spotting decision for query utterance. A detailed mathematical formulation of the DST for the proposed task 

along with the experimental results and performance analysis is presented in the following sections.   

II. Material and Methods 

The proposed STD methodology entails data collection, mathematical modelling, experimental setup, and 

analysis of statistical results to evaluate the performance of proposed approach. Experiments are conducted 

using a large dataset available online as described in Table I. For the long speech phrase STD experiments; two 

speech corpuses, Mobio [25] and Wolf [26] are requested from IDIAP research institute. These dataset consist 

of very large-scale spoken contents recorded by variety of speakers as a composition of single, binary, and 

group discussions. In addition, a case study is conducted on speech dataset acquired from 30 speakers from 
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diverse ethnic background, age, and gender. The data is recorded in noiseless Lab environment using a vocal 

dynamic microphone with built-in noise filter (SENNHEISER e935). 

Table I: Speech Corpuses used for experimental results and performance evaluation 

Corpus name 
No. of 

Speakers 
Gender Length Availability 

Mobio 152 M, F 135 GB Licence agreement 

Wolf 12 M, F 100 GB, 81 hours Licence agreement 

CMU ARCTIC 4 M, F 1150 utterances Open source 

Online Children Stories 65 F 65 stories & poems Open source 

Case Study Dataset 30 M, F 

Connected words (500), 

Short phrases (450), 

Spoken paragraphs (210) 

Authorised user 

only 

A. Formulation of the Spoken Term Detection 

A composite of techniques are sequentially combined to build the proposed STD system. The input to the 

system are query and reference speech utterances which are then processed by a sequence of speech 

enhancement, framing, feature representation, similarity belief calculation, and probabilistic modelling 

approaches to make the final decision of query utterance match/ mismatch. Figure I show the workflow for 

proposed STD approach followed by the detailed formulation of all sub-components. 

Similarity Belief Calculation

· Calculation of test and reference 

speech frames spotting beliefs 

for MFCC and Wavelet energy 

features using Euclidean 

distance

· Weight assignment to belief 

resources

5

Framing & Noise 

Filtration

· Speech framing

· Dynamic noise filtration 

using Wavelet 

decomposition

Pre-processing

· Sample rate conversion

· Background noise 

reduction using 

Spectral subtraction

1

Silence Removal

· Voiced frame detection 

(pitch tracking Approach)

· Unvoiced frame detection 

(using Energy and ZCR)

· Integration of Voiced and 

Unvoiced frames

2

Feature Extraction

· MFCC features (mean) 

extraction

· Wavelet decomposition 

based frequency bands 

energy

3
Belief Combination

· Combination of evidences 

from Euclidean distance 

beliefs for MFCC and 

Wavelet energy (using 

Theory of Evidence)

· Decision making for current 

frame match/mismatch

6
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Figure I: Processes workflow in the proposed spoken term detection approach 

a) Pre-processing 

Existence of silence segments and background noise interference in speech signal cause misidentification 

and therefore resolved in a pre-processing step. In the first step, background noise is reduced to a minimum 

level of signal-to-noise ratio by using the spectral subtraction [27] that is performed independently in the 

frequency bands corresponding to the auditory critical bands. Next step is to remove the silence segments from 

speech signal. Literature contains several methods for silence removal that are based on signal energy, spectral 
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centroid, and Zero Cross Rate (ZCR) [28], [29]. For the „Voiced‟ segments we used a robust pitch tracking 

method [30] to estimate the fundamental frequency (F0) using the temporal-spectral information. As the F0 

doesn‟t exist in the silence part of speech, these frames can be eliminated. All frames having the F0 components 

are produced as „Voiced‟ segments. For the unvoiced frame detection, energy and ZCR features are used as 

proposed by [28]. Output „voiced and unvoiced‟ frames produced from aforementioned approaches are 

combined together to reconstruct a silence free speech signal which is used for further processing. Fig. II shows 

the sequential steps used for the silence segments removal and reconstruction of the silence free speech signal.  

Voiced frame detection 

using pitch tracking 

algorithm

Voiced frames

Voiced and 

Unvoiced frames 

Integration

Silence free 

output speech

Unvoiced frame detection 

using frame energy and 

zero cross rate Unvoiced frames

Input speech 

signal

Figure II: Silence removal from speech signal using the spectral-temporal pitch estimation, ZCR, and signal energy 

b) Dynamic Speech Filter and Feature Representation  

The silence free speech signal is then decomposed into overlapped frames of 30 milliseconds duration and 

forwarded to a dynamic noise filter that uses the wavelet decomposition to filter out unnecessary frequency 

bands and temporal information. Wavelet decomposition has successfully been used as a powerful spectral 

analysis tool which can effectively compress the information about the non-stationary signal into a piece of 

local information. Moreover, it reveals the scale-wise organization of singularities, thus allowing for the 

selection of the interesting strongest events using a simultaneous time-frequency domain representation [31].  

Apply 
Windowing

Calculate 
FFT

Windowed
 Signal

Apply Mel-
frequency 
Wrapping

Apply DCT
Mel

 Spectrum

Spectrum

Speech Frame

MFCC

Apply Wavelet 
Transform

Apply 
Threshold to 

Spectrum

Approximation 
&

Detailed Coeff

Threshold in 
Time 

Domain

Calculate WD 
Energy

Filtered Coeff

Filtered spectrum

speech frame

Features

Figure III: Block diagram for MFCC and wavelet decomposition based features extraction 

A block diagram for the MFCC and wavelet energy feature extraction process is presented in Fig. III. 

Energy in a frequency level is measured by integrating the intensity magnitudes over time and can be 

represented as: 
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 Where „ n ‟ represents the total number of coefficients in a frequency scale, ScaleE is the total energy 

measure for a scale, and „ y ‟ represents the output coefficients produced by wavelet decomposition for a scale. 

The above procedure is applied to each scale and corresponding energy vector is measured.  

 

Figure IV: Optimal threshold value selection for dynamic speech filter 

Scales containing energy magnitude less than a pre-set threshold are eliminated. The optimal threshold 

value is chosen by conducting experiments on a large dataset presented in Table I. A Receiver Operating 

Characteristic (ROC) curve is achieved (Fig.IV) by varying threshold values from 0 to 1 with a lag of 0.01. It is 

observed that the best compromise between sensitivity and specificity for STD performance is achieved with a 

threshold value of 0.7. The energy magnitude of noise free approximation and detailed coefficients is then used 

as one feature set. Simultaneously, the MFCCs features are extracted from the query and reference speech 

utterance that has been used as the most powerful and distinctive in terms of human speech representation [32, 

22]. In the next step, feature vectors (i.e. MFCCs and energy) for query and reference frames are normalised 

and used by Euclidean distance to measure the degree of similarities between query and reference frames. 

Output similarity scores from Euclidean distance represent the evidences (i.e. beliefs) provided by MFCCs and 

energy based features that are further processed by DST for belief combination. 

c) Mathematical Formulation of Multiple Belief Combination 

The similarity beliefs from previous step are then forwarded to the evidence combination process that uses 

the DST to provide a combined spotting belief while taking into account the corresponding weights and model 

incomprehension. One of the interesting advantages of the DST is the model simplicity for the complex multi-

layered situations where the system can be decomposed into many layers of simpler states and then the beliefs 
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can be propagated upwards, combined with sibling layer states to get overall belief. A detailed study on DST 

advantages, disadvantages, and its application areas is presented in [33].  

For the proposed STD method, let { ( ), }E mfcc WDe  represent the set of belief resources in the form 

of MFCC and wavelet spectral energy. The exclusive assessment classes consist of two elements, i.e. 

{ , _ }H match mis match . For each belief resource in „ E ‟ and assessment class„ H ‟, a degree of belief 

n is allocated by the Euclidean distance described earlier that indicates the confidence measure when 

evaluating the degree of fulfilment of a certain feature. The relative weights for belief resources are set by 

conducting offline experiments (discussed in results section) such that 0 1i  and 0.75mfccw 

0.25wavw  .  

Basic Probability Assignments for Each Belief Resource 

Let 
,n im  represent the basic probability mass indicating the level to which the

thi belief resource is assessed. 

The assumption that the general belief resource is evaluated to the
thn assessment class nH will be: 

, ,n i i n im  
          2 

The remaining probability mass
,H im un-allocated to belief resources can be represented as: 

2

, , ,

1 1

1 1
N

H i n i i n i

n n

m m  
 

    
        3 

Where, „ N =2‟ represents the total number of assessment classes and
,H im can be further dissolved into 

,H im and 
,H im as: 

, 1H i im  
          4 

2

, ,

1

1H i i n i

n

m  


 
  

 


        5 

Eq
n
. 4 calculates the amount to which final belief resources have not yet been evaluated to separate classes 

due to the relative significance of belief resources after their aggregation. Eq
n
. 5 calculates the amount to which 

belief resources cannot be evaluated to separate classes due to the imperfect evaluation of belief resources. 

Combined Probability Assignments 

The next step is to aggregate the probability masses of { ( ), }E mfcc WDe to compose a combined 

evaluation for query utterance match/mismatch decision that is formalised by the following equations. 

, 1 1 , , 1 , , 1 , , 1

{ }:

[ . . . ]

1,...,

n

n i i n i n i H i n i n i H i

H

m K m m m m m m

n N

      


    6 
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Where {1, 2}i  denotes the number of belief resources and 2N  represents the total count for assessment 

classes. The term
,1 ,2.n nm m in Eq

n
.6 estimates the probability of { ( ), }E mfcc WDe endorsing the output 

decision to be evaluated to nH . The probabilities of ( )mfcc andWDe supporting the final decision to be 

evaluated to nH are denoted by
,1 ,2.n Hm m and

,1 ,2.H nm m  respectively. 

, , ,H i H i H im m m 
          7 

, 1 1 , , 1 , , 1 , 1 ,[ . . . ]H i i H i H i H i H i H i H im K m m m m m m      
     8 

, 1 1 , , 1[ . ]H i i H i H im K m m  
         9 

1

2 2

1 , , 1

1 1

1 . 
N N

i t i j i

t j
j t

K m m



 

 

 


 
  
 
  

  , for {1,..., 1}i L       10 

In Eq
n
. 8, 

,1 ,2.H Hm m  estimates the probability of final decision cannot be evaluated to any distinct class

, _match mis match because of the imperfect evaluation for { ( ), }E mfcc WDe . Term
,1 ,2.H Hm m and

,2 ,1.H Hm m estimate the probabilities of decision cannot be evaluated because of the imperfect evaluation for

{ }WDe and ( )mfcc respectively. In Eq
n
. 9,

,1 ,2.H Hm m estimates the probability of final decision has not yet 

been evaluated to separate classes because of the relative significance of ( )mfcc and{ }WDe after both belief 

resources have been integrated. The ,n Hm m are normalised using K as a normalization factor such that

2

1

1
N

n H

n

m m




 
 

Calculation of the Combined Degree of Belief 

Finally, the amount of combined belief n for the query utterance evaluation to class nH can be assessed by 

integrating the evaluation for all associated belief resources { ( ), }E mfcc WDe as: 

,

,

{ }:         1,..,
1

n L

n n

H L

m
H n N

m
  


       11 

,

,

{ }:
1

H L

H

H L

m
H

m
 


         12 

The degree of belief that remained un-allocated during the evaluations is represented by H . The set of 

equations (Eq
n
. 2 to Eq

n
. 12) provides a combined degree of belief for the evaluation grades that are further 

used for the decision making of query utterance spotting. 
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III. Results and Discussions 

Performance of the proposed STD approach has been evaluated using different statistical metrics used for 

binary classification [34, 35] in the form of query utterance match/mismatch decision. These metrics include 

sensitivity, specificity, accuracy, likelihood ratios, absolute error, execution time, and F-score.  

 

Figure V: Statistical results comparison for spoken term detection by different approaches using case study 

dataset 

Individual performances of the proposed STD approaches are compared with the existing constrained DTW 

and conventional DTW based STD techniques as shown in Fig.V. It is observed that in terms of sensitivity, the 

performance of DST based STD is better than the individual performances of MFCC and wavelets based 

approaches by a factor of 2% and 5% respectively. This implies that the deployment of DST increases the STD 

as well as it empowers the performance in terms of decision making. Despite of the fact that the search space in 

DTWC is less than traditional DTW; yet the traditional DTW is better than DTWC in terms of STD outcomes. 

Similarly, the likelihood ratios (LR+, LR-) are used to measure the diagnostic accuracy which indicate that LR- 

for the DST based approach is negligible (i.e. 0.03) as compared to 0.2 for DTW and 0.9 for DTWC. These 

statistics also empowers the superiority of the proposed STD over the existing DTW based STD approaches. 

Furthermore, the F-score is measured that indicated the effectiveness of proposed STD.  
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Figure VI: The ROC curves for varying threshold values for query utterance match/mismatch decision 

Decision Boundary Selection 

The spotting decision for query utterance varies with respect to decision boundary setting. An optimal 

threshold value for decision boundary is selected using the ROC curve that shows the trade-off between true 

positive and false positives rate for various threshold settings. Smaller the threshold for decision boundary 

means higher sensitivity and vice versa. Experiments are conducted on dataset described earlier and ROC 

curves are achieved by changing threshold scales (from 0 to 1) for various approaches as shown in Fig.VI. It is 

observed that the decision boundary at 0.85 thresholds value provides the optimistic trade-off between true 

positive and false positive rate. In addition to optimal threshold value selection, the ROC curves in Fig.VI 

manifest the superiority of the DST based STD as compared to state of the art DTW. Another aspect of the 

ROC curves shown in Fig.VI is validation of the silence removal approach introduced in this manuscript. It is 

clear that area under the curve for energy and spectral centroid based silence removal is far less than proposed 

pitch detection, ZCR, and energy based approach.  

 

Figure VII: Setting the weights for belief resources and decision boundary value using ROC curves  

Weight Allocation to Basic Attributes 

Equation 2 and Eq
n
.3 indicate the dependencies of basic probabilities in DST upon the relative weights 

allocated to the belief resources{ ( ), }mfcc WDe . To set up the optimal weights, experiments are conducted 

on the aforementioned dataset with discrete values for attribute weights (from 0 to 1 with a lag of 0.01) to 

retrieve the ROC curve as shown in Fig. VII. The ROC indicates the optimal compromise between false 
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positive rate and sensitivity is achieved at 0.75;mfccw  0.25wavw  . The higher weight for MFCC feature 

set indicate higher dependency of spotting decision as compared to wavelet based spectral features.  However, 

the individual performances of both attributes{ ( ), }mfcc WDe are less than the combined beliefs as shown in 

Fig.V that validates the importance of DST for the STD. 

Table II: Results comparison of proposed STD approach with existing methods for multi-lingual utterances 
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1
/L
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L
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‘most’ 14 1M/2F 0.75 1 0.95 0 0.25 0.75 0.95 0.91 0.12 0.27 0 1 0.83 NaN 1 

‘today’ 15 2M/1F 1 0.90 0.92 0.09 0 0.8 0.93 0.92 0 0.6 0 1 0.86 NaN 1 

‘fish’ 8 1M/1F 1 0.87 0.88 0.12 0 0.75 0.87 0.85 0.18 0.28 0.25 1 0.91 0.18 0.78 

‘again’ 12 1M/1F 1 0.95 0.95 0.05 0 1 0.80 0.81 0.16 0.28 0.5 1 0.95 0 0.75 

 3M/2F 1 0.81 0.82 0.18 0 0.6 0.84 0.82 0.25 0.47 0.2 0.98 0.92 0.08 0.81 15 قلُ

‘dog’ 4 1M/1F 1 0.93 0.93 0.06 0 0.25 0.89 0.81 0 0.75 0.25 1 0.9 NaN 1 

‘john’ 15 2M/1F 1 0.86 0.88 0.13 0 0.8 0.81 0.8 0.16 0.23 0 1 0.8 NaN 1 

‘wood’ 9 1M/2F 1 1 1 0 0 1 0.91 0.92 0.2 0.71 0 1 0.88 NaN 1 

‘collect’ 9 1M/2F 1 0.96 0.96 0.03 0 0.6 0.96 0.93 0 0.33 0 1 0.9 NaN 1 

‘found’ 8 2M/2F 1 0.97 0.97 0.02 0 1 0.85 0.86 0.1 0.27 0.75 1 0.97 NaN 1 

‘enough’ 8 2M/2F 1 0.97 0.97 0.02 0 1 0.97 0.97 0.8 1.1 0.75 1 0.97 NaN 1 

‘cap’ 12 2M/1F 0.75 0.94 0.91 0.07 0.26 0.75 1 0.95 0.7 0.91 0 1 0.82 NaN 1 

 2M 0.8 1 0.96 0 0.2 0.8 0.955 0.92 0.05 0.21 0 1 0.81 NaN 1 10 الَناّس

‘bed’ 4 2M/1F 1 0.87 0.88 0.12 0 1 0.90 0.91 0.05 0.26 0 1 0.91 NaN 1 

‘throw’ 4 1M/2F 1 0.95 0.95 0.04 0 1 0.93 0.93 0 0.5 0 1 0.91 NaN 1 

‘tim’ 12 2M/1F 1 0.80 0.81 0.19 0 1 0.83 0.85 0.25 0.57 1 1 1 NaN 1 

‘thought’ 16 1M/1F 0.75 0.91 0.90 0.11 0.27 0.5 0.85 0.82 0.19 0.78 0.25 1 0.94 NaN 1 

‘dog’ 12 1M/1F 1 0.91 0.92 0.08 0 1 0.89 0.9 0.26 0.8 0.5 1 0.96 NaN 1 

‘decline’ 12 1M/2F 1 0.86 0.87 0.13 0 1 0.83 0.85 0 0 0.25 1 0.92 NaN 1 

‘said’ 10 1M/2F 1 0.74 0.76 0.25 0 0.6 0.86 0.84 0.13 0.43 0.4 1 0.95 NaN 1 

 2M/1F 1 1 1 0 0 0.75 0.84 0.83 0.21 0.29 0.25 1 0.9 0 0.75 12 آپ

‘fish’ 10 2M/2F 1 0.87 0.88 0.12 0 0.6 0.94 0.9 0.13 0.22 0.2 1 0.9 0 0.8 

‘albert’ 12 2M/1F 1 1 1 0 0 1 1 1 0.11 0.27 0.25 1 0.88 NaN 1 

‘threw’ 16 1M/2F 1 0.79 0.81 0.20 0 1 0.83 0.84 0 0.5 0.5 1 0.96 NaN 1 

‘spect’ 8 1M/1F 1 1 1 0 0 1 0.92 0.93 0.4 0.62 0.25 1 0.9 NaN 1 

‘collect’ 12 1M/1F 1 1 1 0 0 0.75 1 0.96 0.05 0.26 0 1 0.86 NaN 1 

‘pilled’ 12 1M/1F 1 0.86 0.88 0.13 0 1 0.73 0.76 0.2 0.55 0.5 1 0.95 NaN 1 

‘please’ 12 2M/2F 1 0.97 0.97 0.02 0 1 0.94 0.94 0.08 0 0.5 1 0.94 NaN 1 

‘main   

Road’ 

16 2M/2F 1 1 1 0 0 0.75 1 0.93 0.15 0 0.25 1 0.81 NaN 1 

 3M/1F 1 1 1 0 0 1 1 1 0 0 0.20 1 0.85 0 0.8 20 دهماکہ

 4M/1F 0.80 1 0.94 0 0.2 0.80 1 0.94 0 0.2 0 1 0.72 NaN 1 25 الَله

‘scare 

Me’ 

8 2M/1F 1 0.90 0.91 0.1 0 0.75 0.9 0.87 0.12 0 0.25 1 0.87 NaN 1 

‘port’ 16 2M/2F 1 1 1 0 0 1 0.88 0.9 0.37 0.61 0.25 1 0.9 NaN 1 

‘quickly’ 12 1M/1F 1 0.90 0.92 0.09 0 0.75 0.95 0.92 NaN 1 0 1 0.84 NaN 1 

‘short’ 9 1M/1F 1 0.90 0.91 0.09 0 1 0.83 0.84 0.45 0.78 0 1 0.93 NaN 1 

Avg. Sensitivity, Specificity, 

Accuracy, 1/LR+, LR- 
0.97 0.93 0.92 0.06 0.03 0.83 0.90 0.88 0.17 0.43 0.24 0.99 0.89 NaN 0.96 
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Detailed experimental results for a case study conducted over multi-lingual utterances are presented in 

Table II. Information about the dataset is shown in terms of total number of occurrences, length, gender, 

language, and query utterances. As the proposed STD is based on the feature based template matching without 

the model training, the system performance is independent of query and reference phonemes structure and 

spoken language. It can be observed from the output statistical metrics (e.g. sensitivity, specificity, accuracy, 

LR+, and LR-) that the query utterance detection rate is achieved consistently regardless the spoken keywords. 

The statistical results also demonstrated the robustness of the proposed STD approach as compared to DTW 

and constrained DTW based methods. 

 

Figure VIII: Test case using the proposed STD for multiple occurrences of query utterance „Albert‟ 

Figure VIII demonstrates the proof of concept using a test case for query utterance „Albert‟ that indicates 

the robustness of the proposed approach in terms of synchronised spotted locations (peaks) in the reference 

speech corresponding to each query utterance position (i.e. ground truth).  
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Table III: Impact of silence removal techniques on the performances of STD approaches in terms of accuracy, 

sensitivity, and mean square error using the dataset described in Table I 

 

Proposed approaches Existing approaches 

Combined 

Evidence 
µ (MFCC) 

Wavelet 

Energy 
DTW 

DTW 

Constrained 

P
er

fo
rm

a
n

ce
 w

it
h

o
u

t 

S
il

en
ce

 R
em

o
v

a
l 

A
cc

u
ra

cy
 

0.8044 0.8265 0.8265 0.7616 0.7624 

T
ru

e 
+

V
e
 

R
a

te
 

0.5544 0.7806 0.7806 0.2928 0 

E
n

er
g

y,
 Z

C
R

 &
 P

it
ch

 

D
et

ec
ti

o
n

 B
a

se
d

 

S
il

en
ce

 R
em

o
v

a
l 

A
cc

u
ra

cy
 

0.9266 0.8695 0.8695 0.7616 0.9110 

T
ru

e 
+

V
e
 

R
a

te
 

0.9750 0.9322 0.9322 0.2928 0.2617 

E
n

er
g

y
 &

  
S

p
ec

tr
a

l 

C
en

tr
o

id
 

B
a

se
d

 S
il

en
ce

 

R
em

o
v

a
l 

A
cc

u
ra

cy
 

0.8687 0.8608 0.8608 0.8597 0.8340 

T
ru

e 
+

V
e
 

R
a

te
 

0.5656 0.7617 0.7617 0.5728 0.0233 

T
y

p
e 

I 

E
rr

o
r
 

µ 0.0105 0.0258 0.0258 0.0105 6.8871e-05 

σ 0.0148 0.0260 0.0260 0.0110 3.7722e-04 

T
y

p
e 

II
 

E
rr

o
r µ 0.0063 0.0300 0.0300 0.2596 0.9588 

σ 0.0191 0.1042 0.1042 0.2762 0.1262 

 

Table III demonstrates „µ‟ (mean) and „σ‟ (standard deviation) values of Type I and Type II errors for five 

different approaches that indicate the superiority of proposed DST based STD over the existence approaches. 

Detailed results are presented that demonstrate the silence removal methods impacts on different STD 

approaches. It can be observed that the sensitivity and accuracy increased from 56% and 80% to 97.5% and 

93% respectively by using the proposed pitch tracking, energy, and ZCR based silence removal as compared to 

existing techniques presented in [28], [36]. Furthermore, the pitch detection based silence removal not only 

enhances the DST based performance but improves the performances of other approaches also that validate the 

effectiveness of the proposed silence removal approach. 
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Figure IX: Trade-off between query utterance detection rate and computational cost  

The execution time for aforementioned STD approaches is calculated for 50 query utterances as shown in 

Fig.IX. The efficient computation cost (0.0013 sec) is achieved by using the mean MFCC based approach. 

However; a very small overhead in terms of computation time (i.e. 0.00005 sec) needed for DST 

implementation produced a significant improvement in STD performance as shown in Table III. The accuracy 

rate increased to 92% by using the proposed DST based approach comparing to 86% of MFCC, wavelet, and 

76% of DTW based approaches. Despite of the efficient accuracy rate (i.e. 91%) produced by constrained 

DTW, the true detection of query utterances dramatically decreased to only 26% which fails the main objective 

of STD. Also, the conventional DTW and constrained DTW use high dimensional features set which increases 

the search space [37] resulting high execution time (0.02 sec). Similarly, the simultaneous time-frequency 

analysis in wavelet decomposition needs comparatively higher computation time (0.019 sec). These statistics 

validate the significance of information combination from multiple belief resources to make a reliable decision 

for query utterance spotting.  

IV. Conclusions and Future Directions 

In this manuscript, a comprehensive overview of the research contribution towards the query utterance 

spotting in continuous speech is presented. An experimental setup was built up comprising speech enhancement 

using a newly introduced silence removal method, dynamic noise filtration, feature extraction, belief 

combination and reasoning based decision making. A novel approach for „pitch tracking based voiced segment 

detection‟ and „energy and zero cross rate based unvoiced segment detection‟ is introduced to remove the 

silence segments from speech signal. The statistical results were obtained that validated the proposed approach 

and its contributions towards the spoken term detection. In the future, these outcomes serve to explore different 

aspects in the related area. For instance, vocal tract normalisation can be used for speaker independent spoken 

term detection. Similarly, quantity of the information sources can be increased to analyse the impact on system 

performance. 
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