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Stars are not perfectly spherically symmetric. They are deformed by rotation and magnetic fields. Until now, the
study of stellar shapes has only been possible with optical interferometry for a few of the fastest-rotating nearby
stars. We report an asteroseismic measurement, with much better precision than interferometry, of the asphericity
of an A-type star with a rotation period of 100 days. Using the fact that different modes of oscillation probe dif-
ferent stellar latitudes, we infer a tiny but significant flattening of the star’s shape of AR/R = (1.8 + 0.6) x 1075, Fora
stellar radius R that is 2.24 times the solar radius, the difference in radius between the equator and the poles is AR =
3 + 1 km. Because the observed AR/R is only one-third of the expected rotational oblateness, we conjecture the
presence of a weak magnetic field on a star that does not have an extended convective envelope. This calls to

question the origin of the magnetic field.

INTRODUCTION

According to Clairaut’s theorem, slowly rotating stars are oblate
spheroids (I, 2). Other factors may affect the shapes of stars, such
as magnetic fields, thermal asphericities, large-scale flows, or strong
stellar winds. Global poloidal magnetic fields tend to make stars
oblate, whereas toroidal magnetic fields tend to make them prolate
(3, 4). The tidal interaction of a star with a close stellar companion
or a giant planet is yet another cause of stellar deformation (5). Thus,
measuring the asphericity of stars can place constraints on a wide
range of phenomena beyond the standard model of stellar structure
and evolution. Direct imaging of the deformed shapes of nearby stars
requires a resolution better than a milli-arc second. The elongated
projected shape of the rapidly rotating A star Altair has been ob-
served with infrared interferometry to have a flattening AR/R =
0.14 + 0.03 (6, 7). Vega, another rapidly rotating A star, has an ap-
parent deformation that is too small to be measured because it is
seen almost pole-on (8). Here, we present with unprecedented
precision the first measurement of stellar asphericity by means of
asteroseismology (9), for the star KIC 11145123, which has an equa-
torial velocity two orders of magnitude smaller than either Altair or
Vega. This work is motivated by helioseismology’s ability to probe
the Sun’s asphericities and their temporal variations with the 11-year
solar magnetic cycle (10, 11).

RESULTS

The star KIC 11145123 belongs to the class of hybrid pulsators (12). It
oscillates both in a high-frequency band (15 to 25 day ') and in a low-
frequency band (below 5 day ™). The observed modes of oscillation
are acoustic (p), gravity (g), and mixed (p and g) modes. Modes with
dominant p-mode character are seen in the high-frequency band.
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These modes oscillate throughout most of the star, with larger oscil-
lation amplitudes near the surface. They are labeled with the radial
order n, which counts the number of nodes in the radial direction
with a positive sign for nodes in the p-mode cavity and a negative sign
for nodes in the g-mode cavity. Most known hybrid pulsators, includ-
ing KIC 11145123, belong to the y Doradus-6 Scuti class (13). Oscil-
lations in these stars are likely to be excited by the opacity (p and
mixed modes) and the convective-blocking (g modes) mechanisms.

Oscillations of KIC 11145123 were observed in intensity over a
period of T = 3.94 years by Kepler (14). Because the oscillations are
purely harmonic, random errors in the inferred mode frequencies
scale as T~ times the noise-to-signal ratio of the periodic oscilla-
tions (15), and thus, the mode frequencies can be determined with as-
tounding precision. In the p-mode frequency band, Kurtz et al. (12)
report frequency errors between 5 x 10”7 day™' and 10™* day . The
stellar model that best explains the observed mode frequencies
implies that KIC 11145123 is a terminal-age main sequence A star.
It has a small convective core (r < 0.04 R), in which the fraction of
hydrogen content is less than 5%. Outside this convective core,
energy is transported by radiation up to the surface layers of the star.
In the top few thousand kilometers, there are very thin convective
layers associated with the ionization of helium and hydrogen. See
Table 1 for a summary of the basic stellar parameters.

In spherically symmetric stars, the eigenfunctions of stellar oscil-
lations are proportional to spherical harmonics Y;"(6, ¢) of degree
and azimuthal order m = -, -+ 1, ... ], where 0 is the colatitude and ¢
is the longitude. Internal rotation and departures from spherical
symmetry lift the (2] + 1)-fold degeneracy in m of the mode frequen-
cies, V,,- The antisymmetric component of the frequency splittings in
a multiplet, v, = (Vaim — Vui—m)/2, is a weighted average over the
stellar volume of the stellar angular velocity (16). KIC 11145123 is
one of a very few stars in which these rotational splittings have un-
ambiguously been detected in both the p-mode and g-mode bands.
The observed frequency splittings imply an internal rotation period
of more than 105 days and a surface rotation period of less than 99 days,
showing that the star rotates a little more quickly at the surface than in
the core (12). Internal angular momentum transfer or external accre-
tion mechanisms have spun up the atmosphere, a result of theoretical
interest (17).
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]
Table 1. Parameters of the star KIC 11145123 and the best-fit seismic
model.

Photometry (72, 18) Seismology (72)

Spectral type A

Late main sequence

Hydrogen core abundance Xc = 0.033
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Fig. 1. Latitudinal dependence of mode kinetic energy density. Dipole (/= 1,
left panel) and quadrupole (/ = 2, right panel) modes of oscillation. The arrow
points along the stellar rotation axis. Scalar eigenfunctions of stellar oscillation
are proportional to P (cos6) €m® where P are associated Legendre functions.
Polar plots of the kinetic energy density E;,(0) = ¢ [P,’"(cose)]2 sin6, where 6 is the
colatitude, for the modes with azimuthal orders m = 0 (black), m = 1 (red),and m =2
(blue) are shown. The constants of normalization, ¢, are such that [§d6 £,,,(8) = 1 for
each (I, m). For dipole modes, we see that E;q is maximum at latitude A =n - 6 =
+63° and E;, is maximum at the equator. For quadrupole modes, E, peaks at A = 0°
and +59° E; is maximum at A = £39°, and E,;, is maximum at the equator. For
reference, the dashed curves show a highly distorted (oblate) stellar shape of the
form () = 1 — 0.15 P,(cosB), where P,(x) = (3x> — 1)/2 is the second-order Legendre
polynomial.

Stellar asphericity is measured through the symmetric component
of the splittings (9)

Suim = (Vatm =+ Val—m) /2 — Vulg, for 1 <m <1 (1)

This differential measurement exploits the different sensitivities in
latitude of modes with different values of |m| at fixed /and n. As shown
in Fig. 1, modes with larger values of |m| are confined to lower lati-
tudes. For p modes, the mean frequencies v, = (Vy, + Vii—m)/2 are

Gizon et al., Sci. Adv. 2016;2:e1601777 16 November 2016

not sensitive to rotation at first order and inform us about the inverse
acoustic stellar radius at specific latitudes, with increased sensitivity
at lower latitudes for larger |m|. For a spherical star, V,,, = V,0 and
Snim = 0 for all m. Latitudinal variations in stellar shape or wave speed
will cause a nonzero s,,,,. The s,;,, values are positive for prolate
spheroids and negative for oblate spheroids. Latitudinal variations
in the wave speed may result from variations in a magnetic field or
chemical composition.

In the p-mode frequency band of KIC 11145123, five multiplets
have been identified (12) and assigned values of (n, I, m) by com-
parison with the best-fit seismic model. These are two dipole (I =1)
and three quadrupole (I = 2) multiplets, for which all 2/ + 1 azimuthal
modes are identified. The measured values of s,,,, are tabulated in
Table 2. Among these, the quadrupole multiplet near 23.5 day ™'
does not provide frequencies with sufficient precision to affect the
results of this study. The s,,,,, values are plotted in Fig. 2 for the four
multiplets of interest. The average of all values, <s,,,,> = (-1.4 £ 0.5) x
107> day ™', is negative (3 standard deviations away from zero); there-
fore, the star is oblate.

As mentioned in the Introduction, several physical mechanisms
can make a star aspherical to stellar oscillations. One mechanism
that must be present is rotational oblateness, which is relatively
easy to compute when rotation is slow. The centrifugal force dis-
torts the equilibrium structure of a rotating star. The corresponding
perturbation to the mode frequencies scales as the ratio of centrif-
ugal to gravitational forces

e = Q’R’/(GM) (2)

where Q is the star’s surface angular velocity; R and M are the radius
and mass of the star, respectively; and G is the universal constant of
gravity. Using Q/2n = 0.01 day ' for KIC 11145123, we have & =
1.34 x 107° (R/Rp)’ (M/Mg)~', where Ry, and Mg, are reference
solar values (19). The mass and radius of the star are not known to
the same level of confidence as the rotation. Our best-fit seismic
model (12) has a metallicity of Z = 0.01, a mass of 1.46 Mg, and a
radius of 2.24 R, For this stellar model, the ratio of the centrifugal to
gravitational forces becomes

e= 1.0 x 10°7° (3)

This is a very small number, but it is not small compared to the
relative errors of the most precise frequencies in the p-mode range
from Table 2. Note that € is roughly half the solar value (g¢ = 1.8
x 107°).

For slow rotators, rotational oblateness is described by a quad-
rupole distortion of the stellar structure. To leading order, the con-
tribution of rotational oblateness to s,,;,, can be written as (16, 20)

s = —emPvAg (2l — 1)1 (214 3)7! (4)

nlm

where the dependence on m and [ is due to the latitudinal sensitivity
of the modes of oscillation (Fig. 1). The amplitude of the effect is
proportional to the degenerate mode frequency v,,; of the nonrotating
reference model and to the numbers A,;, which are mode-weighted
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Table 2. Mode frequencies and frequency shifts. Values of s, as defined by Eq. 1, are given for the dipole and quadrupole multiplets in the p-mode range

of KIC 11145123. The frequency shifts expected from rotational oblateness, s

nim’

are computed using Eq. 4. Mode identification is according to the best-fit stellar

model, with R = 2.24 Ry and M = 1.46 Mg, (12). Mode amplitudes are measured to a precision of 0.01 mmag.

Vnim £ Onim (day—1)

Amplitude (mmag)

Spim (107° day™) An st (107° day™) Index

16.7258824 + 0.0000017 233

16.7339455 + 0.0000186

2 23.5847898 + 0.0000163 0.24

radial averages of the stellar distortion (see Table 2 and Materials
and Methods). The numerical values of s’ are listed in Table 2 and
are overplotted in Fig. 2 for the available modes. We find that the
theoretical s'9 values are of the same sign and same order of mag-
nitude as the measured s,,,,,. As illustrated in Fig. 3, a good represen-

tation of the measurements is

Spim = (0.35 £ 0.12)s™% (5)

nlm

Hence, the star is more round than rotational oblateness would
imply. Equation 5 also implies that the modes of oscillation see a
quadrupole distortion of the shape of the star. The amplitude of
the distortion is smaller than would be expected from rotation alone;
therefore, an additional physical ingredient is needed.

Gizon et al., Sci. Adv. 2016;2:e1601777 16 November 2016

DISCUSSION

The flattening of the stellar surface due to rotation alone would be
(AR/R)™' = €/2 = 5 x 107°, where AR is the difference between the
equatorial and polar radii. Here, the effective flattening of the stel-
lar surface implied by the seismic measurements (Eq. 5) is only

AR/R= (1.8+0.6) x 10°° (6)

To our knowledge, KIC 411145123 is the most spherical natural
object ever measured, more spherical than the quiet Sun (21I).
Using R =2.24 R = 1.56 x 10° km, we have AR = 2.7 + 0.9 km. This
is an astonishing illustration of the precision of the asteroseismic di-
agnostic and a direct consequence of the very long lifetime of the os-
cillations under study. However, there is a limitation in accuracy
mainly due to the uncertainty in the radius of the stellar model. We
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Fig. 2. Symmetric component of observed frequency splittings s,,;,,. Observa-
tions are plotted as red circles with error bars. Each value is associated with the
mode index given in the last column of Table 2. The data points are labeled by
the values of (/, m). The theoretical values for rotational oblateness alone, s[ﬁfn, are
plotted as open squares. Note that the last two values of s,,,, from Table 2 are not
plotted here because they are associated with errors that are too large to provide

additional constraints.

N T T T T T T |

2L KIC 11145123 ]
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1k ]
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Mode index
Fig. 3. Ratios of observed s, to theoretical prediction for rotational oblate-
ness s;¢ . The horizontal solid line and the gray area indicate the average and the

1-6 bounds, <spm/siSt,> = 0.35 + 0.12. Each value is associated with the mode
index given in the last column of Table 2. The distributions of the data points

and their errors are consistent with a single value for the ratio of s,m/s[t,.

may incorporate the uncertainty in the stellar radius in the error for
AR; the conservative assumption of a systematic error of one solar ra-
dius implies a combined error of 1.5 km on AR. We emphasize that the
uncertainty in the stellar radius is a systematic error that does not
change the 3-c significance level of the result; it only changes the ab-
solute value of AR.

Guided by the well-established results of helioseismology (11, 22),
we suggest that a weak surface magnetic field (much weaker than the

Gizon et al., Sci. Adv. 2016;2:e1601777 16 November 2016

Sun’s surface magnetic field at solar maximum; see Materials and
Methods) is a possible explanation for the reduced oblateness of
KIC 11145123: Waves propagate faster in magnetized regions, so sur-
face magnetic fields at low latitudes will make a star appear less oblate
to acoustic waves. We note that observations of photometric variabil-
ity have led to the speculation that a large fraction of A stars have star-
spots (23). However, the origin of magnetic fields in stars without deep
convective envelopes is a matter of debate (24). Dynamo action may
take place in the core of the star or in the very thin convective layers
near the surface, or the magnetic field may have a fossil origin.

Other than a magnetic field, there are few alternative explana-
tions for the reduced oblateness. At this level of precision, the
physics of stellar oscillations may need to be studied in more detail.
In particular, it is not quite excluded that nonlinear (amplitude)
effects could play a role; this should be investigated further. On the
other hand, nonadiabatic effects are spherically symmetric and will
not affect s,,,, to leading order.

Nearly all slowly rotating A stars have overabundances of certain
metal elements (25). The fact that KIC 11145123 is not a chemically
peculiar star (Am or Ap) is surprising, hence the speculation by Kurtz
et al. (12) about possible blue straggler mass transfer. An enhancement
or deficiency of metals in the atmosphere would only affect seismic
asphericity if the abundances were nonuniformly distributed in latitude.
This could happen in magnetic Ap stars, but a Subaru high-resolution
spectrum does not show Ap abundances and shows a metal deficiency
of 0.7 dex. Although we cannot rule out a latitudinal gradient in chem-
ical composition, this explanation is more involved than a weak
magnetic field.

Because stars more massive than the Sun are more likely to har-
bor giant planets (26), one may also ask whether KIC 11145123
could be deformed by tidal interaction. In the linear regime, only
the equilibrium tidal deformation should be considered. However,
it is smaller than the rotational deformation by a factor proportional
to the ratio of the mass of the planet to the mass of the star (20, 27);
thus, it is negligible for Jupiter mass planets. Furthermore, a planetary
companion (or a stellar companion) in the equatorial plane of the star
would make the star look more oblate to the acoustic modes, not less
oblate as required by the observations.

This work is a first step in the study of stellar shapes through
asteroseismology. The method demonstrated here will be applied to
other stars, including more rapidly rotating stars and stars with
stronger magnetic fields, where deformations will be greater. Be-
cause of the unprecedented high precision and long time span of
the Kepler observations, an important field of theoretical astro-
physics is now also observational.

MATERIALS AND METHODS

Mode frequency measurements

The frequencies of the modes of oscillation were measured using
Kepler light curves for quarters Q0 to Q16, spanning a total of
51 months of data. The mode frequencies were determined by non-
linear least squares in the time domain assuming Gaussian uncor-
related errors; see the study of Kurtz et al. (12) for a full description
of the data reduction. We tested a new frequency solution on Ke-
pler quarters QO to Q17 and found that there were no significant
changes compared to the published QO to Q16 analysis. For our
work to be easily tested and reproduced by others, we used pub-
lished data (12).
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The frequency errors were determined using an estimate of the
variance around each mode frequency. Because many nearby fre-
quency peaks may contribute to this variance, the frequency errors
are conservative. Had all significant peaks been removed from the
amplitude spectrum, the error estimates would have been smaller.

The Kepler data were averaged over consecutive 29.4-min time
intervals, that is, a significant fraction of the shortest p-mode
periods (~1 hour). This effect reduces the observed amplitudes of
the modes but does not affect the mode frequencies. The only effect
is a reduced signal-to-noise ratio (compared to shorter integration
times); this ratio was taken into account in the estimation of the
errors on mode frequencies.

Effect of centrifugal distortion on mode frequencies

The effect of the centrifugal force on mode frequencies can be eval-
uated using the second-order perturbation theory, either in the
spherical geometry of the reference model (28) or in the distorted
geometry of the oblate spheroid (20, 29). It consists of several
terms, which account for geometrical distortion, change in wave
speed, and first-order perturbation to the mode eigenfunctions.
In the p-mode frequency range, for which [Q/C2rv,)]* < &, the
effect of rotation on mode frequencies is well approximated by (16)

Valm = Vnl + mQ/(ZTC) + 8anAanZIm (7)

where v, is the mode frequency in the nonrotating reference stellar
model

Qo= _[Zde P3(cos®)Ey (8) = [I(1 + 1) —3m?|(21 — 1) (21 +3) 7"
(8)

is the latitudinal average of quadrupole distortion weighted by lat-
itudinal mode energy density Ej,, (see Fig. 1), and the dimension-
less number

R
Ay = 4/3f0 dr(r/R)’€2 (r)pr? 9)

is the radial average of the centrifugal distortion weighted by mode
energy density (fig. S1), which depends on the (normalized) radial
mode displacement &,;. For modes with pure p-mode character, A,; ~
0.7. For the modes under consideration here, A, ranges from 0.2 to
0.7 (Table 2), where the smaller values are for the mixed modes (fig.
S2). The above expression (Eq. 9) assumes a rigid body rotation and
neglects the perturbation to the gravitational potential related to the
star’s quadrupole moment; both approximations are at the level of a
few percent (30) and are thus acceptable for the purpose of estimat-
ing the contribution of rotational oblateness to s,,,,,, Combining the
definition of s,;,, (Eq. 1) and Eq. 7, we obtain Eq. 4.

Alternative stellar model

We note that the effective temperature of the best-fit seismic model
is not consistent with the photometric value (Table 1). This prompted
Kurtz et al. (12) to consider an alternative stellar model with M =
2.05 Mg, and R = 2.82 R, whose effective temperature is within error
bars. However, this model is a worse fit to the p-mode frequencies,
making mode identification more difficult. In particular, in Table 2,
only the I = 2 mode at 16.7 day ™' and the I = 1 mode at 18.4 day ™"

Gizon et al., Sci. Adv. 2016;2:e1601777 16 November 2016

can be identified. For the alternative model, we have & = 1.5 x 1077,
which is 50% larger than for the best-fit seismic model. Should this
alternative stellar model be preferred, the estimates of s should be
scaled appropriately so that s,;,, = (0.23 + 0.08) s/ and AR = 3.4 +
1.1 km. We note that this stellar model and the best-fit seismic model
referred to in this study were obtained from a stellar evolutionary
code that does not include rotation or magnetic fields.

Helioseismology and upper limit on magnetic field

In helioseismology, azimuthal mode frequencies in a multiplet are
traditionally expanded as a coefficients on a basis of Clebsch-Gordan
polynomials (31). The odd a coefficients, a1, are measures of dif-
ferential rotation, whereas the even a coefficients, a,;, are measures
of asphericity (k = 0, 1, 2, ...). The s,;,, are related to the even a
coefficients. In particular, for dipole modes, s,;; = 3a, informs us
about the P, component of distortion. The effect of solar rotational
oblateness is too small (a, ~ —10 nHz for [ < 2 modes) to be
measured on individual multiplets (11). However, solar asphericity
measurements are possible by averaging over sets of intermediate
degree modes (I < 150). When the Sun’s magnetic activity is very
low, a, coefficients are negative but of smaller magnitude than
implied by rotational oblateness (11). During maxima of solar activ-
ity, the solar a, coefficients become positive (a, ~ 100 nHz for [ < 5
modes) (22), and the Sun appears prolate to the acoustic modes:
They sense magnetic activity at mid to low latitudes (<40°). At the
solar surface, the quadrupole components of the solar magnetic field
vary by less than 10 G with the sunspot cycle (32). Baldner et al. (22)
used measurements of solar a, coefficients to infer toroidal and po-
loidal magnetic field components below the solar surface, at the level
of a few hundred gauss.

In light of the solar observations, a possible explanation for KIC
11145123’s reduced oblateness is a magnetic perturbation (9). Let
us consider the dipole mode at 18.3 day ™', for which Aa, = a, —
a,"" = 1.8 x 107° day ' = 0.2 nHz. By comparison with the solar
observations and given that Aa, is expected to scale like the square
of the magnetic field, we infer that a much smaller level of magnet-
ism than the Sun’s would be needed to explain the observations.
However, it is difficult to be more specific because Aa, sensitively
depends on the geometrical configuration of the magnetic field (22).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/11/e1601777/DC1

fig. S1. Mode kinetic energy density.

fig. S2. Radial dependence of centrifugal distortion.
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