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ABSTRACT

It is well established that strong bars rotating in dense halos generally slow down as they lose angular momentum to
the halo through dynamical friction. Angular momentum exchanges between the bar and halo particles take place at
resonances. While some particles gain and others lose, friction arises when there is an excess of gainers over losers.
This imbalance results from the generally decreasing numbers of particles with increasing angular momentum, and
friction can therefore be avoided if there is no gradient in the density of particles across the major resonances. Here we
show that anomalously weak friction can occur for this reason if the pattern speed of the bar fluctuates upward. After
such an event, the density of resonant halo particles has a local inflexion created by the earlier exchanges, and bar
slowdown can be delayed for a long period; we describe this as a metastable state. We show that this behavior in
purely collisionlessN-body simulations is far more likely to occur in methods with adaptive resolution.We also show
that the phenomenon could arise in nature, since bar-driven gas inflow could easily raise the bar pattern speed enough
to reach the metastable state. Finally, we demonstrate that mild external or internal perturbations quickly restore the
usual frictional drag, and it is unlikely therefore that a strong bar in a galaxy having a dense halo could rotate for a long
period without friction.

Subject headinggs: galaxies: evolution — galaxies: formation — galaxies: halos —
galaxies: kinematics and dynamics — galaxies: spiral — methods: numerical

1. INTRODUCTION

In earlier work (Debattista & Sellwood 1998, 2000, hereafter
DS98 and DS00, respectively), we showed that strong, rapidly
rotating bars in dense halos slow down quickly due to dynamical
friction. Our finding of strong friction is consistent with theo-
retical work (e.g., Weinberg 1985, 2004; Hernquist & Weinberg
1992), and the consequent braking of bars is reported in other
fully self-consistent simulations (e.g., Little & Carlberg 1991;
O’Neill & Dubinski 2003).

Most strong bars in real galaxies appear to rotate rapidly, in the
sense that the dimensionless ratio RP 1:4; here R � Rc /ab,
where Rc is the radius of corotation and ab is the semimajor axis
of the bar.2 This ratio is not easy to determine directly from
observation, but Aguerri et al. (2003) summarize results from a
number of galaxies, and Debattista &Williams (2004) add a new
result with much lower uncertainty obtained by an integral field
method (but see also Rautiainen et al. 2005). Indirect evidence
comes from the location of dust lanes (Athanassoula 1992) and
rings (Buta & Combes 1996).

In DS98 and DS00, we combined our finding that bars in
dense halos soon become slow with the observation that bars in
real galaxies are fast to attempt to constrain the contribution to
the central attraction that comes from the inner dark matter halo.
But others have challenged the result that bars become slow,which
calls the constraint on halo density into question. The criticism by

Athanassoula (2003) is more of interpretation than substance,
since strong bars are subject to fierce braking in her simulations,
and bars that experience little friction are weak. We will report
R values for models similar to hers in Paper III of this series
(J. A. Sellwood & V. P. Debattista 2006, in preparation).
Valenzuela & Klypin (2003, hereafter VK03), on the other

hand, claim counterexamples of strong bars in dense halos that
stay fast for cosmologically interesting periods of time. VK03
argue that their different result, which disagrees with all previous
simulations and with the theoretical work cited above, is in fact
correct and suggest that only their simulations have the numer-
ical resolution to reveal the proper behavior.
When started from their initial conditions, simulations with

our code (x 2) behave in many respects as reported by VK03;
they form strong bars of similar lengths and pattern speeds, for
example. However, the bars in our simulations generally exhibit
strong friction and quickly become unacceptably slow.One of our
experiments is anomalous, however, and shows an even longer
delay in the onset of friction than found by VK03. Although our
anomalous result may be artificial (it is not reproducible when
numerical parameters are changed), it presented us with an oppor-
tunity to discover how friction can be avoided for long periods.
Tremaine & Weinberg (1984) showed that dynamical friction

in a quasi-spherical system arises because of resonant inter-
actions between a rotating potential perturbation and the orbits of
particles. As the decreasing bar pattern speed sweeps across a
resonance with some halo orbits, their angular momenta may be
substantially changed (Sellwood 2006, hereafter Paper I ). Halo
particles may either gain or lose angular momentum as they cross
a resonance, and to first order there is no net loss or gain. How-
ever, to second order in the perturbing potential there is usually a

1 Brooks Fellow.
2 It is the value of this ratio today that matters, and not the fact that the bar has

slowed a lot, as was misstated by Athanassoula (2003). Finding evidence of the
past history of the bar pattern speed would be an even greater observational
challenge.
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net gain in angular momentum by the halo particles, leading to a
friction-like drag on the bar even in a perfectly collisionless sys-
tem. The bias arises because the number density of halo particles
is usually a decreasing function of angular momentum, leading
to the excess of gainers over losers.

The distribution of particles about the principal resonances
responsible for the torque on the bar is altered by the evolution
itself, as shown in Paper I. In particular, exchanges between the
halo particles and the bar combine with the time-dependent pat-
tern speed to cause the density of particles in the vicinity of the
resonance to develop a pronounced shoulder, with the instanta-
neous resonance lying on the high angular momentum side of the
shoulder, where the gradient is negative.

In x 3, we show that should �p fluctuate upward for some
reason after a period of normal friction, the resonance may cross
to the other side of the previously created shoulder, where the
gradient with angular momentum may be locally flat or even
reversed. In these circumstances, net exchanges at the resonance
will no longer lead to friction. Since friction is generally domi-
nated by a few resonances, which all behave in a similar manner,
such a change can lead to a dramatic decrease in the net torque.3

We show that an upward fluctuation in the bar pattern speed in
collisionless N-body simulations is not reproducible when nu-
merical parameters are changed. The pattern speed fluctuates
upward before periods of weak friction in experiments A1 and B
reported by VK03. In x 4 we show that adaptive mesh refinement
is the likely culprit for a numerical artifact causing their anom-
alous results.

The possibility that bars in real galaxies with dense halos
could experience little friction would be of great interest if there
were a physically realistic reason for the bar pattern speed to rise.
We show in x 5 that gas inflow in bars may have such a conse-
quence, but we also find (x 6) that other physically relevant fac-
tors are likely to prevent the low-friction state from persisting for
long.

We describe the low-friction state as metastable both because
it relies on a local feature in the phase space density and because
it is fragile. It should be noted that metastability applies only to
anomalously weak friction on a strong bar in a dense halo—
friction will always be mild when the bar is weak or the halo den-
sity low.

2. SIMULATIONS

Model A1 presented by VK03 had an exponential disk em-
bedded in a cosmologically motivated, cold dark matter halo that
had an approximately NFW (Navarro, Frenk, andWhite) density
profile (Navarro et al. 1997) with a concentration index c � 15

after compression. These authors kindly made available the
initial positions, velocities, and masses of all the particles in their
model, andwe have run a large number of simulations from these
initial conditions using our hybrid, polar-grid code (Sellwood
2003). The numerical parameters used for two runs (runs F and S
explained below) are given in Table 1, and we varied the nu-
merical parameters in other runs. We employ the units used by
VK03; the exponential disk has a mass of 4:28 ; 1010 M� and
scale length of 3.5 kpc; the halo has a mass of 2:00 ; 1012 M�.

The evolution of the pattern speed, �p, in many of our sim-
ulations using their initial particles is shown in Figure 1; the dot-
dashed curve shows the result reported by VK03 for this model
using their ART code (Kravtsov et al. 1997). In contrast to their
result, the bars in all but one of our cases slow quite quickly,
reaching �16 km s�1 kpc�1 by �5 Gyr, whereas VK03 found
that the pattern speed remained roughly constant,�p ’ 27 km�1

s�1 kpc�1, until �4 Gyr and then decreased below 20 km s�1

kpc�1 by�6.5 Gyr. In fact, the slowdown rate in all experiments
is remarkably similar, the different curves being approximately
parallel, with a generally small time offset. Apart from the delay,
the decrease reported byVK03 is roughly consistent with the drop
we observe in most cases.

However, in one of our experiments, which we denote run F
(for ‘‘fast’’),�p did not decrease significantly until almost 12Gyr
from the start, although when it did start to decrease, the rate of
decline was again quite comparable to that in the majority of our
experiments and that found by VK03. As already noted, our ex-
periments differ from each other only by the numerical param-
eters adopted. The parameters for run F (Table 1) are typical of all
the experiments shown, and the different behavior is not a ques-
tion of a lack of numerical convergence; parameters (time step,
grid spacing, softening, etc.) in the other experiments were both
refined and made coarser, from the set that led to the anomalous
result.

In all but one case, we used all the particles supplied by VK03;
in the remaining case (Fig. 1, dotted line), we employed the full
number of disk particles but only every 10th halo particle, which
we made 10 times more massive. The result, even with this quite

3 Holley-Bockelmann&Weinberg (2005) construct a halowith no gradient at
the outset and report mild friction on the bar, but such models are quite contrived.

TABLE 1

Numerical Parameters for Runs F and S

Parameter Cylindrical Grid Spherical Grid

Grid size............................... (NR;N�;Nz)¼ (81; 128; 125) Nr ¼ 300

Angular components ............ 0 � m � 8 0 � l � 4

Outer radius (kpc) ............... 29.4 350

z-spacing ( pc) ...................... 21.875 . . .
Softening length � ( pc)........ 43.75 . . .

Number of particles ............. 199,996 3,351,798

Shortest time step (Myr) ..... 0.14 0.14

Fig. 1.—Pattern speed evolution in many experiments using our code that
were all begun from the initial model A1 of VK03. Each line shows a separate
simulation that differs from the others only in the numerical parameters adopted.
Curves from our runs F and S are so labeled, and the dot-dashed line labeled VK
shows the evolution, reproduced from Fig. 10 of VK03, when this model was
simulated with their ART code.
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drastic reduction in numerical quality, is that the bar slowed in a
similar manner as shown.

A further experiment, shown by the dashed curve in Figure 1,
has the same numerical parameters as run F. In this experiment,
we rotated the radius vector to each disk particle through a ran-
dom angle before we began, effectively making a different draw
of disk particles from the parent population, which leads to a
different spectrum of initial disk density fluctuations with a sim-
ilar amplitude. In this case, even with the same numerical pa-
rameters as in run F, the bar slows, in general agreement with the
other results. We denote this experiment run S (for ‘‘slow’’).

Aside from the anomalous run F, the simulations shownby solid
lines in Figure 1 have numerical parameters that were changed
from those listed in Table 1 for runs F and S. The differences were
as follows. We both doubled and halved the basic time step, we
increased the resolution of the polar grid, reduced the spacing of
the grid planes, halved the softening parameter (on the finer grid),
both increased and decreased the number of shells in the spheri-
cal grid, and both reduced and increased lmax to 2 and 8 on the
spherical grid. Finally, we imposed reflection symmetry about the
disk midplane in one of these runs. In all these runs,�p declined at
approximately the same rate as in run S.

The solid curves in Figure 2 show the time evolution of the bar
amplitude, bar semimajor axis ab , corotation radius Rc , and the
ratioR ¼ Rc/ab for run F. (Our procedure for making these mea-
surements from simulations is described in the Appendix.) The
dashed curves, on the other hand, show the same quantities from
run S; it is clear that the bar in run S soon becomes, and remains,
unacceptably slow. We find that all other models from Figure 1
that slow early show a rapid rise in R similar to that in run S.

As reported by VK03 for their bar, the bar in our run F remains
acceptably fast,R ’ 1:4, for a long time, althoughR increases

when the bar finally begins to slow. It can be deduced from Fig-
ures 10 and 14 of VK03 that the corotation radius has increased
from�6.9 to�10.5 kpc, while they report (their x 7) that the bar
length in their model A1 is 6–6.5 kpc after 8.5 Gyr of evolution.
Thus, the final value of R in their simulation is indeed signifi-
cantly larger than 1.4.
Thus, our experiments shown in Figure 1 are in excellent

agreement with almost all aspects of the results obtained by
VK03 using their entirely different numerical technique, except
for the time at which �p decreases from �27 to <20 km s�1

kpc�1. In most of our experiments, this happened earlier than
found by VK03, but it occurred later in our anomalous run F. We
even concur that the bar’s corotation circle remains acceptably
close to the bar end in run F for as long as�p remainsk25 km s�1

kpc�1. We account for our discrepant result in x 3 and that ob-
tained by VK03 in x 4.

3. METASTABILITY

3.1. Restricted Experiment

Lin & Tremaine (1983) used restricted N-body simulations to
show that driving the system with a perturbation (a companion
galaxy in their case) at a constant frequency considerably de-
layed the onset of friction once unforced evolution was allowed.
They suspected, but were unable to show, that the absence of
friction was due to all the resonant particles having been scat-
tered. Here we show friction can also be suppressed in the bar
case. At first, we again suspected that the absence of friction was
due to cleared resonances, but this turned out not to be the case,
and we demonstrate that it is due to an adverse gradient of par-
ticle density about the major resonances.
Figure 3 shows the evolution of �p of a rigid bar in a test par-

ticle halo. The halo, represented by 107 particles, has a Hernquist
(1990) density profile with an isotropic distribution function, and
the uniform-density, ellipsoidal bar has a mass that is 2% of the
halo mass and an axis ratio 1 : 0.2 : 0.05, with the long axis equal
to the scale radius of the Hernquist profile. (This is the fiducial
experiment described in x 6 of Paper I, where further details are
given.)
The dotted curve shows the evolution of �p dictated by con-

servation of angular momentum for a fixed moment of inertia, as
the bar experiences dynamical friction. The solid curve shows
what happens when we drive �p back up to 0.4 between times
180 and 200. The bar pattern speed, which is free to evolve as a
result of halo friction after t ¼ 200, stays approximately constant

Fig. 2.—Top to bottom: Bar amplitude, the bar length, radius of corotation,
and the ratio R. The solid curves show these quantities for run F, while the
dashed curves show them for run S. The horizontal dotted line in the bottom is
drawn at the value R ¼ 1:4.

Fig. 3.—Time evolution of �p of a rigid bar in an experiment with non-
interacting halo particles. The dotted curve shows the unforced evolution. The
bar pattern speed is driven back up between times 180 and 200 to 0.4 (solid line),
to 0.38 and 0.42 (dashed lines), and to 0.45 (dot-dashed line).
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for some time, and the onset of friction is considerably delayed.
The other curves show the evolution when �p is driven back up
to different values.

3.2. Normal and Anomalous Gradients

In Paper I, we introduced the function F(Lres ), which is the
phase space density reduced to a function of a single variable by
averaging over all orbit phases and eccentricities at fixed Lres .
For any orbit, the frequency difference from resonance is �s ¼
(n�� þ k�r)/m� �p, where �� and �r are the angular fre-
quencies of the orbit in the unperturbed spherical potential (x 3.1
of Binney & Tremaine 1987) and n, k, and m are integers. The
quantity Lres is the angular momentum of a circular orbit that is
the same distance in frequency, �s , from the resonance as an or-
bit of arbitrary eccentricity—see Paper I for a fuller description.
The four resonances that are most important for friction are the
corotation resonance (CR), where n ¼ m and k ¼ 0; the inner and
outer Lindblad resonances (ILR andOLR), where n ¼ m ¼ 2 and
k ¼ �1; and the direct radial resonance (DRR), where n ¼ 0,
m ¼ 2, and k ¼ 1.

Figure 4 shows the functionF (Lres) near each of the four major
resonances at three different times in the simulation shown by the
solid line in Figure 3. As shown in Paper I, the distribution of
particles about each major resonance is a generally decreasing
function of Lres , but with a shoulder associated with those res-
onances that contribute strongly to friction. The top row is for
t ¼ 176, during normal friction, the middle row is at t ¼ 224,
during the metastable phase, and the bottom row is at t ¼ 520, as
normal friction is about to resume. We first discuss the situation

at corotation (CR; Fig. 4, second column). At t ¼ 176, the dis-
tribution has a local maximum on the low-Lres side of the reso-
nance, as was already reported in Paper I.When the pattern speed
is driven back up, the resonance moves to the other side of the
local maximum, where the gradient is slightly positive, as shown
at t ¼ 224; finally, as normal friction resumes (t ¼ 520), the
resonance is just passing the local maximum. Similar behavior
can also be discerned at the OLR and DRR.

These figures make it clear that the rise in �p was enough for
dF/dLres to have changed sign at the three resonances that are
most important for friction. Friction is greatly reduced when the
slope of F(Lres) becomes positive in the immediate vicinity of the
resonances that dominate the angular momentum exchanges
with the bar. The change in gradient removes the usual excess of
gainers over losers that is responsible for friction.4 Strong fric-
tion does not resume until the gradients at the dominant reso-
nances become decisively negative once more.

3.3. Long-Term Evolution

The solid line in Figure 3 is not precisely flat after t ¼ 200, and
a slow decrease in�p is discernible. The mild friction that causes
the slow decrease probably results from exchanges at higher
order resonances. The set of possible resonances between a halo
orbit and a rotating perturber is large, since a resonance arises for

Fig. 4.—Mean density F of particles as a function of the resonant angular momentum, Lres, at the four major resonances at three different times in the model shown by
the solid line in Fig. 3. The columns of panels are labeled by the resonances; the top row is for time 176, during the period of normal friction, the middle row is for time
224, when friction is very weak, and the bottom row is at time 520, as normal friction starts to resume. The scaling of F is linear from zero.

4 The gradient of the usual distribution function, @f /@L at constant radial
action, must be nearly flat at the most important resonances in order that
exchanges with the perturbing potential are neutral. The positive gradient in F
is probably a result of its complicated relation to f.
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any set of integers k, m, and n. Thus, even if the important low-
order resonances cause no friction, some residual friction is
provided by exchanges at themany higher order resonances; gra-
dients inF (Lres) at these weak resonances were notmuch affected
by the previous evolution. The weaker coupling between the
perturbation and particles at higher order resonances (Hernquist
&Weinberg 1992; Paper I) leads to slower, but nonzero, angular
momentum transfer. (We have been unable to find convincing
evidence of angularmomentum exchanges at a number of possible
resonances, which is hardly surprising, as friction is so weak.)
Thus, the pattern speed gradually decreases until the full friction
force picks up again when gradients of F(Lres ) at the dominant
resonances are negative once more.

The lower dashed line in Figure 3 shows friction was not
greatly affected when the rise of �p was insufficient to move the
CR past the maximum of F (Lres ). The upper dashed line, on the
other hand, shows that friction reappears briefly after�p is driven
up to a slightly larger value, but again becomes anomalously
weak for a long period. Analysis of F(Lres ) in this case shows
that the slight initial drop in pattern speed allows the resonances
to reach the adverse gradient in F(Lres ). The duration of the
metastable phase is slightly shorter because the local maximum
in F (Lres ) is eroded somewhat by the evolution after the pattern
speed is driven up. After the pattern speed is driven up to a still
higher value, the bar slows continuously with only a slight re-
duction in friction as the bar passes through �p � 0:38; i.e., too
large a rise in �p does not lead to metastability.

3.4. Relevance to Figure 1

It therefore seems likely that the long period of steady bar
rotation reported byVK03 and the even longer such period in our
run F were caused by the upward fluctuations in�p in both cases
visible in Figure 1. These upward fluctuations must have raised
�p to values at which the gradients in F (Lres) at the dominant
resonances are reversed.

Figure 5 shows this to be the case in our run F. In order to ob-
tain this figure, we needed to estimate Lres for each particle in this
fully self-consistent simulation with a disk and bar. Unlike in the
restricted experiments just reported, the mass profiles of the disk
and halo evolve continuously because a bar forms in the disk and
the halo was not initially very close to equilibrium. We therefore
approximated the potential well in the simulation as a time-
averaged, spherical mass profile, extracted from the simulation
over a short interval. We then computed the two frequencies of
every halo particle from its energy and angular momentum de-
fined by its instantaneous position and velocity at a moment in
the middle of the period of the time averaging.

The features in Figure 5 are not quite as clear as those in Figure 4,
possibly because we had to erase the nonspherical components of
the disk, bar, and halo, in order to compute the orbit frequencies.
(We had to discard a tiny fraction of particles that had less energy
than that of a circular orbit of their angular momentum in this
approximate potential.) Nevertheless, a feature that resembles the
shoulder at corotation in Figure 4 can be seen, and the rise in pat-
tern speed between the two times moves the resonance across the
shoulder to change the gradient in F(Lres ).

We can only speculate why there was a longer delay before
full friction resumed in our run F than in the experiment reported
by VK03. One possible reason might be that the upward fluctua-
tion in their run may have taken �p only just past the local max-
imum of F (Lres ).

It is also possible that collisional relaxation in simulations with
self-gravity allows halo orbits to diffuse slowly in phase space,
thereby eroding the local maximum in F(Lres ) (which could not

have happened in the restricted experiments of x 3.3). This effect
seems to be minor in our run F, since the higher order resonance
explanation accounts for the resumption of friction on the ap-
propriate timescale (compare Figs. 1 and 3). In fact, if the worry
over rapid orbit diffusion raised by Weinberg & Katz (2002,
2005) were important, the metastable state could not persist for
long (see also x 7.4). Note that the absence of friction is not
simply a question of inadequate coverage of phase space by the
finite number of particles, since the bar still slows as normal (Fig. 1,
dotted curve) when the density of particles is reduced by a factor
of 10 (see also Paper I).

3.5. What Happened in Run F?

We have attempted to understand what caused the upward
fluctuation in our run F. Detailed comparison of this run with
others that slowed has led us to conclude that it was caused by a
random interaction of the bar and a spiral pattern in the disk that
occurred at a rare relative phase so as to add angular momentum
to the bar—spirals generally have the opposite effect at most rel-
ative phases.
It should be noted that most spiral activity in disk simulations

is genuinely stochastic. As the initial spiral patterns are deter-
mined by the swing-amplified (Toomre 1981) seed spectrum of
particle noise laid down by the random selection of particles,
the very first features are insensitive to parameters such as grid
resolution. However, the subsequent patterns can differ macro-
scopically as the result of seemingly insignificant changes to
numerical parameters. Slight changes to the disk responsiveness
or central attraction cause small differences to the early evolution,

Fig. 5.—Function F (Lres) at corotation at two different times in run F from
Fig. 1. The earlier time, t ¼ 2:1, is during normal friction, while t ¼ 4:2 is after
the pattern speed has risen.
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but the subsequent sequence of spiral patterns in models that dif-
fer in thiswayvisibly diverges in remarkably fewdynamical times.

These differences are largely responsible for the scatter in
slowdown times (but not rates) already noted in Figure 1. Fortu-
nately, the statistical properties of the disk at later times are not
sensitive to these differences, and the divergent sequences of
spirals result in similar disk random motion and—excepting run
F—bar speed evolution.

4. ADAPTIVE REFINEMENT

The evidence presented so far indicates that stochastic disk evo-
lution can occasionally, with our code, put the bar into the meta-
stable state, which was also reached in the simulation reported
by VK03. It is possible they were just unlucky to find this state,
although they report little bar friction over the (short) period of
evolution in their model B also, making the chance explanation
seem unlikely.

The principal numerical difference between their method and
ours is their use of adaptive mesh refinement (Kravtsov et al.
1997), and we now show that this feature may make the meta-
stable state easier to reach. Our reasoning is as follows. As a bar
develops, particles become more closely packed in the bar than
they were in the disk, and an adaptive code will cause short-
range gravitational forces in the bar to strengthen over those
pertaining if resolution/softening were fixed.5 Stronger forces,
or steeper potential gradients toward the center, have two effects:
they cause the bar to contract, and they cause the orbital periods
of particles at the same mean galactocentric distance to be some-
what shorter. Both effects will raise the pattern speed of the bar
above what it would have been in a fixed resolution code, which
could possibly be sufficient to push the bar into themetastable state.

4.1. Mimicry

To test this hypothesis, we ran a suite of further experiments
with model A1 from VK03, using different softening lengths, �,
and higher grid resolution.6 The bar slows normally in the basic
model of this suite, shown by the dashed line in Figure 6. The
softening length in this case, � ¼ 0:05Rd ¼ 175 pc, is 4 times
greater than for most of those in Figure 1 and for the run shown
by the dot-dashed curve in this Figure 6 that also slows normally.

But the bar stayed fast, at least for a while, in the four cases
shown by solid lines when softening was reduced by a factor of
4 after different periods of evolution with the larger �. In each of
these four cases, softening was decreased abruptly at one instant
in the interval 2 GyrP tP 2:8 Gyr, i.e., during the later period of
bar growth. (In one of these four cases, the bar speed experiences
a second upward fluctuation and then declines; we comment on
that case in x 6.) The curve shown by the dotted line is for another
case inwhich softeningwasmerely halved—again the bar stayed
fast.

This crude stratagem is intended to mimic the effects of
adaptive refinement, although in our code the change is uniform
over the inner cylindrical grid and abrupt. The change in soft-
ening affects only the small fraction of disk particles in the inner
grid; the polar grid has cell sizes that increase with cylindrical

radius and interparticle forces are soon limited more by the grid
than by the formal softening. It should be emphasized that this
change does not affect forces on halo particles, which are computed
from the spherical grid. As a result, the abrupt change in softening
has a barely noticeable effect on the equilibrium of the model.

The surface density along the ridge of the inner part of the bar
is almost 4 times higher than the original axisymmetric disk
(Fig. 15 of VK03) well after the bar has formed. (We find a
somewhat larger initial increase that relaxes back later as the
bar becomes slightly rounder.) Since this surface density change
takes place before the bar thickens through buckling instabilities,
the mean distance between disk particles in this region decreases
by about a factor 2 as the bar forms. Thus, a reduction of soften-
ing by a factor of 2 in our code is approximately equivalent to
adaptive refinement in the ART code employed by VK03 for the
same model. The effect of the change in softening strongly sug-
gests that the metastable state that appears in several of the ex-
periments reported by VK03 is a numerical artifact of adaptive
refinement. Their finding that bars slow as normal if they limit
the level of mesh refinement (their x 7) reinforces this suspicion.

VK03 report an additional model, their model C, which had
more particles, and the highest resolution of their adaptive
scheme was limited to 100 pc, as opposed to 44 pc for their other
simulations. It is therefore unlikely that the pattern speed in this
simulation would rise due the numerical artifact that affected
model A1 and possibly also their model B. Unfortunately, they
did not run their simulation of model C for very long; the bar
pattern speed is declining over the second half of the evolution,
and the bar would probably have become slow had they con-
tinued the calculation.

4.2. Discussion of Softening

Adjusting the softening parameter, or the grid resolution,
dynamically clearly changes the behavior. Why should this be?
Softening can be thought of as an operation first to convolve the
particle distribution with a smoothing kernel and then to solve
for the full Newtonian field of the smoothed density distribution.
Ideally, the softening length, �, should be set large enough that

5 The forces between particles in grid codes have a softened form inside �3
mesh spaces (see, e.g., Fig. 14 of Sellwood & Merritt 1994).

6 Softening length and grid resolution can be varied independently in the
convolution method used for our cylindrical polar grid. Changes to � have almost
no effect, however, unless the grid cell dimensions areP�, which, for a polar grid,
is possible in the inner parts only. The softening length, �, is larger than the (R, �)
cell dimensions out toR ’ 0:3Rd for the shortest value of � used in Fig. 6, and this
radius increases nearly linearly with � for a fixed grid size.

Fig. 6.—Time evolution of �p in a fully self-consistent simulation with
4 times larger � and finer grid than were used for run F (dashed line). The dot-
dashed line shows the evolution with the same softening length as run F, but run
on the finer grid. The solid lines show results when � is reduced to the lower
value after some evolution with the larger softening. The dotted curve shows the
effect of only halving �.
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many particles lie within one softening volume, but short enough
so as not to smooth, or bias, gravitational potential gradients.

If � is large compared to the mean separation of particles in a
region of quasi-uniform density, then small changes in the width
of the softening kernel will not alter the smoothed density, and
the global gravitational potential will be unaffected. Conceptu-
ally, we could imagine increasing N as � is reduced all the way to
the double limitN ! 1 as � ! 0 without affecting the potential
at all, but only if � starts small enough not to smooth any density
gradient significantly. Thus, wherever the twin ideals of many
particles per softening volume and a softening length shorter
than any density gradient hold, adaptive refinement would not
change the dynamics.

Unfortunately, these ideals are generally not achievable in prac-
tical simulations of realistic stellar systems. The desire to resolve
steep density gradients causes simulators to prefer values of � on
the low side in order tomaximize spatial resolution or tominimize
bias, which leads to few particles per softening volume; for ex-
ample, VK03 continue to subdivide any cell that contains more
than four particles. The penalty for this preference is an increase in
the variance in the gravitational potential, but the increase in re-
laxation rate, through the change to theCoulomb logarithm, is quite
small.

However, global gravitational potential gradients in the disk
plane depend on softening unless �Tz0, the vertical density scale
height. Density gradients in the x- and y-directions are quite shal-
low, even in a bar, but vertical gradients in thin disks are a different
matter. It is hard to ensure �Tz0 for a thin disk in any code.

The consequences of inadequate vertical resolution are two-
fold. First, weakened vertical forces increase the vertical oscilla-
tion period of disk particles. Such a bias has a small impact on the
in-plane motion of particles, which are mostly decoupled from
their vertical motions, except at later times, when the bar buckles.
Second, in-plane potential gradients are weakened by softening
(see, e.g., problem 6-5 of Binney & Tremaine 1987) unless
�Tz0. Thus, the dynamics of bar formation is different in sim-
ulations with different, but fixed, softening lengths.

Initially, z0 � 140 pc in model A1 (not 250 pc as stated in
Table 1 of VK03), and the disk does not thicken much until some
time after the bar has formed. The effect of using a different, but
unchanging, softening length in our code is that the bar forms a
little earlier and with a higher �p when the softening length is
shorter. Steady bar friction results in both cases shown in Figure 6,
braking the bars at similar rates. This mild dependence on soft-
ening length could be avoided only if �Tz0 and N were in-
creased appropriately—an ideal that is numerically expensive for
a thin disk.

The ART code used by VK03 for this model refined cells to a
size of 22 pc, or an effective minimum softening of�40 pc, but it
was probably larger over most of the disk. Adaptive refinement
must therefore increase the in-plane forces as the bar strengthens,
causing the bar to speed up purely for this numerical reason.
Thus, adaptive refinement may trigger the metastable state.

5. METASTABILITY IN REAL GALAXIES?

We have shown that long periods without friction can occur in
purely collisionless N-body simulations if the bar pattern speed
rises for some reason. This can happen occasionally at fixed
softening, or spatial resolution, but it is more likely to happen
when spatial resolution is adaptive; in any case, the expected
braking is recovered when the numerical procedure or parame-
ters are changed.

It is interesting to ask whether real bars could avoid friction in
a similar manner. It seems possible that random spiral events, or

even the interaction with a minor satellite galaxy, could occa-
sionally increase�p and allow strong braking to be avoided for a
while; but such behavior seems likely to be the exception, rather
than the rule. However, real galaxies contain gas, which behaves
differently from stars; gas is widely recognized to flow in toward
the center of a bar. Large gas accumulations are found in regions
a few hundred parsecs across (e.g., Sakamoto et al. 1999), which
are sometimes resolved as inner gas rings. While the gas accu-
mulations are a small fraction of the total disk mass, it is possible
the mass increase in the center could well be enough to raise �p .
To test this, we took a model in which the bar was slowing

normally and increased the masses of each of the 1%most bound
disk particles by 50% at t ¼ 2:24 Gyr; i.e., we increased the total
disk mass by 0.5% by addingmass at the bar center only. Figure 7
shows that frictional braking ceased and �p stopped declining.
The central mass added in this experiment, �2 ; 108 M�, is

quite consistent with observed gas masses in bar centers. It there-
fore seems entirely possible that gas inflow in bars could cause a
bar to speed up enough to turn off dynamical friction, even in a
dense halo.

6. FRAGILITY OF THE METASTABLE STATE

If the bar in an isolated galaxy with a dense halo has been spun
up so that it experiences little friction, our simulations suggest
that it might be several Gyr before the higher order resonances
can reduce the pattern speed to the point at which strong friction
resumes. However, real galaxies are not isolated and are subject
to numerous small perturbations from infalling dwarf galaxies,
as well as the passage of larger galaxies at greater distance; e.g.,
the Milky Way today has the Sagittarius dwarf, the Magellanic
Clouds, and other dwarf companions. In addition, the �CDM
model of galaxy formation predicts a much larger number of
dark minihalos (Moore et al. 1998; Klypin et al. 1999) orbiting
within the halo of a large galaxy. Since the absence of friction
depends on a prearranged distribution of particles at the major
resonances, the constant stirring of a galaxy halo by these pertur-
bations might well cause strong friction to resume much earlier.
We have conducted a number of experiments in order to inves-
tigate this possibility.
We perturbed our run F at t ¼ 4:2 Gyr, which is in the meta-

stable state, by a small satellite galaxy that flies by.Wemodel the

Fig. 7.—Time evolution of�p in a fully self-consistent simulation (solid line)
in which we increased the masses of the 1% most bound particles by 50% at
t ¼ 2:24 Gyr. The dotted curve shows the result without this change.
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satellite as a rigid Plummer sphere with a scale radius equal to the
exponential disk scale. We introduce it at a distance of 60 kpc
from the center of the galaxy, at t ¼ 4:2 Gyr, when its mass is
very small, and increase its mass gradually to its final value at
t ¼ 4:5 Gyr. It has a mildly hyperbolic, polar orbit that crosses
the disk plane at a radius of some 30 kpc at about t ¼ 4:9 Gyr. In
order to ensure that the main galaxy remains optimally centered
in the grid, we shift the grid center every 16 time steps to coincide
with the densest point (a feature that was enabled in the majority
of the simulations already reported); all three components of
total linear momentum are well conserved after the intruder has
reached full mass.We have tried satellite masses that are 1%, 2%,
and 5% of the total (disk + halo) mass of the main galaxy. Even
for the 1%mass satellite, the halo is sufficiently perturbed for bar
friction to resume, as shown by the dashed curve in Figure 8; the
solid line again shows the evolution of �p in run F.

In a separate experiment, we perturbed run F at the same
moment by rotating every disk particle forward through 10� and
then allowed the system to evolve freely once more. The purpose
of this exercise is instantly to change the orientation of the bar
relative to the density response in the halo, and therefore to
change the orbital phases of the halo particles relative to the bar.
While artificial, the sudden change of bar phase could perhaps
resemble the effect of interaction with a strong spiral pattern.7

Just such an event seemed to be responsible for the upward
fluctuation followed by early slowdown of one of the bars in
Figure 6. The dotted curve in Figure 8 shows the evolution of this
perturbed model; the upward fluctuation in�p immediately after
the imposed change is an artifact caused by our measuring the
bar pattern speed from the slope of its phase angle with time,
which includes our imposed 10� discontinuous change. Once
this feature is outside our fitting window, �p decreases at the
usual rate. Thus, jolting the system in this manner again tipped
it out of the metastable state.

The results of both experiments indicate that extremely mild
disturbances to the system are sufficient to cause friction to re-
sume.We conclude that the metastable state is highly fragile, and
it is unlikely that it could persist in real galaxies for long.

7. FURTHER NUMERICAL ISSUES

7.1. Spatial Resolution

The spatial resolution of the fixed Cartesian grid used in our
earlier experiments (DS98; DS00) was indeed quite low, and
VK03 suggest that it was inadequate to capture the correct phys-
ics. We disagree.

As stated by Hernquist & Weinberg (1992) and shown in
Paper I, dynamical friction is dominated by the quadrupole field
of the bar, which couples most strongly to the low-order reso-
nances. A good approximation to the correct quadrupole field
can be obtained with a mesh of quite low spatial resolution, and
the torque between a given bar and halo should be little affected
by spatial resolution.

We have already presented supporting evidence for this state-
ment, since we have shown that the rate of slowdown of the bar is
insensitive to softening length and grid resolution. The different
runs shown in Figure 1 have a range of softening lengths and grid
resolutions, and � differs by a factor 4 between the two runs with
unchanging � shown in Figure 6, which track each other remark-
ably closely. Furthermore, once friction picks up in the simula-
tion by VK03 (Fig. 1; dot-dashed curve), the rate of slowdown is
quite comparable to that we find in our simulations.

7.2. Bar Size

The pattern speed and spatial scale of the bar instability, and
the corresponding properties of the resulting bar, depend on
many factors. Two of the most important are the steepness of the
inner rotation curve and the velocity dispersion of the disk.

VK03 suggest that inadequate spatial resolution can lead to
longer bars. Indeed, if the central density gradient (of disk, bulge,
and halo particles) is steep, inadequate spatial resolution will
weaken the central forces, and this numerical bias leads to a rota-
tion curve that risesmore slowly than it should. Sincemore slowly
rising rotation curves lead to longer bars (Sellwood 1981) with
lower pattern speeds, the size of the bar may be artificially en-
hanced if inadequate spatial resolution smooths the sharper forces
expected from a steep density gradient.

However, smaller bars are not the inevitable consequence of
improved spatial resolution. The large size of the bars in DS00
was a consequence of the shallow density gradients in our mod-
els, which we deliberately selected because we were fully aware
that the code we were using was unable to resolve steep gra-
dients. Figure 9 shows the rotation curve and bar evolution of a
model deliberately set up to have a halo with a large, low-density
core to resemble the maximum-disk model reported in DS00, but
evolved with our newer high-resolution code. Like the similar
model in that paper, the disk has a Kuzmin-Toomre (KT) density
profile with scale radius Rs , thickness 0.05Rs , and initial velocity
dispersion to make Q ¼ 1:0 at all radii; the low-concentration
halo has a polytropic density function and a mass about 5 times
the disk mass and extends to r ¼ 28Rs. The bar that forms in our
high-resolution, hybrid-grid code is similar in size and amplitude
to that reported in DS00 for the equivalent model run on their
coarse grid, as shown in Figure 9 (bottom). Thus, bar size need
not be related to spatial resolution.

DS00 compared the strengths and sizes of the bars in their
models with bar properties determined fromNGC936. They con-
cluded that the bars in their maximum-disk models were quite

Fig. 8.—Time evolution of �p in run F (solid line), again reproduced from
Fig. 1. The dashed curve shows �p when a 1% mass satellite galaxy flies by,
passing a perigalactic distance of 30 kpc at t ¼ 4:2 Gyr. The bar is jolted out of
the metastable state and begins to slow. The dotted curve shows the bar slows
after the disk is discontinuously rotated forward relative to the halo by 10� at
t ¼ 4:2 Gyr.

7 The outer disk in our simulation supports generally rather weak spiral
patterns after the bar has formed. Barred galaxies having gas and ongoing star
formation would be expected to have stronger spirals.
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comparable to strong bars in real galaxies. Note also that the bar
length in Figure 9 is reckoned relative to the length scale, Rs , of
the initial KT disk; after the bar has formed, the outer disk is
characterized by an exponential profile with a scale length about
2.5Rs. This important difference has already been noted byVK03.

However, bars become longer and stronger when subject to
strong frictional braking, as shown in Figure 2 and previously by
DS00 and Athanassoula (2002). DS00 showed that bars that had
been braked in denser halos were significantly stronger than that
in NGC 936, which might be typical of strongly barred galaxies.
Even the mild braking in their maximum-disk model strength-
ened the bar to the point where it was only marginally consistent
with the data on NGC 936. We therefore agree with VK03 that
bars often become quite unrealistically large and strong. The
more realistic bars in models with maximum disks provide fur-
ther evidence against the hypothesis that halos have high central
densities: not only does friction cause bars to become too slow;
they also become unrealistically large and strong.

7.3. Disk Velocity Dispersion

A cooler disk leads to a bar of higher pattern speed that may
also have to be shorter to fit inside its corotation circle.8 The
trend in�p is expected from bar instability theory (Kalnajs 1977)
and agrees with previous findings (Athanassoula & Sellwood
1986) and with the difference between the models A1 and A2

reported by VK03.
Figure 10 presents an additional illustration of the effect of

lower velocity dispersion at the time the bar formed; Q ’ 1:5 in

the disks of the models with dashed lines, whereas Q ’ 1:8 for
the models with solid lines. The solid lines are from our runs F
and S, reproduced from Figure 1, in which sectoral harmonics
0 � m � 8 contributed to the forces computed from the disk
particles. The dashed lines show results frommodels in which all
sectoral harmonics m > 4 were eliminated from the force deter-
mination, i.e., a calculation with more heavily smoothed forces.
The disk is cooler in the models with the more restricted forces

because the early stages of spiral evolution are weaker; this is not
to say that strong spiral patterns with more than four arms develop
when more harmonics are included, but simply that the patterns
that do develop have steeper density gradients than simple sinu-
soidal density profiles, leading to stronger scattering by the den-
sity fluctuations.
The pattern speed clearly stayed fast in one of these two mod-

els for as long as we ran it, but a minor change to the numerical
parameters (we increased the number of radial points of the
spherical grid) again caused the bar to slow down. Note that �p

slowed at about the same rate as for the runs with a larger number
of sectoral harmonics; the bar with the higher �p is somewhat
shorter at first, but grows to about the same size as it slows,
causing the torques to become more nearly equal.

7.4. Collisionality

Figure 11 compares the angular momentum transferred from
the disk to the halo in our run F (Fig. 11; solid curve) with that
reported by VK03 for the same model; the dot-dash line is re-
produced from their Figure 10. The disk in the simulation with
their ART code loses angular momentum more rapidly than in
ours. In both simulations, the torque is strongwhen�p is changing
and is weaker while �p is approximately constant. However,
VK03 find that the disk in their simulation starts to lose angular
momentum right from the outset, before the bar has formed, and
the gradient is again steeper than in our case while the bar rotates
steadily.
The more rapid angular momentum transfer in their model

during the period of steady bar rotation appears to be unrelated to
the usual bar friction. As already noted in x 2, the properties of
the initial bar in their simulation are similar to those in all the
reruns reported here. We cannot compare our bar strengths with
theirs, since we employ a different measure of bar strength, but

Fig. 9.—Top: Rotation curve (solid line) and separate contributions of disk
(dashed line) and halo (dotted line) for a maximum-disk model, similar to that
reported in DS00. Bottom: Bar amplitude and length as a function of time. Note
that this initially large bar grows neither in length nor amplitude.

8 Aweak bar may have a lower �p and end well inside its corotation circle.

Fig. 10.—Time evolution of runs F and S, reproduced from Fig. 1 (solid
lines). The dashed curves show results when the gravitational forces are re-
stricted sectoral harmonics 0 � m � 4.
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initially similar bars in our simulations (Fig. 2) slow both more
and less rapidly than in theirs, making it unlikely that the dif-
ference could be attributed to a stronger bar in their case.

It is possible that the stronger drag between the disk and halo
in their simulation is caused by two-body encounters in their
code. As a halo particle pursues its orbit, the density of nearby
particles peaks up briefly as it passes through the disk. In an
adaptive code that refines any grid cell that contains more than
just a few particles, the likelihood of a strong deflection from a
close encounter with another particle is greatly enhanced within
the disk. Since the disk particles generally have a larger Lz than
those in the halo, deflections caused by close encounters be-
tween them will, on average, transfer angular momentum from
the disk to the halo.

VK03 report a measurement of the collision rate in their code
in a model without a disk (their x 3.4), which is an ensemble
average of all the encounters in high- and low-density regions.
Their measurement is dominated by the cumulative effect of
distant encounters.

Here we appeal exclusively to close encounters that produce
the occasional strong deflection. It is easy to show that, to first
order, deflections are just as likely to add angular momentum to
disk particles as they are to remove it, and a net torque from
collisions arises only in second order. Since the mean angular
momentum exchanged increases as the square of the angle of
deflection, the net collisional torque is dominated by rare, large-
angle deflections.

We suspect that the nonzero disk-halo torque reported by
VK03 from the outset of their experiments results from two-body
encounters as halo particles pass through the disk. Note that the
density of particles in the disk midplane is more than twice that of
the halo alone over a wide swath of the disk, further increasing the
likelihood of a strong deflection in this critical part of the orbit of a
halo particle. Note also that collisional encounters cause angular
momentum to be lost even when the disk is axisymmetric and,
since they remove angular momentum from all over the disk and
not just from the bar, the bar can rotate steadily while angular mo-
mentum continues to be lost to the halo. Of course, encounters
must continue to scatter halo particles after the disk has developed a
strong bar, adding to the torque that arises from dynamical friction.

Such encounters must also scatter the disk particles, and we
therefore expect the disk to thicken more in their experiments
than in ours. Their paper does not provide any information about
disk thickness with which we might compare, however.

Collisionality could be an additional reason that the meta-
stable state is short-lived in their simulation. Collisional encoun-
ters, whether between halo-halo particles, or halo-disk particles,
would scatter particles and erode unusual density gradients near
resonances, allowing friction to resume after less evolution than
in a more nearly collisionless code.

8. CONCLUSIONS

The bars in two simulations reported by VK03 and those in
two of our own reported here rotate in dense halos for long
periods without the expected friction. We have shown that this
anomalous behavior arises because the halos lack the decreas-
ing density of halo particles with angular momentum about the
principal resonances usually responsible for friction. An in-
flexion in the angular momentum density of particles is set up
during a period of normal friction as the pattern speed decreases
in the usual manner. A subsequent increase in the bar pattern
speed can move the resonance into the region where the local
gradient is anomalous, with the result that friction is suppressed
for a long period. Because it relies on local minima in the dis-
tribution of halo particles, we describe almost frictionless bar
rotation as a metastable state. It does not last indefinitely, al-
though it can persist for cosmologically interesting time periods
in isolated galaxy simulations.

We argue that the long period of steady bar rotation reported
by VK03 in the evolution of their models A1 and B occurred for
this reason.We occasionally find that bars enter ametastable state
in our own simulations, but we have shown that changes to the
numerical procedure, or to numerical parameters, can cause or
prevent the state from appearing. It arises in our models from a
rare interaction between the bar and a stochastic spiral in the
outer disk that gives the bar some angular momentum. Such an
event could also have happened in the simulations by VK03, but
the metastable state is more likely a result of their numerical
method. We show that the pattern speed is driven upward by in-
creases in the central attraction as the grid is refined in the adaptive
scheme used by VK03, making the metastable state accessible for
numerical reasons. It should be noted that VK03 report in their x 7
that bars slow normally in their code when adaptive refinement is
turned off. Their model C, in which the level of refinement was
also limited, was not run for long enough to show the full extent
of bar slowdown.

We have shown that when this artifact is avoided, the bar in
their model A1 experiences strong friction and the corotation ra-
dius quickly moves out to an unacceptable distance, relative to
the bar length. Thus, their model is, in fact, consistent with the
conclusions of DS00 that strong bars cannot stay fast if the halo
density is high.

We emphasize that bars can rotate at nearly constant pattern
speed for reasons other than metastability. Friction will be mild
and bars will not slowmuch if either the halo density is low or the
bar is weak. The metastable state describes only strong bars that
are able to rotate with little friction in dense halos because the
distribution of resonant particles that would normally give rise
to strong friction has acquired an anomalous gradient in angular
momentum.

If strong bars in real galaxies could rotate rapidly in dense
halos for long periods, the constraint on halo density proposed by
us (DS98; DS00) would be severely weakened. In simulations
without dissipation such behavior is a numerical artifact, but
we have shown that mimicking a realistic amount of gas inflow
in the bar can indeed cause the bar to speed up sufficiently for
friction to stop, suggesting that the metastable state could arise
quite naturally. However, we have also shown that themetastable

Fig. 11.—Disk angular momentum in our run F (solid line), relative to its
initial value, as a function of time, showing that the torque is weak while the bar
rotates steadily. The dot-dashed line, which is reproduced from Fig. 10 of
VK03, shows the same quantity in their simulation.
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state is highly fragile and does not survive even minor internal or
external perturbations. We find that a flyby satellite having as
little as 1% of the main galaxy mass provides a sufficient dis-
turbance to the system that normal friction resumes. It is there-
fore unlikely that many galaxies could survive in the metastable
state for long periods. It is doubly unlikely that SB0 galaxies, the
majority of galaxies for which R is measured, are in this state,
since they lack gas that can be driven into the center to raise the
bar pattern speed.
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APPENDIX

BAR MEASUREMENTS

We need to estimate the length of the bar from the simulations. As emphasized in previous studies, this is a nontrivial task because the
bar has no sharp edges, and the bisymmetric density variations in the simulation often include spirals and, less often, mildly distorted
rings. Our procedure is motivated in part by that followed by observers (e.g., Aguerri et al. 2003), who have a smooth light distribution
instead of the noisy set of particles in our problem, but who have only a single snapshot of an inclined disk.

Since we use a polar grid for the disk component, it is a simple matter to save the amplitude and phase of them ¼ 2 component of the
projected surface density on each radial ring at frequent intervals. We find the pattern speed of the bar, �p, which we require to be the
same at all radii, from a fit to these coefficients in the inner grid over a short time interval around the time at which we desire a
measurement. We determine the corotation radius, Rc , from the azimuthally averaged rotation curve at the midpoint in time of the
selected data.We have not tried to determine the Lagrange point, as did DS00, since the difference from the averaged corotation radius is
generally small.

Each fit for�p also yields the radial profile of the relative amplitude and phase of them ¼ 2 density variations, which are equivalent to
aligning the data from each moment along a common axis dictated by the fitted �p. Averaging in this way both diminishes shot noise
from the particles and weakens the significance of any other bisymmetric feature, such as a spiral pattern, that may rotate at a different
pattern speed. We use the ratio of the total amplitude of the m ¼ 2, relative to the m ¼ 0, terms from this time-averaged density as a
measure of the bar amplitude.

The radius at which the relative amplitude of the m ¼ 2 density is half that of its peak value is generally quite stable over time, but is
clearly an underestimate of the bar length; unfortunately, we found that the radius where the amplitude is only 10% of the peak fluctuates
quite wildly because of imperfectly eliminated spiral arms and the like.We therefore persisted with this low estimate (1), the radius of the
half-peak amplitude, and sought a second high estimate (2), which is the radius at which the phase shifts by 20� from its mass-weighted
average value near the peak. As this latter is generally quite clearly an overestimate of the bar length, we define the bar length, ab, to be
the average of estimates 1 and 2.

The dimensionless ratioR ¼ Rc/ab, which can be compared with observed values (x 1), is generally greater than unity. Unfortunately,
estimate 2 of ab suffers from large upward fluctuations at times, which are only half-eliminated by averaging and lead to correspond-
ing downward fluctuations in R, which are readily recognized because we monitor the value continuously—an example is visible in
Figure 2. Our quoted values ofR generally ignore large, short-lived downward fluctuations. We have found that bars in cool, massive
disks generally form withR ’ 1, as found in previous work, and thatR fluctuates around unity in an extreme maximum-disk model in
which the bar was hardly braked at all, giving us confidence in our estimation method.

REFERENCES

Aguerri, J. A. L., Debattista, V. P., & Corsini, E. M. 2003, MNRAS, 338, 465
Athanassoula, E. 1992, MNRAS, 259, 345
———. 2002, ApJ, 569, L83
———. 2003, MNRAS, 341, 1179
Athanassoula, E., & Sellwood, J. A. 1986, MNRAS, 221, 213
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton
Univ. Press)

Buta, R., & Combes, F. 1996, Fundam. Cosmic Phys., 17, 95
Debattista, V. P., & Sellwood, J. A. 1998, ApJ, 493, L5 (DS98)
———. 2000, ApJ, 543, 704 (DS00)
Debattista, V. P., & Williams, T. B. 2004, ApJ, 605, 714
Hernquist, L. 1990, ApJ, 356, 359
Hernquist, L., & Weinberg, M. D. 1992, ApJ, 400, 80
Holley-Bockelmann, K., & Weinberg, M. 2005, BAAS, 36, 0512
Kalnajs, A. J. 1977, ApJ, 212, 637
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82
Kravtsov, A. V., Klypin, A., & Khokhlov, A. M. 1997, ApJS, 111, 73
Lin, D. N. C., & Tremaine, S. 1983, ApJ, 264, 364

Little, B., & Carlberg, R. G. 1991, MNRAS, 250, 161
Moore, B., Governato, F., Quinn, T., Stadel, J., & Lake, G. 1998, ApJ, 499, L5
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
O’Neill, J. K., & Dubinski, J. 2003, MNRAS, 346, 251
Rautiainen, P., Salo, H., & Laurikainen, E. 2005, ApJ, 631, L129
Sakamoto, K., Okamura, S. K., Ishizuki, S., & Scoville, N. Z. 1999, ApJ, 525, 691
Sellwood, J. A. 1981, A&A, 99, 362
———. 2003, ApJ, 587, 638
———. 2006, ApJ, 637, 567 (Paper I )
Sellwood, J. A., & Merritt, D. 1994, ApJ, 425, 530
Toomre, A. 1981, in The Structure and Evolution of Normal Galaxies, ed. S. M.
Fall & D. Lynden-Bell (Cambridge: Cambridge University Press), 111

Tremaine, S., & Weinberg, M. D. 1984, MNRAS, 209, 729
Valenzuela, O., & Klypin, A. 2003, MNRAS, 345, 406 (VK03)
Weinberg, M. D. 1985, MNRAS, 213, 451
———. 2004, preprint (astro-ph /0404169)
Weinberg, M. D., & Katz, N. 2002, ApJ, 580, 627
———. 2005, MNRAS, submitted (astro-ph /0508166)

SELLWOOD & DEBATTISTA878


