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Insight, innovation, integration

The introduction of biospectroscopic screening allows rapid in-situ diagnosis of
antibiotic resistance in microbiomes as well as real-time detection of population
dynamics and determination of genotype flexibility (e.g., HGT process and microbial
response to antibiotic pressure) via monitoring phenotype differentiation, which can
significantly improve the understanding of antibiotic resistance in the clinical and
physical environment.
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Abstract

There is an increasing need to investigate microbiomes in their entirety in a variety of
contexts ranging from environmental to human health scenarios. This requirement is
becoming increasingly important with emergence of antibiotic resistance. In general, more
conventional approaches are too expensive and/or time-consuming and often predicated on
prior knowledge of the microorganisms one wishes to study. Herein, we propose the use of
biospectroscopy tools as relatively high-throughput, non-destructive approaches to profile
microbiomes under study. Fourier-transform infrared (FTIR) or Raman spectroscopy both
generate fingerprint spectra of biological material and such spectra can readily be
subsequently classed according to biochemical changes in the microbiota, such as emergence
of antibiotic resistance. FTIR spectroscopy techniques generally can only be applied to
desiccated material whereas Raman approaches can be applied to more hydrated samples.
The ability to readily fingerprint microbiomes could lend itself to new approaches in
determining microbial behaviours and emergence of antibiotic resistance.
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1. Microbiomes and their response to the natural environment

Microbial communities, including bacteria, archaea, viruses, protists or fungi, play a vital role
in many ecosystems. Global carbon cycles in the ocean, for instance, at least 50% of carbon
dioxide is fixed through photosynthesis providing the energy for microbial respiration and
reproduction” . Human health is also highly dependent on microbes since a very abundant
mix of bacterial species symbiotically survives within humans and many principal organs are
their habitats. The skin surface is the largest habitat with multiple regional variations in
cellular architecture and environmental exposures for microbes, where the density of bacteria
can reach 107 cells per square centimetre’. However, bacteria colonizing on external surfaces
only count for some 10% (i.e., 10'* bacterial cells to 10" human cells) while the rest 90%
comprise the commensal microbiome living in the body*”. A majority of these microbial cells
exist in the gastrointestinal tract (GIT) and constitute the human intestinal microbiota, which
has a concentration of 10'> CFU/g and probably represents one of the densest, most
biodiverse and rapidly evolving bacterial ecosystems on earth*. Another representative
example is the microbial flora in the oral cavity as the entrance of the digestive tract; over
500 microorganism species have been identified and can attach to oral surfaces and colonize
to form a microbial matrix, e.g., dental plaque or oral biofilm'®. The dynamics of human host
microbial communities account for many diverse phenomena associated with public health
issues, e.g., changes in the gut microbial community may be linked to metabolic disorders,
obesity and Crohn’s disease'".

Antibiotics are widely used to treat microbe-induced diseases and are also applied at
sub-therapeutic levels via animal feed to maintain meat quality and quantity. Since Sir
Alexander Fleming identified penicillin in 1928, the environment has become the primary
receiver for most applied antibiotics and their residues via excretion of human and animals'®
'8 Currently, antibiotics are ranked as the third most commonly prescribed class of agents,
and frequently used in human medicine, agriculture, aquaculture and the agri-food industry,
resulting in an enormous amounts of antimicrobial usagelg. Accordingly, antibiotic misuse
may result in a seriously antibiotic-abundant circumstance for microbes as well as humans.
Consequently, in response to such environmental stimuli, bacteria acquire the capability of
antibiotic resistance, and ultimately superbugs may emerge®. It is worth highlighting that
microbiota from humans and natural environments are not separated but connected via
various routes of exposure. For example, horizontal gene transfer (HGT) allows rapid
development of genetic divergence and therefore leads to virulence, antibiotic resistance, and
xenobiotic metabolism, spreading through microbe populations inhabiting in human bodies
and natural environments®'. HGT accelerates the spread of antibiotic resistance genes (ARGs)
and emergence of superbugs, which is a lethal threat to humans and therefore a major focus

of scientific interest’> =,

With such growing concerns, ARGs and their relevant mechanisms have been identified
in clinical and environmental contexts'*'® ?**’. Many approaches have been applied to
investigate their existence and spread as well as their dynamics within natural microbiota.
Herein, we briefly discuss the conventional methods used to determine antibiotic resistance
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and ARGs within the microbial community, both phenotypically and genetically, as well as
how biospectroscopy can be applied to fingerprint microbiomes and microbial antibiotic
resistance.

2. Conventional biological approaches to determine microbial antibiotic resistance

Research into microbial antibiotic resistance primarily uses different techniques and
methodologies, generally categorized as function- and molecular-based methods according to
focus, i.e., function-based approaches aim at particular behaviour or mechanisms of
individual microbes based on their roles or characteristics, while molecular-based approaches
target in high-throughput fashion the molecular components within the complex microbiotas.

2.1 Function-based approaches

Culturing is the most applied function-based approach to determine microbial response to
antibiotics® >’ due to its inherent merit which is a focus on individual strains, instead of the
interrogated complexity and diversity of the whole microbiota®” *'. Most known antibiotic-
resistant microbes and genes are identified by direct culturing, isolate purification, and further

. . . . . . . 2532, 33
investigation into their resistance profiles™”" .

For example, colonies grown with
antibiotics are screened for the presence of antibiotic biomarkers, located on either plasmids
or chromosomes®. However, >90% bacteria are currently unculturable but functional in-
situ>*°. Culture-dependent methods are always questioned for their ability to represent the
real scenario and for an underestimation of ARG abundance®'. Some improved techniques,
such as stable isotope probing (SIP) and magnetic nanoparticle-mediated isolation, further

enumerate the functional fractions, not individual, from the total microbiota®” 3.

2.2 Molecular-based approaches

Instead of targeting microbes with specific functions, molecular-based approaches deal with

Published on 27 April 2017. Downloaded by University of Central Lancashire on 27/04/2017 14:52:20.

microbiota as an integrated system by directly extracting biological components. With the
rapid development of molecular tools, molecular-based approaches have evolved from
polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) to
high-throughput sequencing and Omics® > %, uncovering ARGs from all the
microorganisms within a microbiota, including those uncultured®” *'***. Notably, the recent
development of Omics, from genomics to proteomics, allows generation of large-scale
datasets for cellular components (DNA, RNA, and proteins) compositions, interactions and
profiles, yielding a comprehensive database of genetic functions of ARGs™, e.g., isolating
novel ARGs from microbial communities of human oral and soil® **. However, molecular-
based approaches have an inherent insufficiency in confirming behavioural functions and
linking those functions to identities of antibiotic-resistant strains. Meanwhile, as destructive
methods of collecting cellular components, molecular-based approaches may not meet the
need for in-situ diagnosis of antibiotic resistance in real-time.

2.3 Which is more important?

Individual vs. microbiome. It is hard to answer which, single cells or the whole communities,

4
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needs to be investigated to better understand antibiotic resistance in the microbiome. ARGs
and antibiotic resistance mechanisms vary between individuals, implying insight into the
single cell may provide more comprehensive information. On the other hand, although
individual cells hold their respective ecological niche, they also contribute to the overall
function of the microbiome as a whole. Since most microbes are somewhat dormant in the
natural environment within developing communities such as mat, sludge or biofilm, it is
worth paying more attention for clinical purposes to the response of the microbiome to
antibiotics, rather than that of individual cells, i.e., typically, an unnecessary single-cell-level
test is required for the diagnosis of diseases. Biofilm, for instance, consists 2% to 15% of
microorganisms with the remainder being their self-produced matrix of extracellular
polymeric substances (~90%) secreted by microbes making individual cells stick together and
colonize on a surface; this overall community performs functional tasks similar to multi-
cellular organisms for adaptation to environmental changes™ ™. Extracellular polymeric
substances matrix facilitates communication between cells (e.g., such as quorum sensing),
maintains biofilm hydration and protects microorganisms against environmental stresses. The
chemical composition and structure of extracellular polymeric substances depend on cell
species, metabolic activity, nutrient availability, biofilm maturity level and physicochemical
conditions. Biofilm formation offers microbes an entirely different lifestyle weighing against
the planktonic state providing protection from external exposures (e.g., antibiotics) for the
community*>*’. Recently, the field of single cell study has developed some breakthroughs
allowing characterisation and interrogation of particular microbes at reasonable levels™*.
However, these remain insufficient to fulfil the need to study microbial interactions within the
microbiome and their surrounding environment. Thus, further research into the functionality
of the entire microbiome is needed.

Phenotype vs. genotype. Stochasticity in gene expression may induce genetically-identical
cells under the same environmental exposures to express significant variation in molecular
content and discriminating differences in phenotypic characteristics; this implies cell
functions may be altered by non-genetic regulation providing a mechanism for phenotypic
and cell-type diversification regardless of genotype® . Such phenotypic heterogeneity helps
microbes survive exposures to antibiotics owing to the fact that a small genetically-identical
subset of persistent cells can survive an extended period and get over the exposure time®’.
This phenomenon may bring another challenge regarding in-situ diagnosis of antibiotic
resistances of interrogated microbiomes since the phenotype of the microbiome may be
unpredictable even under an acknowledged circumstance due to the influence of epigenetic
factors®* . Therefore, finding a new approach that can quickly screen the phenotype of a
microbiome to determine the in-situ bacterial antibiotic resistance in real-time is urgently
required.

3. A new dawn for biospectroscopy in microbiological research
3.1 Principles of biospectroscopy

Biospectroscopy encompasses a range of techniques that allow the spectroscopic examination
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of biological samples. Such spectroscopic measurements are usually based on electronic
transitions and vibrational changes of chemical bonds with spatial resolutions from the
microscopic to the macroscopic. These both examine the morphological contrast in biological
samples and uncovers elemental or molecular information via further determination®.
Infrared (IR) or Raman spectroscopy are the two most applied biospectroscopy techniques
since the 1960s°7%.
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Figure 1. The principle of the biospectroscopic fingerprinting in identifying microbial
species, examining food security and diagnosing pathogen-induced diseases. IR spectroscopy
is capable of measuring the electric dipole state of chemical bonds in cellular molecules;
Raman spectroscopy is a complementary tool exploiting the inelastic scattering of the
targeted biological samples even under a hydrated environment.
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When biomolecules contain chemical bonds with an electric dipole moment, these
vibrations are detectable and measurable by IR spectroscopy®. Categorized according to
wavelengths (i.e., near-IR, mid-IR or far-IR), mid-IR (MIR) spectroscopy (4000-400 cm’ in
wavenumbers) is the most applied in biospectroscopy because it not only includes overtones
but also contains fundamental vibrational transitions, providing inherently stronger signal
intensities in terms of the increased absorption cross-section’’. In 1991, FTIR spectroscopy
was innovatively introduced as a sensitive and rapid screening tool for characterization,
classification and identification of microorganisms”. Since then, FTIR spectroscopy has been
extensively used in microbial research”">. Among FTIR spectroscopic techniques, the most
frequently applied IR spectroscopic techniques are transmission, transflection or attenuated
total reflection (ATR)’*. ATR-FTIR spectroscopy (Figure 1), for instance, which employs an
internal reflection element with a high refractive index (e.g., diamond, germanium or zinc
selenide), directs the IR beam for the total internal reflection and produces an evanescent
wave that penetrates beyond the element by 1 um to 2 um. It is used to interrogate biological
samples allowing absorption of IR light and subsequently production of absorbance spectra®:
72 This process can reveal biochemical information regarding cellular changes or alterations
of samples. However, there is a significant limitation within FTIR in that water from
instrumentation or samples may induce reduction of IR light transmission®” 2. Hence, it is
crucial to purge the instrumentation with dry air or nitrogen, as well as desiccants to remove
any water vapour before spectral acquisition’”. FTIR is a valuable metabolic fingerprinting
tool owing to its abilities to characterize cellular composition””®. In the mid-IR
spectroscopy, the biochemical fingerprint region is from 1800 - 900 cm™, and representative
peaks include: lipids (~1750 cm™), Amide I (~1650 cm™), Amide II (~1550 cm™), Amide III
(~1260 cm™), carbohydrates (~1155 cm™), asymmetric phosphate stretching vibrations (Ve
PO, ~1225 cm™), symmetric phosphate stretching vibrations (v;PO,", ~1080 cm™), glycogen

69,72,77,79, 80

(~1030 cm™), protein phosphorylation (~970 cm™) . These peaks can be derived as

biomarkers for characterization of microbial cell types (even at subspecies level) and

72-78

diagnosis of microbe-induced diseases Metabolomics is a critical field that

biospectroscopy could complement in order to investigate microbial metabolism.

Raman spectroscopy, a complementary biospectroscopic technique to FTIR, can generate
information regarding chemical bonds even under a hydrated environment®™*. The
monochromatic light in the near-IR, visible or UV range is used in Raman spectroscopy
(Figure 1) to exploit the inelastic scattering or Raman effect. In this process, the excitation of
photons to virtual energy states and the resultant loss (Stokes) or gain (anti-Stokes) of energy
occurs because of the interaction of light with vibrational modes associated with chemical
bonds within the sample®® *®. This shift in energy is indicative of discrete vibrational modes
of polarizable molecules, and thus a qualitative measurement of the biochemical composition
can be obtained™” *®. However, the inelastic scattering does not occur efficiently, the
incidence is <1% of the total photons absorbed by the molecules. Thus, backward light is
then applied filtering off other interference, but the Raman scattering can reach the detector.
Typically, the informative region of wavenumbers for biological samples is located within
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400-2000 cm™ and 2700-3500 cm™, including proteins (1500-1700 cm™), carbohydrates
(470-1200 cm™), phosphate groups of DNA (980, 1080 and 1240 cm™) and higher-frequency
bond vibrations of CH, NH and OH stretching in lipids and proteins®” *’. Applications of
Raman spectroscopy in microbiology include bacterial discrimination, isolation, and

. . . 8890
1dentification .

3.2 Applications of biospectroscopy in microbial research

Compared to the conventional tools employed for identifying and characterizing the
microbiome, biospectroscopy requires minimal sample amount and preparation, and is non-
destructive and relatively high throughput® > *. Specifically, the minimal sample volume
for ATR-FTIR and Raman spectroscopy is 3 pL and 1 pL respectively, much lower than those
required in PCR, high-throughput sequencing, and Omics which require high quality and
amounts of DNA template extracted from several millilitres or grams of environmental
samples. Additionally, biospectroscopy does not require extra labelling, primer design, and
enzymatic reaction, significantly reducing the cost and time in diagnosing. More importantly,
the non-destructive features of biospectroscopy allow its application in vivo and in situ. Some
successful microbial applications of biospectroscopy (Figure I) include characterization of
hospital isolates and rapid quantitative detection of the microbial spoilage of food products’"
77.79.91.92 ‘There is no doubt that biospectroscopy is a robust tool for distinguishing bacterial
responses to environmental exposures due to its particular attributes of being non-destructive,

non-intrusive, high throughput and label-free®” 7

. When coupled with conventional
microscopy, biospectroscopy can be used to reproduce cell architecture from both the visual
and biochemical perspective by the passing of spectral data through a variety of

6972 1t allows visualized

computational algorithms and capture of pictures simultaneously
monitoring and spectral interrogation undertaken in-situ in real-time, which is very helpful
towards understanding the actual interactions between microbes and physical environment®

69, 72, 77, 80, 93, 94 . . . . . . . .
’ . In the history of microbiological research, the microbiome is a particular

Published on 27 April 2017. Downloaded by University of Central Lancashire on 27/04/2017 14:52:20.

hotspot in microbial ecology, challenging to all approaches to investigate it but bringing
possibilities for biospectroscopy to be applied. As a very complicated bio-matrix,
microbiomes contain various compositions contributing to the overall spectra, including
extracellular polymeric substances (EPS), cell membrane, and the cytoplasm. The
characteristic spectral peaks, e.g., biological macromolecules, may assess the existence and
composition of biofilms by summarising the wavenumbers of detected peaks. Most EPS
induced biomarkers, for instance, fall in the range of 1700 - 100 cm’! in Raman
spectroscopy’>. Also, the comparison between the microbial biofilms and planktonic
communities could reveal relevant biochemical information®. Specifically, Bosch et al. found
FTIR spectra of biofilms demonstrated higher intensity in the absorption bands associated
with polysaccharides (1200 - 900 cm ' region) and vibrational modes of carboxylate groups
(1627, 1405, and 1373 cmfl) than those of the planktonic74, showing evidence of dramatic
difference of microbial living style within such communities.
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4. Fingerprint microbiome via biospectroscopy

4.1 State of art

Owing to the non-destructive and high-throughput possibilities, biospectroscopy has many
advantages in diagnosing antibiotic resistance within a microbiome over other approaches,
either function- or molecular-based ones. It allows fast and low-cost screening for an
enormous number of samples and also provides a chance for further analysis of relevant
mechanisms. Additionally, biospectroscopy is capable of monitoring real-time population
dynamics and subsequently providing information of genotypic changes. However, until now,
few biospectroscopy-based studies have focused on microbial antibiotic resistance, and all of
the published studies’””
in situ highlights the urgent need for novel approaches. The primary challenges currently

investigate pure cultures. Lack of insight into microbiome structures

include the lack of a reliable database, routine protocols, and reproducible computational
analysis, which determine the feasibility of biospectroscopy distinguishing biomarkers
representing antibiotic resistance from the numerous fingerprints in environmental
backgrounds.

Herein, we propose a state-of-the-art biospectroscopic application in assessing
microbial antibiotic resistance within a microbiome. Within a microbiota of interest, there is
no doubt biospectroscopy has the ability to allow the quick identification of microbial species
within a well-built dataset’’. Furthermore, biospectroscopy can diagnose microbe-induced
diseases in clinical settings contributing to the advantages of early detection and stratification
of at-risk patients to initiate timely and appropriate treatment'*'®. Raman spectroscopy has
successfully identified sepsis in blood plasma from 70 patients with a satisfactory sensitivity
of 1.0 and specificity of 0.82'"". The feasibility of biospectroscopic investigation into
microbial alterations induced by exposures has also been evaluated. Riding et al. applied IR
spectroscopy to fingerprint microbes following exposure to carbon nanoparticles, and
revealed concentration- and size-dependent changes in cellular components'®. Another

study'®

confirmed the ability of IR spectroscopy to characterize changes induced by carbon
nanoparticles via investigating their effects in both Gram positive and negative bacteria.
Some discriminant biochemical markers, i.e., Amide II and carbohydrate, were picked out to
verify the distinct alterations in bacteria with respective cell wall structures. These studies
prove that biospectroscopy is not only able to distinguish microbial response to different
kinds of exposures, but also specify variances resulting from bacterial structures,

demonstrating its potential to diagnose antibiotic resistance with reliable biomarkers.

To investigate in-situ the construction and composition of microbiota in real-time, a
non-destructive and non-intrusive method is required to delineate differentiation.
Biospectroscopy is such an optical sensor, an in-sifu non-labelling complementary to other
molecular-based techniques, by directly and remotely measuring molecular vibration spectra

106 . 107 . .
and biofilms ~'. Given this, we propose a new system for characterizing

in living cells
antibiotic resistance within whole microbiomes via a rapid and high-throughput manner

(Figure 2). Firstly, by well-trained databases, the abundance of ARGs or microbes with
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ARGs in microbiotas can be quantified by evaluating the alteration ratio of biomarkers from
multivariate statistical analysis. Furthermore, the dynamics of ARGs in microbiotas might be
assessed in real-time via the interrogation of changes in biomarker change. Achieved in-situ
and real-time investigation of antibiotic resistance, the ultimate goal of this approach is to
monitor and diagnose both the presence and change of ARGs in unknown environmental or
human samples of interest, differentiating alterations of discriminating biomarkers in-situ and
real-time without referencing trained datasets.
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Figure 2. Schematic diagram of biospectroscopy fingerprinting microbiome for antibiotic
resistance. Portal bio-spectroscopic devices achieve in situ and real-time interrogation of
spectra from the samples of interest, e.g., human microbiome and livestock farm microbiome.
The fingerprints are further processed via computational analysis (pre-processing, feature
extraction, classification, discrimination, and differentiation) to distinguish the spectral
biomarkers of antibiotic resistance. Comparing to well-trained databases with both positive
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and negative controls, the biomarker alterations can examine the antibiotic resistance
capability of the targeted microbiome or even quantify the abundance of antibiotic resistance
genes.

4.1 Proof of concept

Our pre-validating results indicate biospectroscopy can determine the abundance of bacteria
with ARG in microbiome (Figure 3A), despite disparate bacterial types and community
composition (Gram-positive or Gram-negative; Figure 3B). From the well-trained dataset and
discriminating biomarkers (Figure 3C), the fingerprints of unknown microbiomes are
allocated and assigned with their ARGs abundance after encoding. Furthermore, both the
static and dynamic microbial matrices can be quantified by biospectroscopy due to inherently
non-destructive and non-intrusive attribute (Figure 3D). Here, biospectroscopy is validated as
a high throughput screening method for characterization of microbial composition and ARGs
abundance in complex matrices.

LD1 Lp1

vV AR

LD1 é — P S

s

Figure 3. Pre-validation proves the feasibility of interrogating the abundance of ARGs and
ratio of Gram-positive to Gram-negative bacteria in microbiomes. ARGs identification in
microbiome by biospectroscopic fingerprints via a Bruker TENSOR 27 FTIR spectrometer
(Bruker Optics Ltd., UK) equipped with a Helios ATR attachment containing a diamond
internal reflection element (IRE). Instrument parameters were set at 32 scans, 16 cm’

11
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resolution. A total of 30 spectra were acquired for each treatment (3 replicates) through the
ATR magnification-limited viewfinder camera. (A) Prediction of ARGs abundance in
artificial microbial communities containing different compositions of two Acinetobacter
baylyi mutants, ADP_kan" and ADP kan', which are genetically identical apart from the
kanamycin resistance gene located on the chromosome of ADP kan'. Under kanamycin
antibiotic pressure, i.e., treated with final concentration of kanamycin, the discriminant
biomarkers were (~980 cm™), Oligosaccharide C-OH stretching band (~1138 cm™),
Deoxyribose (~1188 cm™), Amide III (~1242 cm™), In-plane CH bending vibration from the
phenyl rings (~1500 cm™), C=0O stretching, lipids (~1740 cm™). The LDA distance is
positively correlated with the ratio of ADP kan/ADP kan™ and the linear regression,
therefore, can be used for ARG abundance calculation. (B) Prediction of microbial
community composition artificial microbial communities containing Gram-positive
(Mycobacterium vanbaalenii, Gram ' *°) and Gram-negative (Acinetobacter baylyi ADP kan',
Gram™°) bacteria. The positive correlation between LDA distance and the ratio of Gram'/
Gram™® helps in determining the abundance of each strain. (C) Dataset from LDA
differentiation of four reference bacterial strains (AGR": bacteria I and bacteria II with ARG;
AGR": bacteria III and bacteria IV with no ARG). The dataset is well trained for separating
ARG" and ARG bacteria. (D) LDA differentiation of unknown microbiome (U;, Us, and Us)
compared to training dataset to determine the abundance of ARG. Based on the values
generated from LDA analysis, their biochemical distances can be calculated. These results
validate bio-spectroscopy is capable of characterizing and quantifying ARGs of microbes via
their phenotypes in both genetically identical and differential microbial communities. Also, it
can be used to determine antibiotic resistance of unknown samples by calculating their
biochemical distances.

5. Challenges and solutions
5.1 Dataset

As mentioned above, a well-trained dataset is the key for biospectroscopic fingerprinting
microbiome and also the first fundamental problem challenge concerned which can eliminate
confounding factors, i.e., criteria may contribute a disruption to the core purpose of the study.
To achieve this goal, the database of relevant molecular fingerprint and their assignments
(such as nucleic acids, proteins, polysaccharides, carbohydrate, and lipids) have to be well-
characterised since the bio-spectroscopic classifications are based on calculating alterations
of interaction involved cellular compositions. This work may significantly improve bio-
spectroscopy from both quantity and quality criteria'®. Detailed information of the most
widely used peak frequencies and their assignments refers to the reviews of IR
> %7 "and ratios (X em™/Y em™)'”. These peaks with

remarkable alterations are determined as discriminating biomarkers for diagnosis of changes
87, 104, 105, 108, 110

spectroscopylog, Raman spectroscopy

. . .69
resulted by specific exposures in many studies™” However, no

biospectroscopy-relevant study has yet been found associated with biomarkers for antibiotic

12


http://dx.doi.org/10.1039/C7IB00009J

Published on 27 April 2017. Downloaded by University of Central Lancashire on 27/04/2017 14:52:20.

Integrative Biology

Page 14 of 22

View Article Online
DOI: 10.1039/C7I1B00009J

resistance of microbiomes.
5.2 Growth phase and environmental variants

Another major concern for the overall study (i.e., confounding factors) is bacterial
communities are incredibly complicated in terms of their composition, species, dynamics of
population, growth phase and nutrient depletion impacts'''™"'*. Growth phase effect for
instance, which may result in remarkable discrepancies within cell growth circle regarding

physical features and biochemical compositions. Ede et al.'”®

reported all the examined
species showed significant spectral differences through their growth phases in a study of
assessing cell population growth via ATR-FTIR spectroscopy. They found B.
stearothermophilus had a major change associated with lipid content and reached peak
position during the log phase; for the halophiles H. salinarium and H.morrhuae, the most
significant alteration was the concentration of sulphate ion. Mainly, at the mid-log phase, 4.
aceti cells showed increasing polysaccharide content along with and also a maximum change
of lipid content was noticed during the log phase. These growth phase induced changes may

lead to distinct responses of microbes to exposures' > 1%,

\/ Fingerpriat of single cells

(. ’ é T =

Fingerprint of microbial

=

community

/) & = Log Stationary Death Rich Medium  Depletion
e & = Growth phase Nutrient condition

Microbiome fingerprints Growth phase
Antibiotics under stimuli
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>
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-
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\

- N v 1700 1600 1400 1200 1000 S00 600
e

Figure 4. Pre-validation of solutions for proposed challenges of growth phase and nutrients.
The well-trained dataset eliminating other environmental interference is built-up in several
steps: 1) Reference dataset acquisition from individual single cell of different species
representing their biospectral attributes; 2) Biospectra acquisition from the targeted
microbiome; 3) Biospectra acquisition from the targeted microbiome postexposure to
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antibiotics to recognize and separate the discriminating spectral alterations via multivariate
analysis; and, 4) The identical and consistent spectral alterations representing antibiotic
resistance markers are clustered for interrogating the targeted microbiome.

A substantial alteration gradient of bio-spectra is noticed along with growth phase and
nutrient conditions, respectively. However, discrimination of antibiotic resistance biomarkers
is independent of growth phase and nutrient conditions (Figure 4). The biomarkers of
antibiotic resistance, i.e., phenylalanine (protein assignment) (~1004 cm” and ~1376 cm'l),
hydroxyapatite, carotenoid, cholesterol (~957 cm™), uracil-based ring breathing mode (~780
cm™), carbohydrates (~1105 cm™), phenylalanine, hydroxyproline (~1586 cm™), are
significantly discriminated from those of growth phases, phenylalanine or bound & free
NADH (~1000 cm™), phosphatidylinositol (~776 cm™), C-C-N* symmetric stretching (lipids)
or C-O-C ring (carbohydrate) (~877 cm™ and ~1495 cm™), Amide I (~1634 cm™ and ~1530
cm™); and nutrients, uracil-based ring breathing mode (~780 c¢m™), C-C-N* symmetric
stretching (lipids) or C-O-C ring (carbohydrate) (~877 cm™"), phenylalanine or bound & free
NADH (~1000 cm™), proline, hydroxyproline or glycogen and lactic acid (~918 cm™, ~1695
cm™ and ~1375 cm™) implying biospectroscopic is able to identify antibiotic resistance
within a microbiome regardless of impacts from growth phase and nutrient condition.
Therefore, these discriminating biomarkers associated with antibiotic resistance reveal the
potential feasibility for in-situ diagnosis of real samples despite environmental variants. It is
worth mentioning that discrimination of antibiotic resistance biomarkers might be also
affected by the complicated effects of antibiotics on both targeted microbiome and their
matrix environment, particularly in case of interrogating biofilm on mammalian tissues. The
production of tissue mucus and other components or the interference signals from
mammalian tissues themselves can bring challenges in distinguishing the proper biospectral
biomarkers. Although no previous report has answered this question yet, some potential

Published on 27 April 2017. Downloaded by University of Central Lancashire on 27/04/2017 14:52:20.

solutions eliminating background noise include separating microbiome from via optical

tweezers' ' or flow cytometry 120,

5.3 Computational analysis

It needs to be highlighted the most vital component associated with biospectroscopic
determination for antibiotic resistance of microbiome is to find discriminating biomarkers,
i.e., the most absolute and representative peaks derived from acquired spectra, allowing
subsequently high throughput screening for determination of antibiotic resistance. Although
some alterations of biomarkers can be visualized by eyes, the questions always emerge
regarding the existence of noticed difference and the reliability of subjective assessing by
eye. Hence, computational analysis is applied to exam the data due to the acquired spectrums
holding an enormous number of features.

The pre-processing is the first step of computational analysis which aims to reduce
effects resulted from spectral acquisition and subsequently enhance the robustness and
accuracy as well as making all the raw data comparable72. Categories of pre-processing
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include de-noising, spectral correction, normalization and combinations of these processes.
For a raw dataset of Raman, a noise-reduction smoothing step is commonly applied to
increase the SNR (signal-to-noise ratio) and highlight spectral features associated with
biochemical information®. PCA is also used to achieve the purpose of de-nosing because the
most valuable features of spectra can be represented by several significant PCs while the rest
PCs containing a majority of noise can be ignored. Furthermore, there is a huge challenge in
the procession of raw data, i.e., sloped or oscillatory baselines associated with resonant Mie
scattering in IR spectroscopy or fluorescence in Raman spectroscopy’~. To solve this issue,
rubber band baseline correction is applied for IR which produced a convex polygonal line to
correct the bottom edges of the spectra; and polynomial fit for Raman, which generates a

polynomial baseline to adjust the spectral minima'*'

. Also, the most vital part of pre-
processing is the normalization, which eliminates the confounding factors, thickness or
concentration, for instance, making acquired spectra comparable within intra-class and inter-
class. For biological samples, Amide I (~1650 cm-1)/IT (~1550 cm™) is usually applied after
baseline correction for IR data; and vector normalization (Euclidean or L2-norm) is used for

72,121
Raman data’™™ "~".

Moreover, the multivariate statistical analysis is an ideal tool for spectral analysis. In
2010, Martin et al. proposed two objectives for spectral assessing biological materials using
multivariate statistical analysis: (i) to determine similarities and differences between classes
(categories within the dataset, e.g., cell types); and (ii) to identify the spectral bands that
mostly relate to these similarities and differences. So as to meet the objectives, classification
is introduced as one of the core components in multivariate analysis, which typically relies on
clustering techniques, such as hierarchical cluster analysis, k-means clustering, fuzzy C-
means clustering and PCA. Furthermore, PCA-LDA is an ideal classification tool to
investigate intra-class or interclass variation. As compared to PCA alone, the additional linear
discriminant analysis derives vectors from the principal components (PCs) and minimizes the
within-category differences (mostly be associated with typical heterogeneity in any biological
sample) while maximizing between-category discriminating characteristics (i.e., those most

likely to be induced by treatments or other exogenous contributions)®® "> .

6. Future prospects

The introduction of biospectroscopic screening allows rapid in-situ diagnosis of antibiotic
resistance in microbiomes as well as real-time detection of population dynamics and
determination of genotype flexibility (e.g., HGT process and microbial response to antibiotic
pressure) via monitoring phenotype differentiation, which can significantly improve the
understanding of antibiotic resistance in the clinical and physical environment. Furthermore,
a combination of cultivation-based approaches coupled with fast screening may solve the
inherent limitation of cultivation that microbial functioning in natural environments is
difficult to study by cultivation solely due to uncultivable microbes and their complicated
community constructions’> '%*. Also, with the non-destructive character of bio-spectroscopic
fast screening reducing the amount of interrogating targets, many other techniques can be

54, 57

attached for further investigation, e.g., single cell sorting , -omics™, etc. One good
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example can be found in Huang’s work describing novel marine strain identification via
Raman spectroscopy coupled with single-cell genomics'*’. Raman spectra are also reported in
morphology-specific genomic analysis of human tissues combined with microdissection
sequencing'>* or characterizing metabolic alterations in mouse liver coupled with

. : . 125
metabolomics and transcriptomics

. These combinations may significantly enhance the
study of the relevant mechanisms providing an opportunity for direct determination of
precisely functional genes and proteins. Ultimately, genotype and phenotype can be linked
together from the population, single cell, and molecular perspectives to determine the
antibiotic resistance in the microbiota of interest and consequently help us better understand

the actual interactions among humans, microbes, and the physical environment.

Published on 27 April 2017. Downloaded by University of Central Lancashire on 27/04/2017 14:52:20.
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