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M A J O R A R T I C L E

Partial Failure of Milk Pasteurization as a Risk for
the Transmission of Campylobacter From Cattle
to Humans

Anand M. Fernandes,1 Sooria Balasegaram,2 Caroline Willis,3 Helen M. L. Wimalarathna,4 Martin C. Maiden,4,5 and
Noel D. McCarthy2,4,5,6

1Operations Directorate, 2Field Epidemiology Services, and 3Food, Water and Environment Laboratory, Public Health England, 4Department of Zoology, and
5National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, and 6Warwick Medical School,
University of Warwick, United Kingdom

(See the Editorial Commentary by Osterholm on pages 910–1.)

Background. Cattle are the second most common source of human campylobacteriosis. However, routes to ac-
count for this scale of transmission have not been identified. In contrast to chicken, red meat is not heavily contam-
inated at point of sale. Although effective pasteurization prevents milk-borne infection, apparently sporadic
infections may include undetected outbreaks from raw or perhaps incompletely pasteurized milk.

Methods. A rise in Campylobacter gastroenteritis in an isolated population was investigated using whole-
genome sequencing (WGS), an epidemiological study, and environmental investigations.

Results. A single strain was identified in 20 cases, clearly distinguishable from other local strains and a reference
population by WGS. A case-case analysis showed association of infection with the outbreak strain and milk from a
single dairy (odds ratio, 8; Fisher exact test P value = .023). Despite temperature records indicating effective pasteur-
ization, mechanical faults likely to lead to incomplete pasteurization of part of the milk were identified by further
testing and examination of internal components of dairy equipment.

Conclusions. Here, milk distribution concentrated on a small area, including school-aged children with
low background incidence of campylobacteriosis, facilitated outbreak identification. Low-level contamination
of widely distributed milk would not produce as detectable an outbreak signal. Such hidden outbreaks may contribute
to the substantial burden of apparently sporadic Campylobacter from cattle where transmission routes are not certain.
The effective discrimination of outbreak isolates from a reference population using WGS shows that integrating these
data and approaches into surveillance could support the detection as well as investigation of such outbreaks.

Keywords. Campylobacter; cattle; milk; whole-genome sequencing; pasteurization.

Campylobacter is the commonest cause of bacterial gas-
troenteritis in humans, with chicken and cattle the first
and second most common sources, respectively [1–3].

Population genetic models have attributed 39% [2] and
18%–38% [1]of human infection in the United Kingdom
to ruminant (cattle or sheep) sources, and 20%–30% in
New Zealand [3],with cattle identified as the main rumi-
nant source. High prevalence and concentration of Cam-
pylobacter on chicken contrasts with low prevalence and
concentration on red meat at retail [4, 5], and transmis-
sion routes tohumans fromruminants are unclear despite
the ruminant-associated burden of well over 100 000
cases per year in England alone [2, 6].

Although detected Campylobacter outbreaks in En-
gland have included some from raw milk sources [7, 8],
especially locally distributed, this pattern has changed
with near-universal pasteurization of milk. Identified
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outbreaks are now mostly associated with foods containing
chicken liver prepared by the catering industry [9]. In the United
States, the decline has been less marked; 1 ruminant-associated
Campylobacter jejuni subtype has been found in outbreaks linked
to unpasteurized milk, in addition to 56 apparently sporadic
cases where source of infection was generally unknown [10].
Among apparently sporadic cases of Campylobacter in Minneso-
ta, 6% (407) reported consuming raw milk compared with 2.3%
among the general population. Raw milk consumption was esti-
mated by extrapolation to have caused >12 000 cases in this pop-
ulation from 2001 to 2010 [11]. The occurrence of so many raw
milk–associated cases in Minnesota, in the absence of detected
outbreaks, may be a feature of the difficulty of detecting out-
breaks for a widely distributed food [12], especially if outbreaks
are small and the distribution diffuse [7, 8, 13]. More generally,
Campylobacter outbreaks have mainly been identified in socially
or geographically defined groups [7–9], despite a biology of per-
sistence but not growth on foods [14, 15], so that distributed out-
breaks might be expected to be more common.

The combination of a large burden of human campylobacter-
iosis originating from cattle, unexplained transmission routes
from this source, and evidence that a large burden of apparently
sporadic unpasteurized milk–associated disease can occur with-
out detected outbreaks [11] raises the question of whether
imperfectly pasteurized milk might also cause undetected out-
breaks that contribute to human campylobacteriosis. If pasteur-
ization in large-volume, widely distributed supplies reduces risk
substantially, but sometimes incompletely (eg, due to partial
failures), the resulting low-level distributed contamination
would be likely to produce even more diffuse outbreaks than
with raw milk. Current human disease surveillance would not
provide a robust form of monitoring to detect these outbreaks.

When bacterial subtyping has been applied to milk-borne
Campylobacter outbreaks, a single or dominant subtype has usu-
ally been identified [10, 16–19], including 1 recent family farm
outbreak where isolates from family members, cattle feces, and
milk tanks were shown to be almost identical [20] by whole-
genome sequence (WGS) multilocus sequence typing (wgMLST)
[21, 22]. This shows that milk-borne outbreaks are at least some-
times due to a single strain. Preliminary work suggests that WGS
analysis can detect distributed Campylobacter outbreaks [21],
even though preceding molecular methods have not been effec-
tive for detecting outbreaks of this diverse pathogen [23, 24].

Here we describe an outbreak due to unidentified inadequate
pasteurization at a dairy supplying a local population. Localized
exposure of an age group in which this infection is rare allowed
detection of a cluster likely to have been missed if distribution
were across a wider population. Identification of the source of in-
fection involved integration of WGS data, other epidemiological
data, and environmental investigation showing the benefits of
triangulating WGS data with more familiar forms of epidemio-

logical information [25]. We also used this example to test wheth-
er integration of genome sequencing in surveillance could detect
epidemiologically related cases occurring in a less demographi-
cally distinct group.

METHODS

Epidemiological Methods
Case Definition
The outbreak control team case definition included any labora-
tory-confirmed case of Campylobacter gastroenteritis at a labo-
ratory serving the population of a small island, identified during
October 2011, with onset after 29 September, without preceding
foreign travel, and where the isolate was sensitive to ciprofloxa-
cin and erythromycin.

Subsequently, an outbreak strain case definition to allow
case-case analysis used the criteria of allele differences at ≤12
of the genetic loci used in Campylobacter wgMLST analysis
[21]. Cases in households where another case had occurred
≥3 days earlier were considered as secondary to allow repeat
analysis excluding probable and possible secondary cases.

Case Information
A standard questionnaire for gastrointestinal illness applied
by the local public health authorities gathered information on
symptoms, onset time, and food and other exposures in the
week preceding onset. This was later modified to examine
milk consumption in more detail. Cases, or parents of child
cases, were interviewed in person or by telephone. Information
obtained was recorded on the case management system used by
English public health authorities.

Microbiological Methods for Human Samples
Stool specimens submitted to the hospital laboratory serving the is-
land population were cultured for Campylobacter species using
British standard methods. Once an outbreak was suspected, avail-
able isolates, which are usually discarded, were retained for genome
sequencing. DNAwas extracted and sequencing performed on the
Illumina Hi-Seq platform as described elsewhere [21].

Food Chain Investigation
The milk supply chain for schools was later investigated given
the concentration of infection among school-aged children and
frequent reports by these cases of school milk consumption.

Food Microbiology and Biochemistry
Milk samples were taken from the dairy milk tank and after bot-
tling and analyzed at the Food Water and Environmental
Microbiology Laboratory, Porton Down, for alkaline phospha-
tase (according to International Organization for Standardiza-
tion 11816–1:2006) to test for adequacy of pasteurization [26],
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Enterobacteriaceae using the TEMPO automated most probable
number technique [27], and for the presence of Campylobacter
using Health Protection Agency Standard Procedure F21.

Bioinformatics Analysis
The 23 available isolates from the laboratory catchment popula-
tion were analyzed with a reference population comprising 65
contemporaneous isolates from an ongoing genomic surveillance
project in Oxfordshire, United Kingdom (isolates cultured be-
tween 29 September and 22 October) given evidence for seasonal
but limited geographical variation in Campylobacter subtypes in
England [28–30]. The Genome Comparator tool was used within
BIGSdb [31] to perform wgMLST analysis [22] using the 1643 ge-
netic loci validated for this form of analysis [21]. Pairwise differ-
ences were estimated among outbreak and reference population
isolates to discriminate clusters against a background population.

Following the identification of an outbreak strain as described
above, a more challenging discriminatory task was set, to separate
outbreak isolates from a reference population with the same stan-
dard 7-locus MLST [32] as the outbreak strain (ST21). This used
all ST21 isolates from Oxfordshire isolated during September,
October, and November (n = 29) as a surrogate to test the capac-
ity of genome sequencing to distinguish the outbreak cluster from
a wider background population. This evaluation compared the
distributions of pairwise differences between (1) each pair of out-
break strain isolates, (2) each pair of reference population isolates,
and (3) each outbreak strain isolate and each reference isolate.
Genome sequences for all isolates used in the analyses are acces-
sible on the pubMLST/Campylobacter database.

Case-Case Analysis
Following confirmation of an outbreak strain, a case-case anal-
ysis [33] was undertaken comparing outbreak strain cases with
all other isolates from the island population that had different
genome sequences or had not been genome sequenced, from
people without a history of foreign travel. Odds ratios (ORs)
and 95% confidence intervals (CIs) were estimated by logistic
regression and exact logistic regression implemented in Stata
12, and statistical significance was tested using Fisher exact test.

RESULTS

Descriptive Epidemiology
Forty-eight Campylobacter-positive samples were reported by
the hospital laboratory in October vs an average of 15 during
October over the previous 4 years. Eleven were excluded as
cases due to symptom onset prior to 29 September (n = 6), for-
eign travel (n = 2), or antibiotic resistance (n = 3).

Twenty-nine of the 37 cases were in the primary and pre-
school age range of 1–11 years (78%). The other 8 were aged
≥24 years. Onset dates were mainly (32 of 37) between 29 Sep-
tember and 5 October, peaking on Saturday, 1 October (Fig-
ure 1). Cases in schoolchildren were distributed unevenly
among 12 schools. Two schools accounted for 52% (15) of
cases in the primary and preschool age range.

Diarrhea was reported by all 33 cases for whom symptom in-
formation was available, with abdominal pain reported by 88%,
fever 70%, and bloody diarrhea 52%. Two children were hospi-
talized for 1 day each.

Figure 1. Epidemic curve of cases of Campylobacter per day identifying those meeting the original outbreak case definition (probable) and the outbreak
strain case definition (confirmed). Abbreviation: EH, environmental health.
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Human Sample Microbiology
Twenty-three isolates were available for genome sequencing.
Complete data were available at 1319 genetic loci for all of
these and the reference population isolates. Genes were missing
or alleles incomplete in 1 or more isolates at an additional 324
loci. Some allelic variation among isolates was evident at all
1319 loci with complete data. A cluster of 20 of the 23 isolates
in the outbreak catchment area were almost identical, with dif-
ferences of ≤4 (mean, 1.3) on all pairwise comparisons. The
other 3 isolates from the area were not similar to this cluster,
each differing at ≥1132 loci from all members of the cluster
and from each other (mean, 1190). Extraction of 7-locus
MLST [32] showed that the cluster of 20 isolates shared the
7-locus ST21 genotype and the other 3 were 1 each of ST42,
ST257, and ST353. The 65 reference population isolates differed
at ≥56 loci from each strain in the outbreak cluster.

Analysis comparing the cluster of 20 against the related ST21
reference population showed 1577 shared loci. Identical alleles
were present at 602 in all reference and outbreak isolates, where-
as 975 showed allelic variation. The pattern of pairwise differ-
ences among each population and between the 2 is shown in
Figure 2. The cluster of 20 isolates showed a range of 0–8 and
mean of 4 pairwise differences ( “within-cluster” differences);
comparing each isolate in the cluster with each in the reference
population showed differences at between 20 and 668 loci, with
a mean of 295 (Figure 2).

Food Chain Tracing
One dairy supplied milk to all local authority primary schools in
the area, to nurseries offering government-funded milk to children
<5 years old, and to a small proportion of the wider market includ-
ing hotels, care homes, and household doorstep deliveries of milk.

Dairy Inspection and Milk Testing
Temperature thermographs on pasteurization tanks did not
identify pasteurization process failure. No basis for postpasteu-
rization contamination was identifiable on review of the pack-
aging process and bottle storage. Campylobacter was not
isolated from the milk samples taken from the dairy. Seventeen
of 22 samples (Table 1) exceeded the alkaline phosphatase level
of 350 mU/L specified in European legislation (Commission
Regulation [EC] 1664/2006), indicating either failed pasteuri-
zation or contamination with raw milk after pasteurization.
Enterobacteriaceae counts exceeded the criteria specified for
pasteurized milk in European microbiological criteria (EC
2073/2005 as amended in EC 365/2010).

Inspection of the pasteurizer by an engineer, in the light of
milk-test results, identified problems with heat exchanger
plates, rubber gaskets, and an internal control mechanism on
a steam control valve. These could have led to the failure of
pasteurization for some of the milk passing through the pas-
teurizer, although most may have reached pasteurization tem-
peratures. The regeneration heat exchanger and hot water set
plates were replaced, and the pasteurizer was recalibrated. Sub-
sequent phosphatase tests on 23 samples were within normal
limits (Table 1).

Reported Risk Factors and Association With the Outbreak Strain
Of the 29 cases aged 0–11 years, 27 interviews were completed,
including 23 school-aged children. Twenty-one parents of
school-aged cases reported school milk consumption by their
children in the week before illness. Consumption of school
lunches was reported by 17 cases and participation in school
swimming by 8 cases. Case-case analysis of the association be-
tween milk consumption and illness is summarized in Table 2

Figure 2. Distribution of pairwise differences between ST21 isolates in an identified cluster of 20 isolates (blue), between isolates in this cluster and a
geographically separate but temporally similar reference population of ST21 isolates (red), and within the reference population (green) across 1577 loci.
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(OR, 8.0 [95% CI, 1.4–45.8]). Excluding 5 cases that are consid-
ered likely to be household secondary infections, all cases for
whom an exposure history was available had consumed milk
(OR, 11.7 estimated by exact logistic regression).

DISCUSSION

The distribution of milk from a dairy with pasteurization fail-
ures to an insular community, served by a single microbiology
laboratory, and including school-aged populations, supported
the detection of an epidemiological signal for this outbreak. A
combination of descriptive epidemiology, genomic epidemiolo-
gy, and environmental investigation identified the likely source

of infection. Combination of exposure histories and WGS data
allowed testing of the hypothesis generated using case-case
analysis [33]. Although no single analysis or form of data was
conclusive, the combination allows relatively firm inference
on the source and process issues that led to human infection.
Misclassification of cases with unavailable isolates as controls
might have weakened the observed associations but would not
have created a false-positive association. A cohort or case-control
study would have been useful in confirming this inference and
testing for possible effects of confounding that was not possible
in our small case-case analysis, particularly if evidence was
needed to support enforcement. The main peak of the outbreak
was short-lived, which was compatible with infection from a
single day’s delivery of milk. Additionally, illness did not appear
to be evenly distributed across school attendees and other pop-
ulations exposed to milk from the dairy. This suggests that con-
tamination may have affected only a portion of the milk from
the dairy, and for only a limited time. Later tests on dairy
milk were negative for Campylobacter although showing bio-
chemical evidence for pasteurization failure.

Most reported Campylobacter outbreaks are small and detect-
ed in defined communities. Some have been larger, with 1 out-
break associated with pasteurized milk believed to have been
contaminated after pasteurization, causing an estimated 1644
cases among prisoners in California, but this was nonetheless
in a defined group [17]. Noninstitutional outbreaks linked to
pasteurization failures have been described where a community
distribution was relatively local [34, 35] or where the outbreak
was very large (affecting 3500 individuals) and mainly concen-
trated in schoolchildren [16, 36]. In some incidents, increased
awareness of risk due to identified pasteurization failures may
have contributed to outbreak detection [34, 35] and, as in the
present outbreak, interventions may have contributed to a
short duration or the avoidance of recurrence. Reports of recur-
rent pasteurization failures but only single, time-limited out-
breaks [34, 35] fit with our later milk samples testing negative
for Campylobacter even though phosphatase tests suggested in-
complete pasteurization of at least some milk. Contamination of
raw milk with Campylobacter appears to be uncommon and
mainly associated with fecal contamination [19, 37, 38].

Neither the outbreak that we report nor other literature de-
scribes the type of diffuse outbreaks that might be anticipated
from low-level Campylobacter contamination of milk given that
it is a product that is typically processed in bulk and widely dis-
tributed, and that this pathogen can survive in refrigerated milk
for 3 weeks [39] but could not grow [14, 15] in these conditions.
It may be that modern large-scale production of pasteurized milk
provides complete protection, or that the protection is sometimes
<100% but that wide distribution networks for milk make it dif-
ficult to detect outbreaks followingminor levels of contamination
and partial pasteurization failure so that they are lost into the

Table 1. Phosphatase Test Results on Milk Samples Before and
After Repair of the Pasteurizer

Date of
Sample

Type of Sample and Alkaline Phosphatase
Resulta, mU/L

Whole Milk Skimmed Milk

10 October Bottle: 24

17 October Tank: 517 Tank: 627
First bottle on line: 578 First bottle on line: 337

Last bottle on line: 65

19 October Tank: 722 Tank: 627
Bottles: 225, 365, 250 Bottles: 625, 639, 639

20 October Bottles: 906, 880, 837,
903

Bottles: 608, 601, 632, 539

Pasteurizer repaired overnight 20–21 October

21 October Bottles: 20, 20, 16 Bottles: <10, <10

22 October Bottles: 22, 16, 18, 12 Bottles: <10, 12, 12, <10,
<10

27 October Bottles: 25, 25, 29, 25,
44

Bottles: 22, 54, 42, 27

a Counts exceeding regulatory standards (350 mU/L) are shown in bold.

Table 2. Association Between Illness With the Confirmed
Outbreak Strain and Milk Consumption From the Implicated Dairy

Cases Milk No Milk OR 95% CI P Value

Analysis of all cases with available dataa

Confirmed case 18 2 8.0 1.4–45.8 .023
Not confirmed 9 8

Excluding probable secondary casesb

Confirmed case 18 0 11.7 1.4–undefined .010
Not confirmed 9 5

Abbreviations: CI, confidence interval; OR, odds ratio.
a Three individuals were not interviewed or did not give information on
exposure to milk.
b Five cases occurred in family members of cases andmay have been secondary
cases.
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background of apparently sporadic cases. The large burden of
unexplained cattle origin human infection highlights the impor-
tance of obtaining evidence to identify which of these explana-
tions is correct.

Critically, this investigation and our past work [21] show that
the integration of WGS into the surveillance of Campylobacter
infection will allow the detection of single-strain outbreaks, or
those where a single strain is dominant. The 20 outbreak isolates
showed allele differences at ≤8 loci on pairwise comparison,
with a mean of 4 locus differences, across 1577 loci analyzed.
These levels of difference are equivalent to the differences
seen between 2 isolates from the same patient and do not appear
to occur among isolates with no epidemiological relationship
[21]. As a single or dominant subtype has typically been report-
ed for milk-borne Campylobacter outbreaks when subtyping
has been undertaken [10, 16–20], these outbreaks may be par-
ticularly detectable by genomic approaches. This contrasts with
outbreaks due to poultry liver–containing foods that often con-
tain multiple strains [40, 41]. Taken together, this suggests that
the integration of these data and techniques into routine sur-
veillance of Campylobacter could detect diffusely distributed
outbreaks that do not produce an epidemiological signal in
time and space and which are currently likely to be missed, as
well as supporting their further investigation. The investigation
of these outbreaks may allow identification of the pathways of
the extensive human infection that comes from the cattle Cam-
pylobacter reservoir and support control measures against this
large burden of disease. However, such detection of multiple,
relatively small, epidemiologically related clusters may be a dou-
ble-edged sword. On one hand, small, well-investigated clusters
can provide insight into overall risk factors for infectious disease
to support control [42]; on the other hand, the difficulties of
identifying sources in small outbreaks, especially if cases are dif-
fusely distributed, will limit the practicality or utility of investi-
gating all such clusters. Identifying which leads to follow may be
critical to our effective application of these novel technologies.

Notes

Acknowledgments. We thank the members of the outbreak control
team set up to investigate and manage the outbreak, and Lt Col Ewan Cam-
eron for coordinating actions arising from the outbreak control team
meetings.
Disclaimer. The views expressed are those of the authors and not nec-

essarily those of the National Health Service, the National Institute for
Health Research (NIHR), the Department of Health, or Public Health
England.
Financial support. This work was supported by core UK government

public health funding through Public Health England. Part of this work
was supported by a grant from the European Community’s Seventh Frame-
work Program (FP7/2007-2013) under grant agreement 278864 in the
framework of the European Union Patho-NGen-Trace project. The refer-
ence datasets used were generated and made publicly available by the Uni-
versity of Oxford, supported by funding from the UK Food Standards
Agency and Defra.

Potential conflicts of interest. N. D.M. has received institutional funding
from the NIHR and the UK Food Standards Agency and Defra. M. C. M. has
received institutional funding from the UK Food Standards Agency and Defra.
All other authors report no potential conflicts.
All authors have submitted the ICMJE Form for Disclosure of Potential

Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

References

1. Sheppard SK, Dallas JF, Strachan NJ, et al. Campylobacter genotyping to
determine the source of human infection. Clin Infect Dis 2009;
48:1072–8.

2. Wilson DJ, Gabriel E, Leatherbarrow AJ, et al. Tracing the source of
campylobacteriosis. PLoS Genet 2008; 4:e1000203.

3. Mullner P, Spencer SE, Wilson DJ, et al. Assigning the source of human
campylobacteriosis in New Zealand: a comparative genetic and epide-
miological approach. Infect Genet Evol 2009; 9:1311–9.

4. Turnbull PCB, Rose P. Campylobacter jejuni and Salmonella in raw red
meats. A Public Health Laboratory Service survey. J Hyg (Lond) 1982;
88:29–37.

5. Wong TL, Hollis L, Cornelius A, Nicol C, Cook R, Hudson JA. Preva-
lence, numbers, and subtypes of Campylobacter jejuni and Campylobac-
ter coli in uncooked retail meat samples. J Food Prot 2007; 70:566–73.

6. Tam CC, Rodrigues LC, Viviani L, et al. Longitudinal study of infectious
intestinal disease in the UK (IID2 study): incidence in the community
and presenting to general practice. Gut 2012; 61:69–77.

7. Frost JA, Gillespie IA, O’Brien SJ. Public health implications of Cam-
pylobacter outbreaks in England and Wales, 1995–9: epidemiological
and microbiological investigations. Epidemiol Infect 2002; 128:111–8.

8. Pebody RG, Ryan MJ, Wall PG. Outbreaks of Campylobacter infection:
rare events for a common pathogen. Commun Dis Rep CDR Rev 1997;
7:R33–7.

9. Gormley FJ, Little CL, Rawal N, Gillespie IA, Lebaigue S, Adak GK. A
17-year review of foodborne outbreaks: describing the continuing de-
cline in England and Wales (1992–2008). Epidemiol Infect 2011;
139:688–99.

10. Sahin O, Fitzgerald C, Stroika S, et al. Molecular evidence for zoonotic
transmission of an emergent, highly pathogenic Campylobacter jejuni
clone in the United States. J Clin Microbiol 2012; 50:680–7.

11. Robinson TJ, Scheftel JM, Smith KE. Raw milk consumption among
patients with non-outbreak-related enteric infections, Minnesota,
USA, 2001–2010. Emerg Infect Dis 2013; 20:38–44.

12. Tauxe RV. Molecular subtyping and the transformation of public
health. Foodborne Pathog Dis 2006; 3:4–8.

13. Sails AD, Swaminathan B, Fields PI. Utility of multilocus sequence typ-
ing as an epidemiological tool for investigation of outbreaks of gastro-
enteritis caused by Campylobacter jejuni. J Clin Microbiol 2003;
41:4733–9.

14. Alter T, Scherer K. Stress response of Campylobacter spp. and its role in
food processing. J Vet Med B Infect Dis Vet Public Health 2006; 53:351–7.

15. Park SF. The physiology of Campylobacter species and its relevance to
their role as foodborne pathogens. Int J Food Microbiol 2002; 74:177–88.

16. Jones PH, Willis AT, Robinson DA, Skirrow MB, Josephs DS. Campylo-
bacter enteritis associated with the consumption of free school milk.
J Hyg (Lond) 1981; 87:155–62.

17. Jay-Russell MT, Mandrell RE, Yuan J, et al. Using major outer mem-
brane protein typing as an epidemiological tool to investigate outbreaks
caused by milk-borne Campylobacter jejuni isolates in California. J Clin
Microbiol 2013; 51:195–201.

18. Evans MR, Roberts RJ, Ribeiro CD, Gardner D, Kembrey D. A milk-
borne campylobacter outbreak following an educational farm visit. Epi-
demiol Infect 1996; 117:457–62.

19. Orr KE, Lightfoot NF, Sisson PR, et al. Direct milk excretion of Cam-
pylobacter jejuni in a dairy cow causing cases of human enteritis. Epi-
demiol Infect 1995; 114:15–24.

908 • CID 2015:61 (15 September) • Fernandes et al



20. Revez J, Zhang J, Schott T, Kivisto R, Rossi M, Hanninen ML. Genomic
variation between Campylobacter jejuni isolates associated with milk-
borne-disease outbreaks. J Clin Microbiol 2014; 52:2782–6.

21. Cody AJ, McCarthy ND, Jansen van Rensburg M, et al. Real-time geno-
mic epidemiology of human Campylobacter isolates using whole ge-
nome multilocus sequence typing. J Clin Microbiol 2013; 51:2526–34.

22. Maiden MC, van Rensburg MJ, Bray JE, et al. MLST revisited: the gene-
by-gene approach to bacterial genomics. Nat Rev Microbiol 2013;
11:728–36.

23. Gerner-Smidt P, Hise K, Kincaid J, et al. PulseNet USA: a five-year up-
date. Foodborne Pathog Dis 2006; 3:9–19.

24. Hedberg CW, Smith KE, Besser JM, et al. Limitations of pulsed-field gel
electrophoresis for the routine surveillance of Campylobacter infections.
J Infect Dis 2001; 184:242–4.

25. McCarthy N. An epidemiological view of microbial genomic data. Lan-
cet Infect Dis 2013; 13:104–5.

26. Angelino PD, Christen GL, Penfield MP, Beattie S. Residual alkaline
phosphatase activity in pasteurized milk heated at various tempera-
tures–measurement with the fluorophos and Scharer rapid phosphatase
tests. J Food Prot 1999; 62:81–5.

27. Owen M, Willis C, Lamph D. Evaluation of the TEMPO((R)) most
probable number technique for the enumeration of Enterobacteriaceae
in food and dairy products. J Appl Microbiol 2010; 109:1810–6.

28. Cody AJ, McCarthy NM,Wimalarathna HL, et al. A longitudinal 6-year
study of the molecular epidemiology of clinical Campylobacter isolates
in Oxfordshire, United Kingdom. J Clin Microbiol 2012; 50:3193–201.

29. Dingle KE, McCarthy ND, Cody AJ, Peto TE, Maiden MC. Extended
sequence typing of Campylobacter spp., United Kingdom. Emerg Infect
Dis 2008; 14:1620–2.

30. McCarthy ND, Gillespie IA, Lawson AJ, et al. Molecular epidemiology
of human Campylobacter jejuni shows association between seasonal and
international patterns of disease. Epidemiol Infect 2012; 140:1102–10.

31. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial
genome variation at the population level. BMC Bioinformatics 2010;
11:595.

32. Dingle KE, Colles FM, Wareing DR, et al. Multilocus sequence typing
system for Campylobacter jejuni. J Clin Microbiol 2001; 39:14–23.

33. McCarthy N, Giesecke J. Case-case comparisons to study causation of
common infectious diseases. Int J Epidemiol 1999; 28:764–8.

34. Fahey T, Morgan D, Gunneburg C, Adak GK, Majid F, Kaczmarski E.
An outbreak of Campylobacter jejuni enteritis associated with failed
milk pasteurisation. J Infect 1995; 31:137–43.

35. Porter IA, Reid TM. A milk-borne outbreak of Campylobacter infection.
J Hyg (Lond) 1980; 84:415–9.

36. Robinson DA, Jones DM. Milk-borne campylobacter infection. Br Med
J (Clin Res Ed) 1981; 282:1374–6.

37. Waterman SC, Park RW, Bramley AJ. A search for the source of Cam-
pylobacter jejuni in milk. J Hyg (Lond) 1984; 93:333–7.

38. Humphrey TJ, Hart RJ. Campylobacter and Salmonella contamination
of unpasteurized cows’milk on sale to the public. J Appl Bacteriol 1988;
65:463–7.

39. Blaser MJ, Hardesty HL, Powers B, Wang WL. Survival of Campylobac-
ter fetus subsp. jejuni in biological milieus. J Clin Microbiol 1980;
11:309–13.

40. Abid M, Wimalarathna H, Mills J, et al. Duck liver-associated outbreak
of campylobacteriosis among humans, United Kingdom, 2011. Emerg
Infect Dis 2013; 19:1310–3.

41. Forbes KJ, Gormley FJ, Dallas JF, et al. Campylobacter immunity and
coinfection following a large outbreak in a farming community. J Clin
Microbiol 2009; 47:111–6.

42. Briggs AD, Boxall NS, Van Santen D, Chalmers RM, McCarthy N. Ap-
proaches to the detection of very small, common, and easily missed out-
breaks that together contribute substantially to human Cryptosporidium
infection. Epidemiol Infect 2014; 142:1869–76.

Campylobacter From Pasteurized Milk • CID 2015:61 (15 September) • 909



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


