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Normal Approximation for Strong Demimartingales

Milto Hadjikyriakou∗

Abstract

We consider a sequence of strong demimartingales. For these random objects, a
central limit theorem is obtained by utilizing Zolotarev’s ideal metric and the fact
that a sequence of strong demimartingales is ordered via the convex order with
the sequence of its independent duplicates. The CLT can also be applied to demi-
martingale sequences with constant mean. Newman (1984) conjectures a central
limit theorem for demimartingales but this problem remains open. Although the
result obtained in this paper does not provide a solution to Newman’s conjecture,
it is the first CLT for demimartingales available in the literature.

Key words and phrases: convex order, strong demimartingales, strong N -
demimartingales, central limit theorem, Zolotarev’s ideal metric.
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1 Introduction

Newman (1980) proved the following remarkable central limit theorem for associated
random variables.

Theorem 1 Let the sequence {Xn, n ≥ 1} be a strictly stationary associated sequence of
random variables with E(X2

1 ) <∞ and 0 < σ2 = Var(X1) + 2
∑∞

j=2 Cov(X1, Xj) <∞.

Then,
Sn − E(Sn)√

n

D−→ N(0, σ2) as n→∞

where
D−→ denotes convergence in distribution.

The result of Newman (1980) was the motivation for a number of central limit theorems
for associated random variables (see for example Bulinski and Shaskin (2007), Prakasa
Rao (2012), Oliveira (2012)).

Further to associated random variables, central limit theorems are provided for
various notions of dependence such as martingales, mixing sequences, m-dependent ran-
dom sequences, linearly positively/negatively quadrant dependent random variables (see
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for example Hall and Heyde (1980), Prakasa Rao (1975), Shang (2012), Boutsikas and
Vaggelatou (2002)).

Newman and Wright (1982) introduced the concept of demimartingales in order to
provide a much more general class than the associated random variables. The definition
of demimartingales is given below.

Definition 2 Let {Sn, n ≥ 1} be a collection of random variables defined on a proba-
bility space (Ω,A,P). The sequence {Sn, n ≥ 1} is called a demimartingale if for every
componentwise nondecreasing function f and for j > i

E [(Sj − Si) f(S1, . . . , Si)] ≥ 0 (1)

If moreover (1) is valid for any nonnegative componentwise nondecreasing function f ,
then {Sn, n ≥ 1} is called a demisubmartingale.

Christofides and Hadjikyriakou (2015) introduced the concept of conditional strong
demimartingales given a σ-field F . The unconditional version of this definition is pro-
vided below.

Definition 3 A sequence {Sn, n ∈ N} is said to be a strong demimartingale if for any
two coordinatewise nondecreasing functions f and g and j = 1, 2, . . .

Cov [g(Sj+1 − Sj), f(S1, . . . , Sj)] ≥ 0

whenever the covariance is defined.

Remark 4 It can easily be proven that the partial sums of positively associated random
variables form a sequence of strong demimartingales. Furthermore, if {Sn, n ∈ N} is a
strong demimartingale sequence with E(Si) = C, ∀ i = 1, 2, . . . where C is a constant,
the sequence {Sn, n ∈ N} is also a demimartingale.

Concepts of dependence are closely related to stochastic orders. One of the most
celebrated stochastic orders is the so-called convex order. A random variable X is said
to be smaller than the random variable Y in the convex order (denoted by X �cx Y )
if Eφ(X) ≤ Eφ(Y ) for all the convex functions φ such that the expectations exist (cf.
Shaked and Shanthikumar (2007)).

Christofides and Hadjikyriakou (2015) proved a comparison theorem for condition-
ally strong demimartingales. The unconditional version of the theorem states that a
sequence of strong demimartingales is always larger than the sequence of its indepen-
dent duplicates in the convex order.

Theorem 5 Let {Sn, n ∈ N} be a strong demimartingale and let Xj = Sj −Sj−1, j ≥ 1
with S0 ≡ 0. Let X∗j be independent random variables such that Xj and X∗j have the

same distribution and let Ŝn =
∑n

j=1X
∗
j . Then,

Ŝn �cx Sn.
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Newman (1984) conjectures the following: Let S0 ≡ 0 and the sequence {Sn, n ≥ 1}
be an L2-demimartingale whose difference sequence {Xn = Sn−Sn−1, n ≥ 1} is strictly
stationary and ergodic with

0 < σ2 = Var(X1) + 2
∞∑
j=2

Cov(X1, Xj) <∞.

Then
n−1/2(Sn − ESn)

D−→ σN as n→∞
where N is a standard normal random variable. The above conjecture has not been
proven and the problem remains open. This paper aims to show that the result of
Theorem 5 can be employed in order to obtain a central limit theorem for a class of strong
demimartingales that is also valid for a class of demimartingale sequences. Although,
the central limit theorem obtained in the next section does not provide a solution to
Newman’s conjecture to the best of my knowledge it is the first result in the literature
dealing with the CLT for demimartingales.

2 Central limit theorem for strong demimartingales

The concepts of stochastic orders and probability metrics are closely related in the sense
that if two random variables are somehow ordered and their expectations are close to
one another, it is of interest to study how close their respective distributions are. In the
case of random variables that are ordered with the convex order, a useful metric is the
so called Zolotarev’s ideal metric (Zolotarev (1983)) which is defined as

ζs(X, Y ) =
1

(s− 1)!

∫ ∞
−∞
|E(X − t)s−1+ − E(Y − t)s−1+ | dt, s ∈ N \ {0}

where E|X|s−1 <∞, E|Y |s−1 <∞ and X+ = max{0, X}.
Observe that if X �cx Y and s = 2 the above metric becomes of the form

ζ2(X, Y ) =

∫ ∞
−∞

(E(Y − t)+ − E(X − t)+) dt

where E|X| <∞, E|Y | <∞.

The main result of this paper is presented in this section and it is consider to be a
Berry-Esseen type central limit theorem.

Theorem 6 Let {Sn, n ∈ N} be a sequence of strong demimartingales and let Xj =
Sj − Sj−1, j ≥ 1 be identically distributed with S0 ≡ 0. Let µ = ES1, σ2 = E(S1 − µ)2

and assume that E|S1−µ|3 <∞ and 1
n

∑n−1
i=1

∑n
j=i+1 Cov(Xi, Xj)→ 0 as n→∞. Then

ζ2

(
Sn − ESn√

n
,N (0, σ2)

)
≤ 1

n

n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj) +
c√
n

(E|S1 − µ|3 + 1) (2)

for a positive constant c.
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Proof. Without loss of generality we assume that ESn = 0 for ∀n. Let X∗j and Ŝn be

as stated in Theorem 5. Then Ŝn �cx Sn and by applying Theorem 4 of Boutsikas and
Vaggelatou (2002) for s = 2 we have that

ζ2

(
Sn√
n
,
Ŝn√
n

)
=

1

2n

(
Var(Sn)− Var(Ŝn)

)
=

1

n

∑
1≤i<j≤n

Cov(Xi, Xj)

=
1

n

n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj). (3)

Since the sequence {X∗n, n ∈ N} is i.i.d., by Theorem 4 of Senatov (1980) and for a
constant c1 > 0 we have

ζ2

(
1√
n

n∑
i=1

X∗i
σ
,N

)
≤ c1√

n

(
ζ2

(
X1

σ
,N

)
+ max

{
ζ1

(
X1

σ
,N

)
, ζ3

(
X1

σ
,N

)})
where N ∼ N (0, 1).

Observe that

E

(
X1

σ

)
= 0 = E(N) and E

(
X1

σ

)2

= 1 = E(N2).

Then by Proposition 2(iv) of Boutsikas and Vaggelatou (2002) for s = 1, 2, 3

ζs

(
X1

σ
,N

)
≤ 1

s!

(
E|X1|s

σs
+ E|N |s

)
.

Note that

ζ1

(
X1

σ
,N

)
≤ E|X1|

σ
+

√
2

π
≤ 1 +

√
2

π
,

ζ2

(
X1

σ
,N

)
≤ 1

and

ζ3

(
X1

σ
,N

)
≤ 1

6

(
E|X1|3

σ3
+ 2

√
2

π

)
=
E|X1|3

6σ3
+

1

3

√
2

π
.

Hence

ζ2

(
Ŝn√
n
,N (0, σ2)

)
≤ σ2c1√

n

(
1 + max

{
1 +

√
2

π
,
E|X1|3

6σ3
+

1

3

√
2

π

})

≤ c
E|X1|3 + 1√

n
(4)

where c is a positive constant. The desired result follows by using the triangular inequal-
ity and the relations (3) and (4).
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It is worth mentioning that the result presented above provides rates of convergence
in the CLT for strong demimartingales. If n → ∞ the right hand side of inequality (2)
tends to zero.

Next, we provide an example of a sequence of random variables for which all the
assumptions of Theorem 6 are satisfied and therefore the CLT is applicable.

Example 7 Let X1, X2, . . . , Xn be random variables from the normal distribution with
mean equal to zero and variance equal to one. Furthermore assume that these random
variables are positively correlated and therefore associated (Pitt (1982)).

Suppose that the bivariate distribution of the vector (Xi, Xj) is given by the Farlie-
Gumbel-Morgenstern system

FXi,Xj
(x, y) = F (x)F (y) {1 + αij[1− F (x)][1− F (y)]} . (5)

where F (x) is the common marginal cumulative distribution function of Xi’s. It is known
that for absolutely continuous random variables |αij| ≤ 1.

Schucany et al. (1978) proved that for the bivariate distribution described by (5)
Cov(Xi, Xj) =

αij

π
. Let αij be αij = 1

ij
. Then

0 <
1

n

n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj)

≤ 1

nπ

n−1∑
i=1

n∑
j=i+1

1

ij

≤ 1

nπ
(lnn)2

→ 0

as n → ∞ which proves that all the assumptions of the previous theorem are satisfied
and the CLT for the sequence Sn can be obtained.

Another celebrated metric that has been studied extensively is the uniform (or
Kolmogorov) metric dK which is defined as

dK(X, Y ) = sup
x∈R
|FX(x)− FY (x)|.

Rachev (1991) provides a relationship that links the Zolotarev’s ideal metric ζ2 to the
Kolmogorov metric dK . By using the result of Corollary 1 of Boutsikas and Vaggelatou
(2002) and property 14.1.16 of Rachev (1991) we have that if X �cx Y or Y �cx X and
Y has a bounded Lebesgue density fY , then

dK(X, Y ) ≤ 3 · 2−1/3M2/3
Y |EY

2 − EX2|1/3 (6)

where MY = supx∈R fY (x).

By utilizing (6) we can obtain an inequality similar to (2) in terms of dK . The proof
follows by applying similar steps as in the proof of Theorem 6 and therefore is omitted
for brevity.
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Theorem 8 Let Sn, Ŝn and Xi be as stated in Theorem 5 and assume that Ŝn has a
bounded Lebesgue density fY . Let µ = ES1, σ2 = E(S1−µ)2 and assume that E|S1−µ|3 <
∞ and 1

n

∑n−1
i=1

∑n
j=i+1 Cov(Xi, Xj)→ 0 as n→∞. Then

dK

(
Sn − ESn√

n
,N (0, σ2)

)
≤ 3

n
M

2/3
Y

[
n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj)

]1/3

+
c√
n

(
3

3
√

2π
+ max

{
1 +

√
2

π
,
E|X1 − µ|3

6σ3
+

1

3

√
2

π

})

where c is a positive constant and MY = supx∈R fY (x).

As it has already been mentioned a strong demimartingale {Sn, n ∈ N} with
E(Sn) = C for all n is also a demimartingale. Therefore, the result presented above
provides a CLT for a sequence of demimartingales and as far as I am aware there are no
results on central limit theorems for demimartingales in the literature.

The concept of strong N-demimartingales was introduced by Prakasa Rao (2004).
The definition has a similar structure as the definition of strong demimartingales and it
is given below.

Definition 9 A sequence {Sn, n ∈ N} is said to be a strong N-demimartingale if for
any two coordinatewise nondecreasing functions f and g and j = 1, 2, . . .

Cov [g(Sj+1 − Sj), f(S1, . . . , Sj)] ≤ 0.

whenever the covariance is defined.

Hadjikyriakou (2013) provides a comparison theorem for the class of conditional
strong N-demimartingales. By applying the unconditional version of the comparison the-
orem and similar same steps as in Theorem 6 with appropriate conditions the following
result can also be obtained for a class of strong N-demimartingales.

Theorem 10 Let {Sn, n ∈ N} be a sequence of strong N-demimartingales and let Xj =
Sj −Sj−1, j ≥ 1 be identically distributed with S0 ≡ 0. Let µ = ES1, σ

2 = E(S1−µ)2 <
∞ and assume that E|S1 − µ|3 < ∞ and 1

n

∑n−1
i=1

∑n
j=i+1 Cov(Xi, Xj) → 0 as n → ∞.

Then

ζ2

(
Sn − ESn√

n
,N (0, σ2)

)
≤ c√

n
(E|S1 − µ|3 + 1)− 1

n

n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj) (7)

for a positive constant c.

Again, since a sequence of strong N-demimartingales with constant means forms a
sequence of N-demimartingales the latter inequality provides a CLT for a sequence of
N-demimartingales.
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Note that the results presented in Theorems 6 and 10 can also be used to provide
central limit theorems for positively and negatively associated random variables respec-
tively but of course better results for these classes of random variables are available
in the literature. The contribution of this paper is the central limit theorem for strong
demimartingales and strong N-demimartingales which are wider classes of random vari-
ables.
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