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Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily

characterized by impaired social interaction and communication, and by restricted repetitive

behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential

therapeutic agents for the treatment of different brain disorders and cognitive impairments.

Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX),

an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic

acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and as-

sessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life.

The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each

behavioral test. The VPA group presented lower sociability index compared to VPA animals

that were treated with CPX. Compared to the Control group, VPA animals presented a

significantly higher nociceptive threshold, and treatment with CPX was not able to modify

this parameter. In the marble burying test, the number of marbles buried by VPA animals

was consistent with markedly repetitive behavior. VPA animals that received CPX buried a

reduced amount of marbles. In summary, we report that an acute dose of CPX is able to

attenuate sociability deficits and stereotypies present in the VPA model of autism. Our

findings have the potential to help the investigations of both the molecular underpinnings of

ASD and of possible treatments to ameliorate the ASD symptomatology, although more

research is still necessary to corroborate and expand this initial data.
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Introduction
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders featured by
impaired social interaction and communication, and by restricted repetitive behaviors and
interests [1]. The pathophysiology of ASD is poorly understood, but evidence indicates that a
strong genetic component and the environment act in concert as triggering factors [2,3].

The use of valproic acid (VPA) during pregnancy is an environmental risk factor highly
associated with increased incidence of ASD in children [4]. Based on this observation, an
animal model of this disorder was proposed, which consists of prenatally exposing rodents to
this teratogen [5,6]. The VPA animal model of autism shows neuroanatomical, behavioral, and
biochemical alterations that replicate the core characteristics and main comorbidities of
patients with ASD [7].

Histamine acts as a transmitter in the central nervous system (CNS) and modulates distinct
physiological processes like circulatory functions, innate and acquired immunity, cell prolifera-
tion and hematopoiesis [8]. In the last years, there has been a growing interest in the study of
histamine in the CNS and its influence on behavior in both physiological conditions and brain
disorders [9–11]. Thus, the histaminergic system is an interesting pharmacological target for
therapeutic purposes and many efforts have been made to develop drugs that could act on
different histamine receptors (H1R, H2R, H3R and H4R) [12].

There are few studies in the literature related to the use of histamine receptor antagonists to
treat autistic behavior. In 1997, it was proposed that famotidine, an antagonist of H2R, would
be a potential treatment for children with ASD [13]. This proposal was based on a report of a
patient with schizophrenia (SCH), a disorder that shares symptoms and genetic factors with
ASD [14,15], that showed improved sociability after this treatment [16]. Later, famotidine was
tested in a group of children with ASD and 44% of them presented evidence of behavioral
improvement. It is noteworthy that children with marked stereotypy did not respond to the
treatment [17]. In addition, niaprazine, a H1R antagonist, was also tested in patients with ASD
and led to amelioration of symptoms such as unstable attention, resistance to change and
frustration [18].

Ligands of H3R are also considered potential therapeutic agents for the treatment of brain
disorders, such as Alzheimer’s disease, SCH, and narcolepsy [19–21]. In an animal model of
SCH, the use of an H3R antagonist ameliorates behavioral impairments [22], including spatial
working memory deficit, an abnormality also found in patients with ASD [23]. Recently, a
study revealed that antagonism of H3R attenuates impaired social behavior in rodents exposed
to phencyclidine (PCP), a finding that may also have implications for ASD [24].

Considering this evidence, we aimed to evaluate the actions of ciproxifan (CPX), an H3R
antagonist, on the animal model of autism induced by prenatal exposure to VPA. Sociability
and social novelty preference, nociceptive threshold and repetitive behavior were assessed to
verify the behavioral outcomes triggered by CPX treatment.

Methods

Animals
Thirty-six female Swiss mice were obtained at 7–8 weeks of age from Federal University of Pe-
lotas (Pelotas, Brazil) and were mated, with pregnancy confirmed by the presence of a vaginal
plug on embryonic day 0 (E0). On E11, 18 pregnant females received a single intraperitoneal
injection of 500 mg/kg VPA (Sigma-Aldrich, St. Louis, MO, USA) dissolved in saline. Eighteen
control females received an equal volume of saline. Four females died after injection of VPA.
Sixteen pups from VPA-treated dams (VPA) and 16 pups from dams that received saline
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(Control) were used in this study. Half of each group received an injection of CPX prior to
each assay, while the rest received an injection of saline (SAL). One pup was randomly selected
from each litter in order to avoid litter effects. The other animals from the litters that were not
used in this work were killed and tissues were stored for future analysis. Animals were main-
tained in a standard 12-hour light/dark cycle, with controlled temperature (22�2°C) and free
access to food and water.

Behavioral testing was performed between 9:00 am and 2:00 pm, in an order randomized
by group, in the following sequence once the animals were 50 days old: three chambers test,
tail-flick, and marble burying. All protocols were approved by the Animal Ethics Committee at
the Clinical Hospital of Porto Alegre (HCPA) and were conducted in accordance with National
Institutes of Health guidelines.

Treatment
CPX (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in sterile 0.9% saline before the
behavioral tests. Intraperitoneal injections of SAL or CPX (3 mg/kg) were given 30 minutes
before onset of behavioral tests. Dosage was based on previous publications demonstrating
efficacy in mice [25].

Behavioral tests

Three Chambers test
This sociability and social novelty test apparatus consists of an acrylic box with a total size of
628 × 456 × 220 (length, width, height, in millimeters) partitioned into three chambers. The
openings between the compartments allow the animals to explore the three chambers. During
an initial moment, an object was positioned in one of the lateral chambers, and a set animal+
object was placed in the opposite lateral chamber. This animal (novel mouse 1) was an experi-
mentally naive male Swiss mouse with no previous contact with the testing animal. The object
was an empty cage identical to the one used to enclose the novel mouse 1. Time spent in each
chamber, as well as the time spent exploring the novel mouse 1 or the novel object, was ana-
lyzed by two observers during 10 min.

The social novelty test began immediately after the end of the sociability test. In this test,
the novel mouse 1 remained in its wire cage (now it is called the known mouse) and a new
unfamiliar mouse (novel mouse 2) was placed in the wire cage in the opposite side (which was
previously empty). Time spent in each chamber and time spent exploring each wire cage was
recorded during 10 min.

We evaluated a Sociability Index (SI), a mathematical equation designed to allow the direct
comparison of social behavior of the groups. In an analogous manner, it is possible to evaluate
preference for social novelty by calculating the Social Novelty Preference Index (SNI). The SI
and SNI are calculated as showed below:

SI ¼ ðtimeexploringnovelmouse 1� timeexploringnovelobjectÞ
ðtimeexploringnovelmouse 1þ timeexploringnovelobjectÞ

SNI ¼ ðtimeexploringnovelmouse 2 − timeexploringknownmouseÞ
ðtimeexploringnovelmouse 2þ timeexploringknownmouseÞ

Animal Model of Autism and H3R Antagonism
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Tail-flick test
Animals were gently restrained by hand, and radiant heat was directed onto its tail. Measure-
ments were taken three times, with 30-second intervals, using a tail-flick analgesia meter (EFF
300L-Light, Insight, Brazil).

Marble burying test
Mice were acclimated individually in a cage filled with 4 cm of fresh bedding for 10 minutes.
To minimize neophobia and novelty-induced anxiety, mice had been previously exposed to the
testing room during the three chambers test and tail-flick test. Following acclimation, mice
were removed from the cage, and 20 black marbles were placed equidistant in a 4×5 arrange-
ment. Mice were then returned to the same cage for 10 minutes. Following the 10-minute test-
ing period, two observers counted the number of marbles that were more than 50% covered
with bedding. After each testing period, the marbles were cleaned with 70% ethanol.

Statistics
For the SI and SNI, marble burying and tail-flick tests statistical significance was assessed with
a group (Control, VPA) × drug (SAL, CPX) ANOVA. Bonferroni post-tests were used to
determine difference between individual groups.

The values measured for the animals in the three chambers test were integrated in a
multivariate linear model to predict the impact of the treatment in the behavioral outcome. We
used the Generalized Estimation Equations (GEE) in order to enable the comparison between
multiple interdependent variables and overcome the necessity of normality and homoscedas-
ticity. Two distinct analyses were performed, one for time in chambers and another for the
interaction time. Group and chamber were considered independent variables and their
influence over the dependent variable time was determined. Bonferroni post-test was used as
the final evaluation.

All analyses were performed using the SPSS program, Version 20.0 (SPSS, Chicago, IL). The
p values less than 0.05 were considered as statistically significant.

Results

Three chambers test

Sociability
The Control mice spent significantly more time exploring the novel mouse 1 than the novel
object (p<0.01). In contrast, VPA mice showed no preference for the two stimuli, which could
reflect decreased sociability. Interestingly, VPA animals treated with CPX spent significantly
more time exploring the novel mouse 1 than the novel object (p<0.01) (Fig. 1A).

With exception of VPA animals treated with CPX, all the other animals spent less time in
the central chamber than in the other chambers (p<0.01). The VPA mice treated with CPX
spent significantly less time in the central chamber when compared to the novel mouse 1
chamber (p<0.01), but no difference was detected when the time spent in the central chamber
was compared to the time spent in the novel object chamber (p>0.05). Control animals that
received SAL and CPX spent significantly more time in the novel mouse 1 than in the novel
object chamber (SAL: p<0.01; CPX: p<0.01), while the time spent by the VPA group in either
chamber was not significantly different. After CPX treatment, VPA-exposed animals spent sig-
nificantly more time in the novel mouse 1 chamber than in the novel object chamber (p<0.05)
(Fig. 1B).
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Regarding the SI, there was a significant group by drug interaction (F (1, 28) = 6.55, p =
0.016). No significant difference was detected between VPA and Control groups (F (1, 28) =
3.25, p = 0.082). However, when the SI of VPA animals that received only the SAL was com-
pared to Control animals in the same conditions, a significant difference was detected (p<0.01,
Bonferroni post-test). The SI of VPA mice treated with CPX was significantly higher than the
SI of VPA animals that received only SAL (p<0.05, Bonferroni post-test). Treatment with CPX
had no effect on Control animals (Fig. 1C).

Social novelty preference
Control mice spent significantly more time exploring the novel mouse 2 than the known
mouse (p<0.01). In contrast, VPA animals spent similar time exploring the two stimuli. Unlike
what happened in the sociability assessment, Control and VPA animals treated with CPX
spent similar time exploring the known and novel mouse 2 (Fig. 2A).

Control and VPA animals spent significantly less time in the central chamber than in the
other chambers (p<0.01). Control mice treated with CPX spent less time in the central cham-
ber than in the novel mouse 2 chamber (p<0.01), but it was not statistically different from the

Figure 1. Sociability assessed by the three chambers test. After 5 minutes of acclimatization, male subjects were allowed to explore all chambers for
10 min. With the results obtained in the sociability assessment, the sociability index was calculated as the ratio of the difference to the sum of time spent
exploring the novel mouse 1 and the time spent exploring the novel object. (A) Time spent exploring novel mouse 1 or novel object. (B) Time spent in
chambers. (C) Sociability Index. Figures showmean� SEM. (*p<0.05, **p<0.01). Control (n = 8), VPA (n = 8), Control +CPX (n = 8), VPA+CPX (n = 8).

doi:10.1371/journal.pone.0116363.g001

Figure 2. Social Novelty Preference assessed by the three chambers test. Right after the sociability assessment, male subjects were allowed to explore
all chambers for 10 min. With the results obtained in the social novelty assessment, the social novelty index was calculated as the ratio of the difference to the
sum of time spent exploring the novel mouse 2 and the time spent exploring the knownmouse. (A) Time spent exploring knownmouse or novel mouse 2 (B)
Time spent in chambers. (C) Social Novelty Index. Figures showmean� SEM. (*p<0.05, **p<0.01). Control (n = 8), VPA (n = 8), Control +CPX (n = 8),
VPA+CPX (n = 8).

doi:10.1371/journal.pone.0116363.g002
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time spent in the known mouse chamber. The time spent by VPA-exposed mice treated with
CPX in the central chamber was not statistically different from the time spent in the other two
chambers. The Control group spent significantly more time exploring in the novel mouse 2
than in the known mouse chamber (p<0.01). As expected, the time spent in both chambers by
VPA mice did not differ statistically. Interestingly, CPX had no effect on the time spent by
Control mice in the chamber with novel mouse 2 and in the one with the known mouse
(Fig. 3B). In the SNI, Control mice presented a higher score than VPA animals (F (1, 28) =
6.01, p = 0.021). There was no significant group by drug interaction (F (1, 28) = 2.20, p =
0.148). Treatment with CPX had no effect on VPA-exposed animals (p<0.05, Bonferroni
post-test) (Fig. 2C).

Tail-flick test
Animals from the VPA group presented a higher nociceptive threshold than the Control group
(F (1, 28) = 7.25, p = 0.012). There was a significant group by drug interaction (F (1, 28) =
11.19, p = 0.002). Treatment with CPX enhanced the nociceptive threshold of Control mice
(p<0.05, Bonferroni post-test). No effect was detected in VPA animals after treatment with
CPX (Fig. 3).

Marble Burying test
We assessed the effect of CPX on marble burying activity (Fig. 4). The VPA group buried
significantly more marbles than the Control (F (1, 28) = 6.12, p = 0.020), consistent with an
increase in repetitive behavior. There was a significant group by drug interaction (F (1, 28) =
9.73, p = 0.004). Marble burying was significantly reduced in VPA-exposed mice treated with
CPX compared to VPA animals that received only SAL (p<0.01, Bonferroni post-test). Howev-
er, no difference was detected between Control animals treated with SAL and treated with
CPX.

Discussion
The H3R antagonists are considered promising alternative treatments for different brain disor-
ders, such as SCH, Alzheimer’s disease and narcolepsy [19]. The present study investigated, for
the first time, the effects of the H3R antagonist CPX on a mouse model of autism based on

Figure 3. The effect of H3R antagonist CPX on thermal nociceptive threshold. Animals were restrained
by hand and the nociceptive threshold was measured three times with intervals of 30 s, in order to calculate
mean values. Figure shows mean� SEM. (*p<0.05). Control (n = 8), VPA (n = 8), Control +CPX (n = 8),
VPA+CPX (n = 8).

doi:10.1371/journal.pone.0116363.g003
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prenatal exposure to VPA. We demonstrated CPX efficacy in attenuating impaired social
behavior and stereotypies in VPA mice.

In the three chambers test, sociability is the propensity to spend time exploring an unfamil-
iar animal, as compared to time spent exploring an object. Treatment with CPX normalized
the impaired sociability displayed by animals from VPA model, since these animals presented
a SI similar to Control group. Most of the studies about H3R antagonist and social behavior are
focused on social memory [26], a parameter that is also altered in ASD [27], and this experi-
ment is the first one to assess the effects on sociability. The mechanism by which this improve-
ment was acquired is not clear, but it might be involved with the capacity of H3R antagonists
to mediate the release of different neurotransmitters besides histamine, such as dopamine,
serotonin and acetylcholine, in specific brain areas [28]. Assessing the levels of different neuro-
transmitters in brain structures of the VPA model, as well as in VPA animals treated with
H3R antagonists, would help to understand which neural circuits could be involved in this
behavioral improvement.

No effect of CPX was detected in the social novelty assessment. That was unexpected, since
CPX is able to improve object recognition in chronically stressed rats, abolishing the memory
deficits [29]. In an opposite manner, it was demonstrated that when H3R is activated by the
agonist imetit, consolidation of object recognition memory is impaired [30]. In addition, H3R
antagonist treated rats, of an animal model of SCH induced by PCP exposure, tend to pursue
social novelty. In this particular study, control rats presented a novelty discrimination index
(ratio of the time spent investigating an unfamiliar subject divided by the time spent investigat-
ing the familiar one) 3.5 times greater than adult rats neonatally pretreated with PCP. Treat-
ment with SAR110894, a H3R antagonist, dose-dependently normalized this altered behavior
[24].

The difference between Griebel et al. results and ours, regarding social novelty, could be
explained by different reasons. 1) the discordance in the method used to evaluate the prefer-
ence for social novelty (Griebel et al. used a sequential presentation of known and novel animal,
instead of the three chambers test); 2) the differences in rodent species (Griebel et al. tested
rats); 3) differences between the actions of SAR110894 and CPX at the given doses and 4)
divergence between the physiological mechanisms underlying the social novelty discrimination
deficits in these two models. In this regard, it is interesting to note that the social novelty

Figure 4. The H3R antagonist CPX attenuates elevated repetitive behavior in mice exposed to VPA in
utero.Repetitive marble burying behavior was measured after a 10 minute testing session. VPAmice
demonstrated elevated stereotyped, repetitive behaviors that were significantly reduced by CPX. Figure
shows mean� SEM. (*p<0.05, **p<0.01). Control (n = 8), VPA (n = 8), Control +CPX (n = 8), VPA+CPX
(n = 8).

doi:10.1371/journal.pone.0116363.g004
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discrimination impairments in VPA animals could be mediated by factors other than cognitive
deficits. For example, VPA-exposed animals seem to present olfactory deficits at postnatal
day 10 that could impair olfactory learning, which is important for social recognition [31].

The fact that histamine reduces nociceptive transmission when injected into the brain has
been known for some time [32]. This was a reason to believe that enhanced histamine release
mediated by H3R antagonists could lead to an analgesic effect. Factors like the dose utilized
and how the drug is delivered play a determinant role in the efficacy of H3R antagonists on
modulating nociceptive threshold. Central application of H3R antagonist thioperamide
increased nociceptive threshold in a partial nerve-ligation model, while systemic application
reduced it [33]. In addition, low systemic doses (1–5mg/kg) of thioperamide were not able to
produce an analgesic effect in mice on the hot plate test [34,35]. On the other hand, higher
doses (5–30 mg/kg) of the same drug were able to increase the nociceptive threshold [36,37].

Recently, CPX and pitolisant, another H3R antagonist, were tested in mice to evaluate
thermal nociceptive thresholds. A high dose of pitolisant increased the thermal pain threshold,
while CPX (10 mg/kg) produced no effect. The authors suggested that this effect of pitolisant
on heat responses was independent of H3R [38]. In the present study, we tested a lower dose of
CPX (3 mg/kg), and different effects were detected on the tail-flick test in Control and VPA
groups. Contradictory results are found in the literature about pain sensitivity and ASD,
therefore, it is a consensus that not all children with ASD react the same way to pain. Generally,
the VPA model of autism shows less sensitivity to pain [6], similar to what was found in this
study.

The widespread distribution of H3R on fibers throughout the brain and spinal cord,
mediating different physiological processes, and the different structures and pharmacokinetic
properties of the H3R antagonists, might explain the contradictory findings regarding H3R
antagonism and nociception.

In the 80’s, the use of L-histidine, a precursor of brain histamine, modified the methamphet-
amine (MET)-induced stereotypy in mice [39]. Later, it was verified that treatment with an
inhibitor of histamine synthesis, α-fluoromethylhistidine, would cause a contrary effect, en-
hancing stereotyped behavior [40]. Recently, a likely involvement of the histaminergic system
in the pathophysiology of Tourette syndrome, a condition common among patients with ASD
and featured by stereotypies, has been hypothesized. A premature termination codon (W317X)
in the L-histidine decarboxylase (HDC) gene, the rate-limiting enzyme in histamine biosynthe-
sis, was detected in patients with this syndrome, implying that diminished histaminergic
neurotransmission could be related to the outcomes of this syndrome [41].

In the present study, VPA mice treated with CPX displayed a reduced repetitive behavior
in the marble burying test. Stereotypy and behavior rigidity are widely known as core and
defining features of ASD. There are contradictory reports about the efficacy of H3R antagonists
on suppressing these impairments. It was reported that CPX (3 mg/kg) was able to suppress
locomotor sensitization induced in mice by MET. In addition, sensitization by MET also led to
a decrease of N-methyl-D-aspartate (NMDA)-receptor subunit 1 (NR1) mRNA in the cerebral
cortex, hippocampus and striatum. The treatment with CPX restored the normal levels of NR1
mRNA [42]. Interestingly, knockout of NMDA receptors, including NR1, in parvalbumin
interneurons generates autistic-like phenotypes [43]. On the other hand, no improvements or
even exacerbation of hyperactivity were reported after treatment with H3R antagonists in
stereotypies of rats [44].

Since it is clear that VPA negatively affects the glial and neuronal development in this
model [45,46], and CPX was administered just prior to the behavioral testing, it is unlike that
we detected a total reversal in the autistic-like behaviors. At this time point, many of the
changes that occurred during the CNS development (such as the deficits in migration,
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proliferation and network-establishment) reached a state of functional equilibrium and
theoretically could not be easily modified. Nevertheless, a single application of CPX is already
enough to improve behavioral deficits. This fact supports the hypotheses that at least some of
the main clinical alterations present in ASD could be attenuated even in a late time stage.

In summary, we report that an acute dose of CPX is able to attenuate at least some sociabili-
ty deficits and stereotypies present in the animal model of autism induced by VPA. More
research is still necessary to corroborate and expand this initial data, and to contribute to
generate a better understanding of ASD pathophysiology and management.
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