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Introduction

Refractory period (RP) determines an excitable mem-
brane’s recovery time (Hodgkin and Huxley 1952b).

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society.

Abstract

Refractory period (RP) plays a central role in neural signaling. Because it lim-
its an excitable membrane’s recovery time from a previous excitation, it can
restrict information transmission. Classically, RP means the recovery time
from an action potential (spike), and its impact to encoding has been mostly
studied in spiking neurons. However, many sensory neurons do not commu-
nicate with spikes but convey information by graded potential changes. In
these systems, RP can arise as an intrinsic property of their quantal micro/
nanodomain sampling events, as recently revealed for quantum bumps (single
photon responses) in microvillar photoreceptors. Whilst RP is directly unob-
servable and hard to measure, masked by the graded macroscopic response
that integrates numerous quantal events, modeling can uncover its role in
encoding. Here, we investigate computationally how RP can affect encoding
of graded neural responses. Simulations in a simple stochastic process model
for a fly photoreceptor elucidate how RP can profoundly contribute to non-
linear gain control to achieve a large dynamic range.

During RP, the membrane patch cannot respond to exter-
nal stimuli, no matter how strong these are. Thus, RP can
restrict a neuron’s firing patterns (Adrian & Zotterman,
1926) and information transmission capacity; or, how
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Refractory Period Provides Nonlinear Gain Control

many different stimulus patterns it can encode as differ-
ent in a unit of time (Juusola et al. 2007). But it remains
less clear whether or how RP exchanges this loss in capac-
ity to some other encoding benefits.

The neural encoding of sensory stimuli is most com-
monly investigated for action potential responses, using
either the classic “rate code” or “time code” concepts
(Gautrais and Thorpe 1998; van Rullen and Thorpe 2001;
Brette 2015), each of which considers the role of RP dif-
ferently. In the “rate code” (Adrian & Zotterman, 1926),
RP would limit a neuron’s average firing rate and, thus,
its encoding performance. Conversely, in the “time code,”
the precise spike timing relations convey the message, and
RP would affect spike timing reliability (Berry and Meis-
ter 1998; Avissar et al. 2013).

However, many sensory neurons, such as retinal pho-
toreceptors, crustacean stretch receptors and vertebrate
hair cells (Roberts and Bush 1981), use graded potentials
to encode fast and large stimulus changes. This requires
powerful adaptation, which continuously adjusts their
sensitivities to environmental changes. In fly photorecep-
tors, refractory quantal sampling of light changes facili-
tates encoding of salient stimuli over the full diurnal
range (Song et al. 2012; Juusola et al. 2015). And in all
neurons, graded signals further communicate quantal
transmitter release during synaptic transmission (Juusola
et al. 1996, 2007; Debanne et al. 2013). Refractoriness
could thus contribute importantly to adaptive regulation
of quantal events in small signaling compartments (Ste-
vens and Wang 1995; Hardie 2012). Meaning that, instead
of RP just adapting action potential firing patterns,
another type of RP may have already adapted the sub-
threshold signals that drive them.

In this study, we use a simplified fly photoreceptor
model to elucidate how RP can provide generic nonlinear
gain control to graded potential neurons. A fly photorecep-
tor is a classic graded potential system for studying neural
representation of environmental signals (Weckstrom 1989;
van Hateren 1997; Juusola and Hardie 2001a,b; Song et al.
2012). It can transduce vast environmental light intensity
changes (~10 log units; photons/sec per um?) into graded
macroscopic responses within its limited (40-65 mV) out-
put range (Juusola and Hardie 2001la,b; Juusola et al.
2016), achieving a much larger dynamic range than man-
made sensors (Song et al. 2012; Song and Juusola 2017).
Owing to Drosophila genetics and accessibility of electro-
physiological experiments (Hardie and Juusola 2015),
much is known about phototransduction in microvillar
photoreceptors, enabling mechanistic investigations into
adaptation.

A detailed biophysical fly photoreceptor model can
accurately mimic how its real counterparts encode light
stimuli (Song et al. 2012; Song and Juusola 2014; Juusola
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et al. 2016). A fly photoreceptor’s light sensor, the rhab-
domere, is composed of 30,000-90,000 microvilli (photon
sampling units), each of which absorbs photons stochasti-
cally. Each microvillus contains a full G-protein-coupled-
receptor (GPCR) signaling pathway, capable of adaptively
transducing absorbed photons into quantum bumps
(QBs: single photon responses). Because of local negative
feedbacks inside its GPCR signaling pathway, the
microvillus stays refractory (inactivated) for about
100 msec after producing a QB, during which it cannot
respond to new photons (Hardie 2012). Finally, QBs from
all microvilli sum up the macroscopic light-induced-cur-
rent (LIC) response. Thus, through the “stochastic adap-
tive quantal information sampling” scheme, the model
generates realistic neural responses to environmental light
changes. Simulations have shown that RP (1) can intrinsi-
cally arise from neural sampling of quantal events, and
(2) contributes to achieving a large dynamic range (Song
et al. 2012; Song and Juusola 2014; Juusola et al. 2015).
Here, we reduce the biophysical photoreceptor model into
a generic stochastic process model with only four parame-
ters, and derive some theoretical results from this mathe-
matical analysis.

Despite its simplicity, the new model makes a useful
tool for characterizing how RP affects neural sampling
and summation of quantal events at different light (stim-
ulus) conditions. Because photon arrival rate to an indi-
vidual microvillus changes proportionally with light
intensity, its average inter-photon-intervals can either be
longer or shorter than the average RP. In dim conditions,
RP cannot restrict encoding; as photons arrive sparsely,
the inter-photon-intervals are much longer than their
refractory periods and all photons are transduced to QBs
(100% quantum efficiency, QE). But with brightening,
more photons are lost to RPs and the QE reduces nonlin-
early. Thus, by reducing sensitivity in proportion to back-
ground light intensity, RP represents a fast automatic
adaptation mechanism, which enables fly photoreceptors
to maintain vision over a large dynamic range (see also:
Juusola et al. 2015; Song et al. 2012).

Our new results define the theoretical bounds for such
adaptation, and show how it depends on the statistical
RP properties. Because refractoriness is likely a ubiquitous
biophysical phenomenon, affecting different stages of neu-
ral signaling, from single channel dynamics to synaptic
transmission (Stevens and Wang 1995), these results also
shed new light on how it may contribute to adaptation in
other graded potential neurons.

Model

We constructed a simple stochastic process model of
microvillar  phototransduction, having only four

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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biophysical parameters. The model maps the light input, I
(t) (a dynamic influx of photons) into the graded macro-
scopic LIC, C(t) (Fig. 1A). Here, for simplicity, we focus
upon steady-state responses to light intensity steps of
known absorbed photon counts (#photons/sec).

In the model, incoming photons are stochastically dis-
tributed to 30,000-90,000 microvilli (photon sampling
units; Fig. 1B). With this many sampling units, each
microvillus will only absorb a photon sequence, which
can be approximated by a Poisson point process
(Fig. 1C). The absorbed photons in each microvillus are
transduced into a sequence of QBs (Fig. 1E). The QB
generation success depends upon whether the microvillus
is in a refractory state, as all the photons absorbed by
refractory microvilli will be lost. QBs from all the micro-
villi integrate the dynamic macroscopic LIC (Fig. 1F), as
governed by four biophysical parameters (Juusola and
Hardie 2001; Song et al. 2012): (1) the total number of

Refractory Period Provides Nonlinear Gain Control

microvilli; (2) the sample size (QB waveform); (3) the
latency distribution (time delay from a photon absorption
to a QB emergence (Fig. 2)), and (4) the refractory per-
iod distribution (microvillus recovery time after a QB).
Next, we formulate these terms mathematically.

As light information is quantal, communicated by
stochastic photon arrivals, the phototransduction begins
with photon absorptions within the microvillus popula-
tion. We assume that all incoming photons are absorbed,
and all microvilli absorb their photons independently
with equal probabilities. Under this assumption, photon
absorptions by the nth microvillus are modeled as a Pois-
son point process (Eq. 1).

L(t) = du(t — 1) (1)

k=1

00

where f, K= 1,2 ... . are the successive photon arrival
instants, and J(t - t;) is Dirac’s delta function that is
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Figure 1. Fly phototransduction model schematic. (A) The phototransduction takes place in the rhabdomere, which transduces light input

(a dynamic flux of photons) into macroscopic output, light-induced current (LIC). (B) The rhabdomere contains 30,000 microvilli (blue bristles),
acting as photon sampling units. (C) Photons are randomly distributed over the 30,000 microvilli. Because of the large microvillus population,
each of them will only absorb a photon sequence, which can be approximated by a Poisson point process (each row of open circles indicate a
photon sequence absorbed by a single microvillus over time). (D) The light input (green trace) can be reconstructed by adding up all the
photons distributed across the 30,000 microvilli. (E) The successfully absorbed photons in each microvillus are transduced into QBs (a row of QB
events). In each microvillus, the success of transducing a photon into a QB depends upon whether the microvillus is in its refractory state. The
photons hitting a refractory microvillus cannot evoke QBs, but will be lost. (F) QBs from all the microvilli integrate the dynamic macroscopic LIC.

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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Figure 2. Schematic of photon sequence and QB sequence in a microvillus. H denotes the photon arrival intervals. L is the latency in
converting a photon to a QB and R is the refractory period after a QB. D is the bump duration and S the minimum inter-QB-intervals, i.e. any
photons that arrive during S will be lost. S can be calculated as the summation of L, D and R. /'is the waiting time for the next photon arrival.
Depending the relationships between H and S, inter-QB-intervals, T, can be approximated by different quantities. If Hk>Sk, then Tk = Hk or Tk

Lk + Dk + Ik, otherwise, Tk = Sk+Ik.

zero, except at time #.The event time ensemble {#} is a
Poisson point process (Song et al. 2016).

Conversely, we assume that each microvillus transduces
its absorbed photons to QBs, independent of the other
microvilli. The QB sequence can be written as:

Calt) = hBi(t —by) (2)
=1

where B(t) is the QB waveform, in which maximum value
is normalized to one. For simplicity, we assume that every
QB has a uniform waveform, with a fixed amplitude h
and duration D. {b;} denotes the QB recurrence times,
with this ensemble exhibiting stochastic variations.

From Egs 1-2, the transformation from {f} to {b;} is a
key factor that determines the relationship between I,,(¢) and
C,(t). Two rules govern the transformation from {#} to {b;}:

In a microvillus, a photon evokes a QB after a short
delay, L (latency), which represents the molecular pho-
totransduction cascade reaction time.

Following a QB, the microvillus is inactivated for a RP.
During this dead-time, R, another QB cannot be
evoked, even though the microvillus may absorb other
photons then. Hence, a photon can only trigger a QB
when the microvillus is not refractory.

To reflect the stochasticities, inherent to the photo-
transduction cascade, both the latencies and dead-time
are independent and identically distributed (i.i.d.) ran-
dom variables, defined by their own distributions. For
mathematical convenience, we assume that both L and R
follow gamma distributions. This is also suggested by the
experimentally derived latency distributions (Juusola &
Hardie, 2001a,b). In this way, {b;} is a stochastic renewal
process, rectified from the Poisson point process {f} with
variables L and R. C,(t) is then a shot noise process,
formed by convolving {b;} with B(t).
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Lastly, summation of QBs from all the microvilli produces
the macroscopic LIC. Mathematically, this summation repre-
sents a superposition from many shot noise processes C,, (1):

C(t)=>_Cult) (3)

where N is the photoreceptor’s total microvillus count
(the number of sampling units).

Results

We define a photoreceptor’s input-output gain as the
ratio between the expected C(t) and I(t), denoted E(c) and
E(I), respectively, and ask how this ratio changes at differ-
ent light intensity levels. For analytical simplicity, we use
the quantum efficiency (QE) to approximate a normalized
version of this ratio at steady state. QE measures the pro-
portion of photons that are successfully transduced to
QBs (the total QB number, Nqg, divided by the total
number of absorbed photons,N,,, over a time period of
Tt; Eq. 4). Because one photon can maximally evoke one
QB, the QE is always <1 and acts as a gain factor between
a photoreceptor’s light input and neural output.
Assuming that all microvilli absorb and transduce pho-
tons independently with equal probabilities, both the pho-
ton arrival and QB rates will be the same for every
microvillus. So we can approximate a photoreceptor’s QE
by that of its single microvillus, which is the ratio between
its QB rate (v) and its photon-absorption (4) rate. This
photon-absorption rate is the light intensity divided by the
number of microvilli, 1 = %, while the average QB rate of
a microvillus is the reciprocaﬁ of its mean inter-QB-interval,
E(Ty). As the photon arrivals (absorption) are stochastic,
the inter-QB-interval is also a stochastic variable, in which
expectation can be calculated from its distribution.

QE = Nov _ No/Tt _ Now/Tt/Ny _ v _Fw
Npn Npw/Tt  Np/Tt/N, 4 ED
f

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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In Eq. 4, all the variables are known quantities, except
the inter-QB-interval expectation, E(Ty). Thus, we will
first derive Ty’s distribution. For analytical convenience,
we also define other relevant stochastic variables:

Hy denotes the successive photon arrival intervals
(Hy = fi + 1-1;). Because {f} is a Poisson point process,
{Hy} are ii.d. random variables with the same exponen-
tial probability density functions (p.d.f.) that are indepen-
dent of k (Miller 1965): f;, (t) = de™*.

Ty denotes the inter-QB-intervals (T\=by.;-by). We assume
that Ty are ii.d random variables with the same p.d.f.

Ly is the latency (delay) between a photon arrival and
its QB emergence. We assume that L, follows a gamma
distribution.

Dy is QB duration. In reality, Dy should be a stochastic
variable, but here we assume that Dy has a fixed value.

Ry is the refractory period after a QB. We assume that
Ry also follows a gamma distribution.

Sk is the minimum inter-QB-interval when the photons
arrive before the RP termination:Sy = L;. + Dy + Ry.

I} is the waiting time until the next photon arrival.
Because {ti} is a Poisson point process, I} has the same
exponential probability density function with Hy (Poisson
thinning property (Miller 1965)): f;, (t) = Ae™*. A, repre-
sents the events when Hy > Sy.

The steady-state relationship between I,(f) and C,(f) can
be alternatively studied from {Hg} and {Ty}; similar to
{ti} and {by}. Because here we are interested in the steady
state analysis, we ignore the transformation from ¢, to b;.

Figure 2 illustrates the relationships between the
stochastic variables. Notably, the photon arrival intervals
can either be larger or smaller than the minimum inter-
QB-intervals. We use A to represent the event when the
photon arrival interval is larger than the minimum inter-
QB-interval (Hy > Sy). The inter-QB-interval values, T,
have to be calculated differently, depending on whether A
happens. When the event A is true (Hy > Sy), Ty can be
approximated by the photon intervals (T} = Hy). Since
another QB cannot be excited during a QB, the effective
next photon arrivals must be after LDy (I, starts directly
after D,). Because the T distribution is memoryless, T is
L + Dy + Ix. Conversely, when the event A is true
(Hy < Sy), photons that arrive during S, cannot evoke
QBs and will be lost (Fig. 2, 2nd blue dot). Under these
circumstances, the next effective photon arrivals are after
Sk = Ly + Dy 4 Ry (I; starts after R;), and Ty is the sum-
mation of Sy and Iy. Eq.5 formulates Ti:

if A: Hi > S
if A H <S¢

Ly + Dy + I

Ty = 5
¢ {Lk+Dk+Rk+Ik’ )

We then further assume that I, L;, Hy, Rj are statisti-
cally independent for 0 < k<oo, and their respective

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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p.d.f.s are all independent of k. Thus, fr(t), the p.d.f. of
Tk, can be derived as:

fr(t) = frep+1()F(A) + fs11(t) (1 — F(A)) (6)
where f,,;(t) is the p.d.f. for the sum of S and I. S + I
has the p.d.f.:

foes(e) = F(0) i) /ﬁt—rﬁ )
which is a convolution between fs ) and fI - (0
calculated as the convolution between fL , o(t)
F(O=fL(O)*fp()*fr(t). Likewise, fripyi(t) is the convolutlon
between fi(8), fp(®) and fi(t): frupsi= fil*fold)*fi(0)
For simplicity, we ignore the stochastic QB waveform varia-
tions by assuming that the QB waveform B(t) is invariable.
Then the p.d.f for D (QB duration) is the Dirac delta func-
tion that is zero except at value D: fp(t) = (¢ - D)

Both H and I follow exponential distributions, with the
same p.d.f. (Poisson thinning properties): fy(f) =
fi(t) = Je ™. We further assume that both L and R are

gamma-distributed, /(a, b), with the corresponding p.d.f.:

can be

and fR

batu—le—bt

f(t,a,b):w

t,a,b>0 (8)

where a and b are the shape and rate parameters, respec-
tively. Eq. 8 defines a QB waveform, B(t). The parameters
for defining B(t), fi(t) and fr(t) (Table 1) were chosen to
be physiologically realistic for mimicking a Drosophila
photoreceptor’s QB dynamics (Song et al. 2012).

F(A) in Eq.6 is the probability for the event A, and it
can be calculated with Eq. 9:

F(A) =

F(H > S)

//fHSdeS
//f S)dHds
- /0 F£(S)ds /5 F(H)dH

:Aﬂmm—mwms

)

Table 1. Parameters for QB waveforms, Latency and Refractory
period (RP) distributions.

B(®) fi(t) fr(®)
a 9 9 9
b 1 3 8

2017 | Vol. 5 | Iss. 11 | 13306
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where Fp(S) is the probability for event H < S. H follows
an exponential distribution (fy(t) = Je™), Fuy(S)=1-¢
s

From Egs 5-9, we can calculate the inter-QB-interval
distribution fr(t). To illustrate how f(¢) compares with
the other distributions in deriving f7(t), Figure 3A shows
the p.d.f.s for the different random variables at the light
intensity of 3 x 10° photons/sec per photoreceptor. It is
interesting to notice how the inter-QB-interval distribu-
tion (light grey line) emerges from the photon arrival
interval distribution (blue line).

Both the photon intervals, H, and the next photon arri-
val waiting times, I, follow exponential distributions. The
mean arrival rate, 4, is calculated as the ratio between the
number of incoming photons and the rhabdomere’s
microvillus count (4 = N,,/N,)(Song et al. 2016).

L+D+I gives the inter-QB-interval without a refractory
period, but with a constraint that another QB cannot be
excited before the previous QB terminates (orange line).
Its distribution is convolved from an exponential distribu-
tion and a gamma distribution, where the long tail shows
the exponential distribution component.

S=L+ D+ R (red line) adds the QB generation con-
straints when the event A is true; a second QB can only
be triggered after the first QB’s refractory period. S is the
inter-QB-interval when there are continuous photon
arrivals, thus it represents the lower bound of the inter-
QB-intervals under extreme brightness. In a Drosophila
photoreceptor, S is dominantly determined by R
(~100 msec), which is typically much longer than L and D.

For the photon arrival statistics at the brightest light
condition, S + I (black line) is the inter-QB-interval

A Distributions of related variables
2.0 4

Hl

L+D+1

1.5 1

Time (ms)

0 100 200 300 400 500

Z. Song et al.

distribution; with the exponential I distribution con-
tributing to the corresponding p.d.f’s characteristic long
tail.

Finally, for the presumed normal case at intermediate
light conditions (Fig. 3A, light grey line), the p.d.f. of the
inter-QB-intervals, T, as the weighted sum of L + D + I
and S + I distributions, shows a hump at small inter-QB-
interval values.

Eq. 6 indicates that the inter-QB-interval distribution
adapts with brightening, as shaped by the light input
statistics and the refractory period, respectively. The
weighting parameters are determined by the event A
(H > S) probability, which changes with light conditions.
In dim conditions, the probability for A is nearly one
(100%), and the inter-QB-intervals predominantly reflect
the photon arrival intervals (Fig. 3B, dash and short-dash
lines), with minimal RP contributions. But with brighten-
ing, the probability of A decreases, reducing the light
input while increasing RP contributions so that the inter-
QB-interval distribution loses its exponential long tail,
approaching a gamma-distribution at full daylight
(Fig. 3B, short-dot line).

Using these inter-QB-interval distributions (Fig. 3B),
we calculated the inter-QB-interval expectations and QE
at different light intensities (Fig. 4A). Both decrease non-
linearly with brightening. In dim conditions, photon arri-
vals are so sparse that the mean photon arrival intervals
approach 10 sec, which is much longer than the mean
RPs (~100 msec). In these cases, the QE nears 100% (all
the absorbed photons are transduced to QBs), and the RP
does not affect encoding. With brightening, the inter-QB-
interval reduces roughly linearly until the intensity

B Inter-QB-interval (T) distributions

1.5 1
3x10° photons/s
3x10* photons/s
3x10° photons/s
3x10° photons/s

0 200 400 600 800 1000
Time (ms)

Figure 3. Inter-QB-interval distributions. (A) Probability distributions for different random variables defined. Both the photon intervals, H, and
the next photon arrival waiting time, /, follow exponential distributions (blue line). L + D + | is the inter-QB-interval without a refractory period,
but with a constraint that another QBcannot be excited before a QB termination (orange line). S =L + D + R adds the physical constraint in QB
generation; a second QB can only be triggered after the first QB’s refractory period (red line). If photon arrival statistics is considered, S + / is
the inter-QB-interval at bright light conditions (black line). Finally, the p.d.f. of inter-QB-intervals, T, is the weighted sum from the distributions
of L+ D+ /and S + /. Because of this weighted operation, a hump emerges in T's p.d.f. at small inter-QB-intervals (light grey line). (B)
Adaptation takes place in inter-OB-interval distributions at different light intensities.
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Figure 4. Inter-QB-intervals and QE adapt with brightening. (A) With increased contribution from refractory period (grey), the inter-QB-interval
and QE reduces nonlinearly with brightening (blue and red). In dim light conditions, the mean photon arrival intervals can approach to 10 sec,
which is much longer than the mean RPs (~100 msec). In these cases, refractory period contributes minimal, and QE approaches 100%. As
light intensity increases, inter-QB-interval drops roughly linearly until an intensity that matches the population QB rate (QB rate/microvillus x
#microvilli). In this particular case for a Drosophila photoreceptor, this light intensity is 3 x 10> photons/sec, replicating living room day light
conditions. It is also at this light condition that RP start to play an important role in tuning the system'’s gain (contributions over 50%), leading
a sharp drop in the QE. As it becomes brighter, inter-QB-interval approaches to its limit, where RP is the dominating factor (>90%). The QE
drops to 8% at the outdoor overcast light intensity (3 x 10° photons/sec). When the light intensity increases to 1 x 10° photons/sec (bright
daylight), the QE can even drop to 0.26%. (B) The reduction rate of QE versus brightening is highly dependent on the statistical properties of

refractory periods. We only tuned parameter b for the gamma distribution of refractory periods, and kept parameter

DD

the same as shown in

Table 1. With increasing b, the mean of refractory periods (mRP) increases, and the rate of QE reduction goes up.

matches the population QB rate (QB rate/microvillus x
#microvilli). For a Drosophila photoreceptor, the QE falls
sharply at this light intensity (3 x 10°> photons/sec
~brightly illuminated room) as the RP starts to affect the
system’s gain considerably (contributing > 50%). With
further brightening, the inter-QB-interval approaches its
limit and the RP becomes the dominating factor (>90%).
The QE falls to 8% at the outdoor overcast light intensity
(3 x 10° photons/sec). When the light intensity is
1 x 10® photons/sec (bright day shade), the QE falls to
0.26%. Notice, however, that because of the intracellular
pupil mechanism and other photomechanical adaptations
(Juusola et al. 2016; Juusola and Song 2017), a Drosophila
photoreceptor would likely never directly face this intense
light. Nonetheless, these simulations are useful in defining
the bounds for how much the RP can limit the QB pro-
duction rate at daylight conditions, suggesting that a
~500-fold gain reduction would be possible. Thus, by los-
ing photons with brightening to refractory microviili, QE
is reduced automatically, enlarging the system’s dynamic
range.

Predictably, a photoreceptor’s gain regulation depends
upon the statistical refractory period properties. To show
this, we tuned parameter “b” for the RP gamma distribu-
tion, and kept “a” the same as in Table 1. With increas-
ing b, the mean of refractory period (mRP) increases, and
QE reduces quicker (Fig. 4B).

Finally, we mention that photons can be lost over two
periods: during a QB and in the following refractory per-
iod. To further quantify how these losses affect the steady
state response, we compared the simulated LICs with and

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.

without RP to a 5 sec light step (Fig. 5A, bottom). In
dim light (Fig. 5A, middle), RP plays no role, and the
LICs with and without it have similar amplitudes. In
bright light (Fig. 5A, top), RP reduces the steady state
LIC response by half, tuning the system gain nonlinearly.
Thus, if all photons were transduced to a stereotyped QB,
the Intensity-LIC relationship would be linear (Fig. 5B
black). But with photons lost during the QB, the inten-
sity-LIC relationship reduces (Fig. 5B, blue), and with a
RP lasting over the QB, the gain reduces even more with
brightening (Fig. 5B, red).

Discussion

We tested by modeling how refractory period can impact
sampling and integration of quantal events in a prototypi-
cal graded potential neuron. The simulations were run by
a simple stochastic process model for the fly phototrans-
duction, which combined probabilistic photon-QB con-
versions with a RP after each QB. We then derived the
inter-QB-interval distributions and quantified the system’s
gain by calculating QE. Because the inter-QB-intervals
were calculated differently, depending on whether the
next photons arrived before or after the RP termination,
the role of RP in adaptation became clear. The results
quantified how RP provide an automatic gain control, the
strength of which depends upon both the light stimulus
and RP statistics.

Using physiologically realistic parameters for the rele-
vant stochastic variables, our results imply that RP cannot
affect encoding at dim light; with a fly photoreceptor
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Figure 5. Comparison of steady state LIC, modeled with and without RP. (A) Simulated LIC with and without RP after QB. 5 sec light step was
the input (bottom), and the mean steady state LIC the output. In dim light (middle), RP plays no role, and the LICs with and without RP have
similar amplitudes. In bright light (top), RP reduces the steady state response by half, tuning the system gain nonlinearly. (B) If all photons were
converted to a stereotyped QB, the Intensity-LIC relationship would be linear (black). However, with photons lost during the QB, the intensity-
LIC relationship reduces at bright conditions (blue). With a further RP after QB, the gain reduces more with brightening (red).

maintaining 100% QE. But with brightening, RP reduces
the QE nonlinearly. Theoretically, the QE could fall to
0.26% at very bright light, meaning that RP would have
reduced the system’s gain by 500-fold. Thus, with the
refractory microvilli discarding excess photons, the sys-
tem’s dynamic range is enlarged automatically and exten-
sively (see also Song et al. 2012).

However, RP is not the only mechanism that helps to
extend a photoreceptor’s dynamic range. Other mecha-
nisms include the intracellular pupil; QB size adaptations;
variable QB latencies; nonlinear shunting by voltage-gated
conductances; and photo-mechanical rhabdomere con-
tractions (Juusola et al. 2016). These were ignored here,
as our aim was not to replicate photoreceptor responses
but to quantify how neural gain control can emerge from
RP.

The relationship between RP and scaling in neuronal
action potential encoding has been discussed in earlier
studies. For example, how RP affects action potential fir-
ing in the cat retinal ganglion cells (Teich et al. 1978)
and auditory nerve fibers (Li and Young 1993) has been
analyzed from the digital spike-code perspective. It was
suggested that the spike generator in the ganglion cells
could be the main retinal site where refractoriness
shapes encoding (Teich et al. 1978). Interestingly, how-
ever, our recent (Song et al. 2012; Song and Juusola
2014) and new results imply that RP can already shape
neural responses to visual stimuli at the first stage of
light information sampling and processing - well before
any spike-coding. Based on the profound benefits
stochastic refractoriness provides for encoding fast and
large stimulus changes, including amplitude normaliza-
tion and antialiasing (Song et al. 2012; Juusola et al.
2015, 2016), we speculate that it, in fact, might be a
generic biophysical sampling property for micro/
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nanodomain quantal events. For instance, theoretically, a
large population of refractory mechanosensitive ion
channels can rapidly and reliably reproduce the electrical
behavior of a mechanoreceptor (Song et al. 2015). Thus,
RP may not only affect neural firing, but its impact on
encoding should also be considered in sub-threshold
signals.

Importantly, the refractory period in QB production
differs mechanistically from that of the spikes. In the
giant squid axon, the RP in action potential production
originates from the recovery phase K'-current (Hodgkin
and Huxley 1952a), whereas the fly photoreceptors’ RP is
an intrinsic property of their microvillar phototransduc-
tion cascades, driven by Ca*' feedbacks (Song et al.
2012). Furthermore, in spiking neurons, one can distin-
guish the absolute and relative refractory period by their
different physiological properties. The absolute refractory
period typically refers to the Na*-channel inactivation
period, during which a new spike cannot be triggered by
any stimuli. But during the relative refractory period,
when the inward Na'-currents is shunted by opposing
K'-conductances, new spikes can be triggered by stronger
stimuli. Conversely, the refractory period after a QB is
always absolute; with QBs being all-or-none responses,
there is no concept of “relative” RP.

In spiking neurons, the concept of gain control is
characteristically viewed through Hodgkin-Huxley (HH)
formalism by modeling voltage-gated conductances on
the cell membrane. There, Shunting inhibition is consid-
ered the primary mechanism for adaptation (Blomfield
1974), with additional contributions from noise (Prescott
and de Koninck 2003; Dunn and Rieke 2006), dendritic
saturation (Prescott and de Koninck 2003) and synaptic
inputs (Chance et al. 2002). However, in graded potential
systems, many biophysical mechanisms shape the

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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elementary quantal events adaptively (their shape, RP
and stochasticity) (Song et al. 2012, 2015, 2016; Song
and Juusola 2014; Juusola et al. 2015). These mechanisms
are governed by biochemical networks upstream of spike
production, and thus are concealed from HH-models.
More detailed biophysical approaches, both for computa-
tional simulations and theoretical analysis, are required
to assess how adaptive quantal event dynamics affect the
systems level gain control. We hope that our results
could be valuable also for understanding adaptive
dynamics in synaptic transmission and in network func-
tions (Carrillo-Medina and Latorre 2015). After all, signal
integration from a large population of refractory synapses
or refractory neurons is conceptually similar to the large
microvillus population.
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