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for Everyone? Inter-individual Variation in Caffeine
Ergogenicity, and a Move Towards Personalised Sports Nutrition
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Abstract Caffeine use is widespread in sport, with a
strong evidence base demonstrating its ergogenic effect.
Based on existing research, current guidelines recommend
ingestion of 3-9 mg/kg approximately 60 min prior to
exercise. However, the magnitude of performance
enhancement following caffeine ingestion differs substan-
tially between individuals, with the spectrum of responses
ranging between highly ergogenic to ergolytic. These
extensive inter-individual response distinctions are medi-
ated by variation in individual genotype, environmental
factors, and the legacy of prior experiences partially
mediated via epigenetic mechanisms. Here, we briefly
review the drivers of this inter-individual variation in caf-
feine response, focusing on the impact of common poly-
morphisms within two genes, CYPIA2 and ADORAZ2A.
Contemporary evidence suggests current standardised
guidelines are optimal for only a sub-set of the athlete
population. Clearer understanding of the factors under-
pinning inter-individual variation potentially facilitates a
more nuanced, and individually and context-specific cus-
tomisation of caffeine ingestion guidelines, specific to an
individual’s biology, history, and competitive situation.
Finally, we identify current knowledge deficits in this area,
along with future associated research questions.
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Key Points

There is substantial variation between individuals
when it comes to the performance improvement seen
following caffeine ingestion in sport.

These differences are mediated, in part, by genetic
variation between individuals.

Knowledge of this variation could lead to the
development of improved caffeine usage guidelines
for athletes.

1 Introduction

1,3,7-Trimethylxanthine (caffeine) is one of the most
widely used performance enhancing drugs. Between 1984
and 2004, caffeine was banned for in-competition use,
although only at very high doses (12 pg mL™"). Never-
theless, this did not deter athletes, with research demon-
strating that 74% of samples tested via the anti-doping
process contained measurable levels of caffeine [1]. Since
the removal of the ban, caffeine use has remained consis-
tent, with measurable levels found in 74% of samples
between 2004 and 2008 [2], illustrating that the use of
caffeine is widespread in athletic populations.

The performance enhancing effects of caffeine have
been known for over 100 years [3]. These effects are well
replicated in both endurance-based activities [4] and
repeated high-intensity efforts [5]. Similarly, caffeine
appears to have a positive effect on muscular endurance
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[6-8], whereas its impact on maximum strength is less
clear [9-11].

Caffeine exerts its ergogenic effect via several different
proposed mechanisms. Within the central nervous system
(CNS), caffeine acts as a competitive adenosine receptor
antagonist [12], thereby reducing adenosine’s downregu-
lation of arousal and nervous activity [13]. Additionally,
the binding of caffeine to adenosine receptors increases
neurotransmitter release and muscle firing rates [14]. Caf-
feine also stimulates adrenaline secretion [15], alters sub-
strate utilisation [16], increases cellular ion release [17],
and decreases pain perception [18, 19], all of which can
improve exercise performance.

Elevated caffeine concentrations appear in the blood-
stream as quickly as 15 min post-ingestion, peaking after
about 60 min, with a 3- to 4-h half-life [15]. Caffeine is
primarily metabolised in the liver, almost exclusively by
cytochrome P450 enzymes, into paraxanthine, theo-
phylline, and theobromine [20]; these in turn may mediate
some of caffeine’s performance enhancing effects [15].
There remains the possibility that caffeine metabolism also
occurs within the CNS, although this has been primarily
studied in animal models [21]. There is also evidence of
cytochrome P450 expression and activity within the CNS,
raising the possibility that localised CNS caffeine meta-
bolism is partially mediated by these enzymes [22].
However, overall, the pharmacokinetics of caffeine meta-
bolism within the human CNS are poorly understood at
present.

Typically, generalised guidelines recommend ingestion
of 3-9 mg/kg of caffeine approximately 60 min prior to
exercise, and suggest there are no additional benefits
associated with higher doses [23-25]. However, recent
research has illustrated that ergogenic effects of caffeine
can occur with a wide variety of caffeine doses and tim-
ings. For example, a recent review [26] focused on the
effects of low doses of caffeine (<3 mg/kg) on perfor-
mance enhancement, finding that lower intakes of caffeine
do tend to exert ergogenic effects. However, it is not clear
whether these effects are equivalent to those seen with
doses of 3 mg/kg or above. In relation to optimal timings
of intake, Cox et al. [27] illustrated that 6 mg/kg of caf-
feine consumed 60 min prior to exercise was no more
effective than six doses of 1 mg/kg of caffeine spread
throughout the exercise bout. Accordingly, at least in
some longer duration athletic events, caffeine ingestion
during the event may be advisable. The prevalent use of
caffeine within sport, and the assumed universal appli-
cability of these generalised caffeine guidelines, seem to
suggest there is a standard, predictable response to caf-
feine across individuals. Within this article, we discuss
why this is not the case, and illustrate that, in fact, there is
considerable inter-individual variation in the ergogenic

@ Springer

effects of caffeine ingestion. We also identify the various
interacting causes underpinning this diversity in inter-in-
dividual response. Finally, we propose potential research
questions that, if answered, will facilitate the evolution of
more personalised guidelines for caffeine use within
sporting contexts.

2 Inter-subject Variation in the Response
to Caffeine

Whilst caffeine’s ergogenic effects are clear, the research
findings demonstrating these benefits are conventionally
calculated using the mean cohort responses. Crucially,
these mean responses are considered an accurate estimation
of the likely responses of each individual within the group.
Yet numerous studies over the course of the past 2 decades
illustrate the extent of individual variation commonly
occurring subsequent to introduced interventions. The
magnitude of this inter-individual response is well
demonstrated in studies investigating individual fitness
adaptation response to carefully controlled exercise inter-
ventions [28-30]. Is this also the case when it comes to the
ergogenic effects of caffeine ingestion?

A small number of papers give us some insight into this
question, either by directly studying the inter-subject
variability in response to caffeine, or by publishing indi-
vidual subject data. Jenkins et al. [31] compared the effects
of low caffeine doses (1, 2, and 3 mg/kg) against placebo
on a 15-min maximum cycle in 13 cyclists. The main
finding was that caffeine improved mean performance by
3.9% (2 mg/kg) and 2.9% (3 mg/kg), respectively, versus
placebo, with no improvements in the 1 mg/kg trial. This
suggests that doses of 2 and 3 mg/kg are ergogenic for
endurance performance. However, inspection of the indi-
vidual data demonstrates large inter-individual variation in
these effects. Most subjects exhibited large variations, with
a performance decrement at some doses of caffeine, and
performance enhancement at others. One subject, for
example, did not demonstrate an ergogenic effect at any
dose, whereas four subjects found caffeine ergogenic at all
doses. Similarly, in a randomised, cross-over trial design,
Graham and Spriet [32] put seven runners through tread-
mill and cycle ergometer exercise trials to exhaustion with
either placebo or 9 mg/kg of caffeine. The caffeine dose
significantly improved time to exhaustion for all subjects,
but there was a large variation in the magnitude of this
effect, with the caffeine trial lasting between 105 and 250%
of the placebo trial. Other studies support this variation in
ergogenic response to caffeine supplementation in indi-
viduals, with some individuals showing large improve-
ments, and others no, or even negative, effects of caffeine
supplementation [33, 34].
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3 Why Does this Individual Response Exist?

3.1 The Genetics of Individual Variation in Caffeine
Response

As with other complex phenotypes, individual responses
following caffeine ingestion are polygenic phenomena,
mediated by multiple interacting genes [35, 36]. This does
not mean that it is impossible to determine the genetic drivers
of individual differences, however. For example, habitual
caffeine use is a highly complex trait, but genome-wide
association studies have found single nucleotide polymor-
phisms (SNPs) associated with this behaviour [37]. Such
findings indicate that, whilst genetic differences cannot
explain all the variation, they can at least explain some.
Below, we will examine variation within two genes that may
impact caffeine ergogenicity, including a discussion
regarding the mechanisms underlying this variation.

3.1.1 CYPIA2

The gene CYPIA2 encodes cytochrome P450 1A2, an
enzyme responsible for up to 95% of all caffeine metabo-
lism [38]. A SNP within this gene, rs762551, affects the
speed of caffeine metabolisation. Individuals with AA
homozygotes (“fast metabolisers”) tend to produce more
of this enzyme, and therefore metabolise caffeine more
quickly. Conversely, C allele carriers (“slow metabolis-
ers”) tend to have slower caffeine clearance [39]. The
variable effects of this SNP are most well-established in
regard to health, with myocardial infarction and hyper-
tension risk increased in slow metabolisers consuming
moderate (3—4 cups) amounts of coffee, whilst fast
metabolisers exhibit a protective effect of moderate coffee
consumption [40, 41].

These earlier medical studies prompted research into
how the CYPIA2 polymorphism might modify the ergo-
genic effects of caffeine. Womack et al. [42] put 35 trained
male cyclists through two 40-km cycle time trials, fol-
lowing consumption of either 6 mg/kg of caffeine or pla-
cebo 60 min beforehand (Table 1). There was a significant
effect of CYPIA2 genotype on the ergogenic effects of
caffeine, with AA genotypes (fast metabolisers) (4.9%
improvement) seeing a significantly greater performance
improvement than C allele carriers (slow metabolisers)
(1.8% improvement). Within AA genotypes, caffeine
improved performance by at least 1 min for 15 out of 16
subjects, whilst in C allele carriers only ten of 19 subjects
saw an improvement greater than 1 min. These findings
allowed the authors to conclude that caffeine has a greater
ergogenic effect for CYPIA2 AA genotypes than C allele
carriers.

Since this initial paper, a small number of subsequent
studies have been published. The same group published a
paper hampered by a lack of CC genotypes, putting 38
recreational cyclists through four 3-km time trials under
different experimental conditions: placebo mouth rin-
se + placebo ingestion, placebo mouth rinse + caffeine
ingestion, caffeine mouth rinse + placebo ingestion, and
caffeine mouth rinse + caffeine ingestion [43]. Both AC
(4.1%) and AA (3.4%) genotypes saw performance
improvements in the combined caffeine mouth rinse and
ingestion trial, but only AC (6%) genotypes saw a perfor-
mance improvement in the caffeine ingestion trial. The
conclusion was that AC genotypes saw greater perfor-
mance enhancement with caffeine ingestion, in contrast to
Womack et al. [42]. One potential confounder identified by
the authors was the shorter exercise trial duration (c.5 min)
when compared to Womack et al. [42]. A second potential
confounder is that Womack et al. [42] utilised trained
subjects, whilst Pataky et al. [43] did not. Exercise appears
to increase CYPIA2 expression [44, 45], such that trained
and untrained subjects may metabolise caffeine differently.
Algrain et al. [46] reported no modifying effect of the
CYPIA2 polymorphism on the ergogenic effects of caf-
feine; however, they noted the small subject number
(n = 20), the untrained status of these subjects, and the
lower caffeine dose (approximately 255 mg). Klein et al.
[47] and Salinero et al. [48] found no effect of the CYPIA2
polymorphism on the effects of caffeine on tennis and
Wingate test performance, respectively, although with
modest sample sizes (n = 16 and 21).

Unpublished conference data presented by Guest and
reported by Hutchinson [49] demonstrated that caffeine
ingestion (4 mg/kg) improved 10-km cycle time trial per-
formance by 1.2 min versus placebo in AA homozygotes;
AC heterozygotes saw a 30-s improvement, whilst CC
homozygotes saw a performance decrement of 2.5 min.
Finally, Kingsley et al. [50] examined the interaction of
caffeine (3 mg/kg) and CYPIA2 genotype on a simulated
soccer game. Whilst individual differences in caffeine
response were evident, CYPIA2 genotype did not explain
this variation, potentially due to a lack of statistical power
down to the low subject numbers (n = 10).

At present, the initial Womack et al. [42] paper has not
yet been satisfactorily replicated, with some subsequent
published research finding no impact of the CYPIA2
polymorphism [46], or the opposite effect [43]. These
subsequent papers have, however, tended to involve small
sample sizes, be in untrained subjects, or be void of CC
genotypes, present in approximately 10% of the population
[39]. Further work is required to determine the full effect of
this polymorphism on the ergogenic effects of caffeine on
exercise.
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Table 1 Summary of published studies examining CYP/A2 and ADORA2A polymorphisms and the ergogenic effect of caffeine on performance

Measurement

Primary outcome

Single Study Design Sample Caffeine dose
nucleotide characteristics
polymorphism
CYPIA2 Womack Caffeine vs 35 male 6 mg/kg, 60 min
(rs762551) et al. placebo recreationally prior
[42] competitive
cyclists
Klein Caffeine vs 16 collegiate 6 mg/kg, 60 min
et al. placebo male (n = 8) prior
[47] and female
(n = 8) tennis
players
Pataky Caffeine 38 male 6 mg/kg, 60 min
et al. ingestion, (n = 25) and prior, along
[43] placebo female with 25 mL of
ingestion, (n=13) 1.14% caffeine
caffeine mouth recreational mouth rinse
rinse, placebo cyclists
mouth rinse
Algrain Caffeine gum vs 20 300 mg caffeine
et al. placebo recreationally gum, 10 min
[46] active males prior
(n = 13) and
females
(n=17)
Salinero  Caffeine vs 21 3 mg/kg
et al. placebo recreationally
[48] active males
(n = 14) and
females
(n="7)
ADORA2A Loy et al. Caffeine vs 12 females 5 mg/kg
(rs5751876) [54] placebo

40-km cycle time
trial

Maximal treadmill
exercise test,
tennis skills test

3-km cycle time
trial

15-min steady-state
cycle, 10 min
recovery, 15-min
performance ride
at 75% VOomax

30-s Wingate test

20-min cycle at
60% VOZmaXs
followed by

Caffeine reduced 40-km time
trial time vs placebo by a
greater (p < 0.05) magnitude
in AA vs C allele carriers

No significant impact of
polymorphism on caffeine
ergogenicity

Greater performance
enhancement in AC vs AA in
both caffeine ingestion and
caffeine rinse trials (no CC
genotypes present)

No significant impact of
polymorphism on caffeine
ergogenicity

No significant impact of
polymorphism on caffeine
ergogenicity

Total work increased for time
trial genotypes following
caffeine ingestion vs placebo.

10-min maximum
cycle

There were no improvements
in the caffeine vs placebo trial
for C allele carriers

VO5,4x - maximal oxygen consumption

3.1.2 ADORA2A

A SNP in the adenosine receptor gene ADORAZ2A,
155751876, affects both habitual caffeine use [51] and sleep
disturbances following caffeine use [52, 53]. Currently,
only one pilot study has examined the effect of this SNP on
the ergogenic effects of caffeine [54]. Twelve female
subjects underwent a randomised, double-blinded, cross-
over trial comprising two 10-min time trials following
caffeine ingestion (5 mg/kg) or placebo. The TT
homozygotes found caffeine ergogenic; the C allele carri-
ers tended not to, with only one out of the six C allele
carriers exhibiting an ergogenic effect. These subjects
habitually consumed no caffeine or only low doses of
caffeine (<250 mg/day), so it is not apparent how this
might affect users habituated to higher doses. Subsequent

@ Springer

research is required to replicate these findings, including
within habitual caffeine users.

3.1.3 Potential Mechanisms: A Role for Caffeine Timing?

It is clear that genetic factors exert a large influence on
individual responses to caffeine ingestion, even if these
genetic factors have not yet been well elucidated. The
mechanisms through which this genetic variation modifies
caffeine ergogenicity are also unclear; regarding CYPIA2,
it is speculated it could be due to a more rapid accumu-
lation of caffeine metabolites in AA genotypes, which are
hypothesised to potentially have a greater ergogenic effect
than caffeine itself [42]. If correct, then caffeine timing
becomes important; it might not be that C allele carriers
find caffeine less ergogenic, just that it requires longer for
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caffeine to be metabolised to its ergogenic metabolites.
Given caffeine’s many different mechanisms of action, it is
likely each mechanism has polymorphisms that modify the
ergogenic effect. For example, as caffeine reduces exer-
cise-induced pain [18], SNPs related to pain tolerance
could impact this effect. Similarly, genetic variation in
adenosine receptors (such as polymorphisms within
ADORAZ2A) is similarly promising. In the pilot study car-
ried out by Loy et al. [54], there were a number of
mechanisms proposed by the authors through which
ADORA2A variation might affect caffeine ergogenicity,
including enhanced motivation and motor unit recruitment
in TT homozygotes.

3.1.4 Indirect Impact of Genetic Variation on Exercise
Performance

Genetic variation also likely impacts exercise performance
indirectly. Thomas et al. [55] examined the modifying
effects of the CYPIA2 polymorphism on recovery from
exercise. Whilst overall there was no effect of the poly-
morphism on cardiac markers of recovery, there were
significant differences in the square root of the mean of
squared differences between successive R intervals
(RMSSD) in heart rate variability monitoring. Similarly,
polymorphisms within ADORA2A can predispose individ-
uals to increased anxiety following caffeine ingestion
[56, 57]. This is potentially of interest in individuals who
suffer from pre- and within-competition anxiety, but also to
individuals who may benefit from elevated levels of pre-
competition arousal. ADORA2A polymorphisms are also
associated with increased sleep disturbances following
caffeine ingestion [53], which could impact individuals
involved in evening competitions, or those involved in
tightly spaced consecutive day competitions; here, sleep
disturbances could significantly negatively impact exercise
recovery.

3.2 Environmental Factors Affecting Caffeine
Response

There are also a variety of different non-genetic factors that
can impact caffeine ergogenicity, many of which are con-
trolled for in research. These include habitual use of caf-
feine, with habitual use assumed to potentially reduce the
ergogenic effect of caffeine [58-60], although this finding
is equivocal [61, 62]; perhaps habitual users simply require
higher doses of caffeine to maintain the ergogenic effect.
Other non-genetic factors affect caffeine metabolisation
speed, often by increasing cytochrome P450 activity. These
include smoking [63, 64], dietary vegetable intake [65],
oral contraceptive use [66, 67], pregnancy [68], menstrual

cycle stage [69], training status [44, 45], and hormone
replacement therapy [70]. Other non-genetic, but control-
lable, factors affecting caffeine ergogenicity are related to
the nature of caffeine ingestion, including caffeine dose
[71], source [72-74], age [75], timing [76], time of day
[76, 77], and training status [78, 79].

Finally, expectancy effects influence caffeine
response. Saunders et al. [80] put subjects through time
trials with either 6 mg/kg of caffeine, placebo, or control
(neither caffeine nor placebo). Correct identification of
caffeine ingestion gave a greater relative performance
enhancement than the overall caffeine trial. Similarly,
the belief that caffeine had been ingested in the placebo
trial led to a likely beneficial effect. Correct identifica-
tion of placebo led to possibly harmful effects, with
some subjects showing a performance decrement com-
pared to the control trial. This mirrors results of earlier
research on the expectancy effect of caffeine. For
example, Beedie et al. [81] showed that placebo caffeine
ingestion improved endurance cycle performance in a
dose-response manner, with higher placebo doses leading
to greater performance improvements. Similarly, Pollo
et al. [82] demonstrated that belief of caffeine ingestion
improved time to fatigue in a maximal quadriceps
extension task. When subjects are informed they have
ingested caffeine, it appears to improve performance,
even if they have been deceptively administered a pla-
cebo [80, 83].

It is important to consider that genetics also modify
these environmental factors. For example, habitual caffeine
use itself has a genetic underpinning [84], and certain
genotypes appear to be more sensitive to the effects of
placebo [85].

3.3 Epigenetic Modifiers of Caffeine Response

Epigenetics refers to changes in gene function that occur
without a change in nucleotide sequence [86]. Such chan-
ges can be heritable, but also modifiable over time within
an individual [87]. Caffeine use undoubtedly induces epi-
genetic modifications [88-90], and these epigenetic modi-
fications can impact caffeine clearance by altering
CYP1A2 activity [91, 92]. However, it is not entirely clear
how this might impact caffeine’s ergogenic effects. Long-
term caffeine use potentially leads to habituation through
both increased caffeine clearance (mediated by epigenetic
modifications on cytochrome P450 genes [91]) and a
decrease of excitability caused by caffeine—possibly via
inhibition of genes affecting the dopaminergic and adeno-
sine pathways [93]. Further research is required to establish
the effects of epigenetics on the ergogenic effects of
caffeine.
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3.4 “Non-responder” Versus “Did Not Respond”

Clearly, the individual response to caffeine is complex and
subject to genetic, non-genetic (i.e. environmental), and
epigenetic influences. Given that both environmental and
epigenetic influences are not stable across time, an indi-
vidual’s response to caffeine will vary. A clear example of
this is that of habituation, briefly discussed in Sect. 3.2. In
this context, regular use of caffeine may modify the
ergogenic effects of caffeine at a particular dose. Beaumont
et al. [59] illustrated that regular intakes of 3 mg/kg of
caffeine daily attenuated the ergogenic effects of a pre-
exercise dose of 3 mg/kg. Conversely, de Souza Gongalves
et al. [61] showed that habitual daily caffeine intakes of
350 mg/day were insufficient to reduce the ergogenic
effects of 6 mg/kg of caffeine. This indicates that it is
perhaps important that the pre-exercise caffeine dose
exceeds the level of habitual intakes. So, whilst an indi-
vidual might initially find a caffeine dose of 3 mg/kg
ergogenic, if they then habitually consume 3 mg/kg of
caffeine per day, this ergogenesis may be attenuated. As
such, in an initial trial, the subject would be labelled as a
caffeine “responder”, whilst in the subsequent trial, they
would be labelled a “non-responder”. Such labels are
becoming common place when reporting on inter-individ-
ual response to a stimulus. However, recent work [94]
indicates that non-response to exercise can be reduced by
changing training variables. We suggest the same is likely
true for caffeine. As such, perhaps a more reflective char-
acterisation would be to state that a subject “did not
respond” to a particular intervention, as opposed to label-
ling them a “non-responder” [95], as this non-response
may not occur were the intervention to be repeated and/or
modified.

4 Conclusions: What Next?

Academic studies have repeatedly demonstrated a perfor-
mance enhancing effect of caffeine ingestion [4-6, 15].
Yet, simultaneously, this ergogenic response shows con-
siderable inter-individual variation [31, 32]. This variation
occurs via numerous factors, many of which are influenced
by genetic predispositions [42, 54]. Although these indi-
vidual responses are undoubtedly complex and subject to
various modifying factors, the possibility remains that
practitioners can glean sufficient partial insights to per-
sonalise caffeine intake. Polymorphisms in genes affecting
caffeine metabolisation speed (CYPIA2) [42] and nervous
system excitability (ADORA2A) [54] appear to have a
directly modifying impact on the ergogenic effects of
caffeine. Given the number of mechanisms through which
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caffeine appears to exert its action, it could be speculated
that a variety of other polymorphisms will also have a
contributing role. Recent developments in genetic profiling
technology and more widespread access to, and afford-
ability of, such technology raises the possibility that such
insights may soon be readily available to sporting popu-
lations. This information could potentially be paired with
knowledge of individual variation in other factors, such as
circadian rhythm [76, 77], habitual caffeine use [58-60],
medication intake [66, 67], and expectancy [80, 81, 83], all
of which also impact the magnitude of performance
enhancement seen after caffeine ingestion.

Figure 1 summarises the genetic and non-genetic factors
influencing caffeine ingestion decisions. Working from the
top, the current best-practice guidelines are applied to
different genotypes of genes identified to impact caffeine
response. Based on the current evidence, genotype-based
guidelines are then produced. Finally, these genotype
guidelines must then be interpreted in the context of non-
genetic factors, such as habitual use, to create individu-
alised caffeine guidelines. As CYPIA2 and ADORA2A
polymorphisms have not yet been studied together, the
potential interacting effects of these polymorphisms are
currently unknown. Finally, the recommendations them-
selves are somewhat speculative, and further research is
required to elucidate best practice in this area.

These individualised caffeine guidelines could also
vary depending on the timing and importance of the
competition. Given that genetic variation can modify
sleep disturbances after caffeine ingestion [53], individu-
als more likely to suffer from these disturbances might
consume less caffeine for an evening competition than a
morning competition. This would be especially important
if there were a number of competitions in close proximity,
whereby reduced recovery following initial caffeine dose
may impact subsequent exercise performance. Genetic
variation can also impact feelings of anxiety following
caffeine ingestion [56, 57]. This creates the possibility
that certain genotypes should consume less caffeine for
competitions where anxiety is likely to be higher, such as
the Olympic Games or World Cup final, and more for
competitions where anxiety will be lower, such as a lea-
gue match.

This spawns an interesting situation; whilst caffeine is
ergogenic, the current generalised guidelines of 3-9 mg/kg,
60 min prior [23-25] are clearly not optimal for everyone.
What is not clear, however, is what these guidelines should
be. Being able to develop more precise, individualised
guidelines would be beneficial, especially given the
prevalent caffeine use in elite sports. To enhance the advice
given to athletes regarding caffeine use, a number of dif-
ferent questions will need to be answered:



Inter-individual Variation in Caffeine Ergogenicity

Caffeine Ingestion (3-6 mg.kg'l, 60

Guidelines minutes prior)

CYP1A2 (rs762551) genotype ADORAZ2A (rs5751876) genotype

Genotype

Enhanced ergogenic

d
Enhanced Reduce offect

ergogenic ergogenic

effect effect . Reduced sleep quality
Increased anxiety

Reduced ergogenic effect

Genotype Effect
& Guidelines

Increase Lower caffeine Lower caffeine
caffeine dose dose for dose when

and/or competitions post-exercise
consume >60 LERIETEA sleep quality is
minutes prior high important

Continue
with
standard
guidelines

Non-genotype based factors:
Gender
Medication Use
Habituation
Training status
Method of caffeine delivery
Expectancy effects

Fig. 1 Genetic and non-genetic factors influencing caffeine ingestion decisions

1. Can the existing research on CYPIA2 and ADORA2A  the performance enhancing effects of caffeine in a way that
be replicated, and can other genes that modify caffeine  is matched to their unique biology. In addition, the

ergogenicity be identified? awareness from coaches and athletes that sizeable variation
2. Are there different optimal dosages and timing strate-  exists in the response to caffeine ingestion may encourage

gies for different genotypes? them to be more experimental and flexible in the evolution
3. Does caffeine habituation occur differently across  of their caffeine strategies.

genotypes?

4. Does the individual’s sex further alter the modifying ~ Compliance with Ethical Standards

. o
aspect of genotype on caffeine ergogenicity? Conflict of interest Craig Pickering is an employee of DNAFit Ltd, a

By answering these questions and creating personalised genetic testing company. He received no financial incentives for the

. C g1 . .. preparation of this manuscript. John Kiely declares that he has no
caffeine guidelines, athletes will be able to fully maximise | o. = eo o
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