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Agriculture is a mainstay of many developing countries’ economy, such as Brazil.
According to the Food and Agriculture Organization of the United Nations, Brazil is
the major global consumer of pesticides. Irrespective of the fact that the International
Agency for Research on Cancer suggests that pesticides promote human cancer risk, a
prospective study reports that colorectal cancer (CRC) burden will increase in developing
countries by approximately 60% in the coming decades. Here, we review the literature
and public data from the Brazilian Federal Government to explore why pesticides levels
and new cases of colon cancer (CC) are rising rapidly in the country. CC incidence
is the second most common malignancy in men and women in the South and the
Southeast of Brazil. However, while these regions have almost doubled their pesticide
levels and CC mortality in 14 years, the amount of sold pesticides increased 5.2-fold
with a corresponding 6.2-fold increase in CC mortality in Northern and Northeastern
states. Interestingly, mortality from endocrine, nutritional, and metabolic diseases are
rapidly increasing, in close resemblance with the pesticide detection levels in food. Taken
together, we discuss the possibility that pesticides might alter the risk of CC.

Keywords: agriculture, Brazil, colorectal cancer, International Agency for Research on Cancer, pesticides

INTRODUCTION

The International Agency for Research on Cancer (IARC) reported recently that several pesticides
increase the risk of cancer in humans (1, 2). The causal relationship between environmental factors
and cancer has been intensively investigated by scientific researchers since Sir Percival Pott’s findings
over 200 years ago. Pott correctly linked chronic exposure to soot, which contains high levels of car-
cinogenic polyaromatic hydrocarbons, with the high incidence of scrotal squamous cell carcinoma
in British chimney sweeps. Because German chimney sweeps wore tight-fitting clothes, they had the
lowest risk for that cancer (3). Another example is that cancer levels did not significantly impact on
mortality rates in comparison with heart problems in the United States (US) in 1900, according to the
US National Center for Health Statistics. A half century later, death rates remained three times higher
for heart-associated diseases compared to cancer. In the next 63 years, relative heart disease mortality
rates decreased to the point that they are on par with cancer (4) levels. Might environmental factors
underlie such fluctuations in chronic disease levels in humans?

An interesting report on mesothelioma burden, which is an asbestos-related lung cancer, helps to
clarify this question. Although exposure to asbestos reached its highest levels in the United Kingdom
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by 1953, the maximum mesothelioma mortality was predicted to
occur only 63 years later (5). This long latency time makes it dif-
ficult to identify carcinogenic environmental threats. Moreover,
today’s real-world environment presents an unpredictable
complexity for human exposure to genome-damaging and/or
epigenome-modifying compounds that might give rise to cancer
(6). Alongside overnutrition and sedentary lifestyle, some reports
suggest that 75% of cancers are related to chronic exposure to
endogenous and/or exogenous environmentally generated fac-
tors (6, 7).

It is worth noting that pesticides can contaminate red meat,
as well as other food sources (i.e., fruits, vegetables, grains, fish,
poultry), adding a further potential carcinogenic source to the
possible mutagen content that a human meal might have (8).
Lodovici et al. evaluated the genotoxic potential of 15 pesticides
found in Italian foods. Only diphenylamine and chlorothalonil
generated DNA damage in hepatocytes (9). In carcinogen-
exposed rats, food containing captan and propineb increased
cancer risk in the thyroid, kidney, urinary tract, and bladder (10).
Lee et al. studied 49,980 pesticide applicators and reported that
alachlor probably increased the burden of lymphohematopoietic
cancers in this cohort (11). However, chemical interactions that
induce cancer have been traditionally overlooked when only the
carcinogenic potential of individual compounds is explored.

Analyzing 3,800 serum samples from 35 countries, Wang et al.
suggested that pesticides increased the mortality rates associated
with hepatocellular carcinoma, lung adenocarcinoma, and colon
cancer (CC) in different human populations (12). In Spain,
Luzardo and colleagues investigated whether the concentrations
of pesticides in different kinds of meat could impact on cancer
risk. These authors suggested that meat containing high-pesti-
cides levels might increase the risk of cancer (13). Greenson and
colleagues investigated 860 Egyptians who were either healthy or
were diagnosed with colorectal cancer (CRC). It was shown that
either eating pesticide-containing food or exposure to industrial
pollution increased the CRC risk in that human population (14).
In rats, Hong et al. observed that pesticides increased the CC
risk (15).

The Hallmarks of Cancer model demonstrates that DNA dam-
age is not the only event leading to malignancies and that carcino-
gen-induced changes in several other protective elements are also
needed (16). Thus, new considerations about the carcinogenic or
cancer-promoting effects of environmental chemicals must be
taken into account (17). It seems possible that xenobiotics do not
only induce somatic genomic mutations and epigenetic changes,
but they also may disrupt the neuroendocrine system (18-22).
Based on 34,205 cancer cases and 1,832.969 control subjects,
Alarcon and colleagues suggested that high exposure to pesticides
might increase the risk of all cancers, excluding Hodgkin and
non-Hodgkin lymphomas (23). Interestingly, organochlorines
and organophosphates induce non-genotoxic effects in different
murine models (24, 25) although some organochlorines, namely
chlorpyrifos, methyl parathion, or malathion, appear to induce
oxidative stress (24). In Egypt, Soliman et al. observed that rather
than control subjects, CRC patients exhibited higher serum
organochlorine pesticide levels (26). Indeed, in 2013, Meyer and
colleagues revealed that pesticides could be related to increased

non-Hodgkins lymphoma mortality found in Brazil (27). Notably,
it has been predicted that a 60% increase in the global burden of
CRC will occur in developing countries by 2030 (28). Herein, we
review how pesticides may alter the risk of CC.

THE RELATIONSHIP BETWEEN
PESTICIDES AND THE CC RISK: A
DEVELOPING COUNTRY AS AN EXAMPLE

Hannun and colleagues showed that environmental factors
directly impact on cancer risk (29). Nielsen and colleagues
explored the genome and transcriptome in 1,082 tumors reveal-
ing that the metabolism of arachidonic acid and xenobiotics
determines cancer patient survival (30). One should not forget
that DNA damage is not the only mechanism by which xenobiot-
ics generate cancer (31, 32). Exposure to xenobiotics have been
reported to induce oxidative stress, genomic damage, and a high
expression of some cancer-related genes in subjects carrying a
higher number of risk alleles to cancer (33). Considering the
etiology of CC, ingestion is probably the main route by which
carcinogenic chemicals accessing the human body cause this
malignancy (17). Interestingly, Avancini et al. detected pesticides
in bovine milk in the Brazilian Midwest region (34). High-
pesticide levels have also been found in human milk in several
Brazilian regions since 1992 (35-37).

In Western countries, CRC is the third commonest cancer
and the second leading cause of cancer-related death (38). The
incidence of driver mutations in CRC is typical of solid cancers
that are driven by an ever-increasing age-related mutational
burden, as approximately 90% of patients are 50 years or more at
the time of diagnosis (39, 40). Current disease statistics indicate
that CRC incidence is exhibiting a demographic shift to patients
who are <50 years old (40), which may be an indication that the
contribution of environmental factors is increasing. It seems that
the intake of specific foods modulates the CRC risk. For instance,
drinking less alcohol (0.5 g/day instead of 70 g/day) reduced CRC
risk ~56-fold, whereas increasing meat intake ~2.6-times might
promote CRC 1.4-fold (41). Indeed, the outlook for the incidence
of this malignancy is bleak; as the world’s population increases
and countries modernize, reports predict up to a 60% increase
in the worldwide burden of CRC in developing countries such as
Brazil by 2030 (28).

The Brazilian National Cancer Institute predicted that ~34,280
new CRC cases would be diagnosed in the country by 2016.
Thus, CRC was expected to be the third and the second most
common malignancy in men and women, respectively. Indeed,
CRC is the second most often diagnosed malignancy for both
sexes in the Brazilian Southeast. In 2016, the Southern Brazilian
region surpassed the Southeast states in CRC cases per 100,000
inhabitants. While cancer mortality almost tripled in 30 years,
CC-related deaths were ~4-time less frequent in 1984. Although
the South and the Southeast regions endured a ~4-fold increase in
these mortality rates, deaths from CC increased ~5.2-fold in the
Northern and the Northeastern states. We may better understand
these facts knowing that the Brazilian population only grew ~1.7-
fold in the same time-period.
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Brazil has become the leading worldwide user of pesticides
from 2008 onward. For instance, Brazilians imported 1,132-fold
more pesticides in 2014 than in 1984. Within the country, the
amount of pesticides sold increased from 162,462 to 508,557 t in
thelast 16 years. It mustalso be noted that pesticides were sold atan
amount of ~19 kg/km? in 2000, but that more than tripled within
the next 14 years (~59.5 kg/km?). While the Southern region
more than doubled the amount of pesticides bought per year
[from ~89 kg/km? (2000) to ~221 kg/km?* (2014)], this increase
was ~7-times higher in the Northern states [from ~0.64 kg/km?
(2000) to ~4.5 kg/km?* (2014)]. This led us to inquire whether
pesticides also contaminate food in Brazil.

The Brazilian National Health Surveillance Agency (Anvisa)
annually reports the detection of pesticides in food. From 2001
to 2007, this agency revealed that ~13% of food sources did
not comply with the safety standards for human use. In 2009,
3,130 food samples were analyzed, revealing that 29% of them
contained pesticides above safety levels. This means that 744
samples contained illegal pesticides (IP), 88 samples had pes-
ticide concentration above the maximum residue level (MRL),
while 75 other samples had either IP or pesticide levels higher
than MRL. A similar scenario was repeated in 2010, in which
banned pesticides were detected in 605 out of 694 contaminated
food samples. Astonishingly, between 2011 and 2012, the same
agency found that 36% of analyzed food samples were unsafe
for humans. Specifically, 32% of unsafe food samples contained
IP, 2.3% of them did not comply with MRL, and 1.9% had both
irregular characteristics. The latest report (2013-2015) showed
that 20% of analyzed food samples contained either prohibited
pesticides or contamination levels above safety standards. While
soy plantations, only in 2011, have used ~341.2 million liters of
all 852.8 million liters of agrochemicals sprayed on Brazilian
crops, Anvisa did not show any analysis for soy contamination by
pesticides in its reports.

Douglas and Tooker have recently reported increased usage
of pesticides in plantations of soybeans and maize throughout
the last decade in the US (42). Another research group suggested
that most farmhouses are contaminated with pesticides (43). It
has also been shown that soy sauces and related products contain
significant levels of a pesticide (44). Although another report did
not support the notion that soy-related manufactured products
contained pesticides, such chemicals were largely found in soy
protein isolated from genetically modified soybeans (45). In
Argentina, pesticides contamination seems to have reached the
groundwater (46).

The National Toxic-Pharmacological Information System
(SINITOX) collects and analyzes all cases of acute intoxication
and poisoning in the country each year. These reports showed
that 78,623 Brazilians endured acute pesticide-related poisoning,
from which 2,524 people died from 1999 to 2013. The highest
numbers were observed between 2005 and 2007. Although
Brazil may lack a follow-up on how chronic exposure affects its
population, mortality by endocrine, nutritional, and metabolic
diseases (ICD-10; E00-E90) more than doubled throughout the
same period (1996-2014). Having all these data together directed
us to determine whether the increase in CC mortality might be
correlated with pesticides levels in Brazil (Figure 1). Collectively,
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FIGURE 1 | Correlation between colon cancer (CC) mortality and pesticides
levels in Brazil. Quantity of sold pesticides per area of Brazilian regions (km?).
Data from the Brazilian Institute of Environment and Renewable Natural
Resources (IBAMA) is publically available (link: http://dados.
contraosagrotoxicos.org/pt_PT/dataset/comercializacao-ibama-2014). Area
of each Brazilian was consulted at the Brazilian Institute of Geography and
Statistics website (IBGE; http://www.ibge.gov.br/). Cancer and CRC mortality
in Brazil (1984-2014). Mortality numbers for cancer and CRC in Brazil.
Dataset was downloaded from the website of the Ministry of Health (link:
http://wwwz2.datasus.gov.br/DATASUS/index.php?area=0205). The increase
in CC mortality and pesticides levels [fold change (FC) was determined
comparing data from 2014 against the 13 previous years] throughout

14 years were analyzed by the Pearson’s r test. The r squared (%) value is
shown.

our data seem to suggest that pesticides could critically influence
the risk of CC in Brazilians.

POTENTIAL MECHANISMS OF HOW
PESTICIDES ALTER THE CC AND CRC
RISKS

Currently, the carcinogenic potential of pesticides is a contro-
versial issue. For instance, in Turkey, farmers underwent a CRC
screening that revealed a reduced risk to develop this type of
cancer (47). However, in Egypt, high serum pesticide levels were
detected in patients diagnosed with CRC (26). Another Egyptian
report suggests that food containing pesticides might increase
CRC risk (14). Notably, following the Vietnam War, Korean
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soldiers exposed to the pesticide Agent Orange exhibited high
rates of CRC (48, 49). Thus, we must consider another study
showing that pesticide-exposed fish either had no impact on
CRC risk, or decreased the risk for CRC (50). In this context,
it is interesting that experiments with rats exposed to pesticides
but treated with fish oil revealed that the pesticides increased the
CC risk and reduced the chemoprotective effects of that oil (15).
Arrebola et al. reported that food containing pesticides increased
the risk of breast cancer in Tunisian women (20). Exposure to
pesticides in an American farmer population enhanced the risk
of obesity-related CRC (19).

Some molecular studies seem to support the idea that pes-
ticides promote the risk of cancer. A pesticide and xenobiotic
named endosulfan promoted colon inflammation with concomi-
tant upregulation of p-catenin and interleukin-6 expression (51).
Another interesting report showed that the pesticide chlorpyrifos
activates the EGFR/ERK1/2 growth signaling pathway to promote
CRC development (52). These facts may suggest the hypothesis
that at least some pesticides act as tumor promoters in the rapidly
dividing colonic epithelial cell population (53). Instead of DNA-
damaging effects induced by cancer initiators, endogenous and/
or exogenous cancer promoters are classically determined to lead
mutated cells toward clonal expansion, enabling them to collect
further genomic changes by either high proliferative activity
or new carcinogenic hits (54). Rather than binding to DNA, a
cancer promoter usually activates transcriptional and epigenetic
mechanisms that induce proliferation but inhibit apoptosis (54,
55). Such mechanistic activity has long been known to induce
proliferation intrinsic errors leading to mutations and the devel-
opment of CRC (53, 56, 57).

Environmental pollutants, such as pesticides, might impair
neuroendocrine functions promoting chronic inflammation that
facilitates cancer initiation and progression (58-60). It should
be considered that the gut is the largest endocrine organ in the
human body (61). With ~500 million neurons (62), intestines not
only synthesize more than a 100 hormones by endocrine cells but
also harbor ~70% of immune system activity in the body (61, 63).
This impacts on many bodily functions in either physiological or
pathological condition, including cancer development (61, 64).
Another interesting fact is that immune cells seem to interact
with environmental inputs through the intestinal microbiome
balancing the host immunity (65). Impairments in this fine-tuned
mechanism by diet are one of many examples that might enhance
the risk of CC and CRC (66). There seems to be some evidence
that xenobiotics alter the intestinal microbiome increasing the
risk of CC and CRC (67-69).

Human exposure to contaminated arsenic soil seemed to
enhance cancer mortality (70). In mice, adding arsenic to their
drinking water altered the gut microbiota and metabolism (71).
Dheer etal. havereported that chronic exposure to arsenic changed
the composition of intestinal microbiota, increased bacterial
spores, altered the intestinal and hepatic nitrogen metabolism, and
enhanced pathogenic arginine metabolites in blood circulation
(72). Gut dysbiosis can promote CRC through either an immune
system deregulation, such as that related to chronic inflammation
and oxidative stress or direct-DNA damage and genomic instabil-
ity (68, 69). Gram-negative bacteria seem to induce direct-DNA

damage and genomic instability releasing the cytolethal distend-
ing toxin and colibactin, which damage the DNA and trigger the
phosphorylation of histone H2AX. This phosphorylated histone
activates a transient G2/M cell cycle arrest and cellular swelling
through the ataxia-telangiectasia mutated-checkpoint kinase 2
signaling pathway (68). On the other hand, an imbalance between
intestinal Gram-positive and -negative bacteria can promote a
microorganism-driven tumor-initiating inflammatory condition
in NF-kB- and IL10-dependent mechanisms (68, 69). Thus, a
microbial translocation across the intestinal epithelial barrier
seems to foster the malignant outgrowth, since it enhances even
further recurrent inflammation-related cancer (69).

Given that tumor cells are initially immunogenic, dendritic
cells survey cancer-initiating cellular hot spots for antigen expres-
sion after somatic mutations are established, which are then
processed into major histocompatibility complex (MHC) classes
I and II within regional lymph nodes. MHC II is presented to
CD4+ T lymphocytes, whereas MHC I activates CD8+ T cells.
The balance between MHC I and II pathways is thus crucial for
determining thelytic cycle against malignant cells because it mod-
ulates the differentiation of T cells into cytotoxic T lymphocytes.
Subsequently, immune cells must overcome immune checkpoints
and cancer immunosuppressive networks to maintain their
cytotoxic potential against tumor cells (73). While tumor cells
are initially immunogenic, which means immunosurveillance
is highly activated and able to block malignant development,
tumor changes promoted by immune-editing drive cancer cells
to silence the immune system through chronic antigenic stress.
Indeed, chronic inflammation can facilitate early malignant steps
promoting the immunosurveillance to target cancer-initiating
senescent cells, which provides a substantial growth advantage
by cellular selection in the incipient tumor (21). Thompson et al.
have hypothesized that xenobiotics could disrupt the stromal-
epithelial interactions targeting the immune system, from which
cancer risk could be increased in exposed subjects (67). Lyerly
and colleagues have recently suggested that exposure to xenobi-
otics might impair the complex activity of immunosurveillance
against cancer, a fact that could enhance tumor incidence in the
general population (73). Kleinstreuer and colleagues believed
that xenobiotics would provide a growth advantage to cancer cells
by inducing angiogenic changes in the tissue microenvironment
(58), which could happen together with cancer-related immune
dysfunctions (58, 67). Hence, human exposure to pesticides pos-
sibly results in deep tissue changes beyond the well-characterized
carcinogenic events in epithelial cells. However, current scientific
methods have a few limitations that should be considered.

SCIENTIFIC LIMITATIONS TO STUDY THE
CARCINOGENIC EFFECTS OF
PESTICIDES

First of all, environmental levels of several human-made pol-
lutants might lack an immediate carcinogenic effect, such as
DNA damage (5). In the multi-staged CC etiology, xenobiotics
are one of the unaccountable confounding agents that preclude
direct causative linkage between exposure to pesticides and CC
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risk. In further evidence, Barupal and colleagues have recently
shown how little evidence is available to determine causative
linkage between xenobiotics and cancer. Analyzing about 6,000
chemicals with chemoinformatic tools, they identified that the
effects of only 8 out of 980 pesticides had been explored in cancer
(74). It is known that there is a large number of xenobiotics, some
with a bioaccumulative potential, that they affect the metabo-
lism of exposed individuals differently, have a molecular mass
<1,000 Da, share insignificant chemical similarities, can act as
either agonists or antagonists of steroid hormone receptors, their
source determines which tissue they might target, their exposure
levels and chemical combinations might vary even within the
same geographic area, and their combinations and levels might
induce a plethora of different effects (33, 54, 75-78).

In this regard, the lowest-observed-adverse-effect level test
has been widely applied in animal models to reveal, together
with either linear extrapolation or benchmark dose modeling,
side effects of untested chemicals that will be used by humans.
Given that such methods cannot adequately forecast whether
the synergism between and amongst low-dose mixtures of single
compounds promotes cancer, several studies have applied non-
linear dose-response calculations. It has been revealed that the
interaction of low-dose chemical exposures promoting cancer
does not necessarily have to occur simultaneously or continu-
ously, but they can indeed act sequentially or discontinuously in
a far more potent carcinogenic fashion than any single chemical
exposure could be (79).

The Adverse Outcome Pathway (AOP) concept has also
provided novel insights that connect the pathological basis of a
disease to risk assessment. AOP applies high-throughput screen-
ing assays to associate the effects of different chemical exposures
with major targets and pathways within the Hallmarks of Cancer
framework, which provides the first linkage among a chemical
exposure, a direct molecular initiating event, and an adverse
biological malignant outcome. Although it has been extremely
difficult to test potential effects of low-dose mixtures of single
compounds for cancer risk, response addition and dose addition
are mathematical strategies that help in the assessment. Whereas
response addition assumes that different chemicals have the same
outcome through various modes of action, dose addition can be
applied when distinct compounds have a similar activity (79).

CONCLUSION AND FUTURE
PERSPECTIVES

Together with several lines of scientific evidence that the cancer
risk may be altered by decades of exposure to environmental fac-
tors (5, 6, 76), the IARC has emphasized the carcinogenic effects
of pesticides for a few years now (1, 2, 80-82). There also seems to
be a potential indication that xenobiotics alter genomic repair and
inflammatory mechanisms to impact on cancer (16, 17, 21, 55,
58-60, 67, 73, 83-86). Mixture effects (87) and low-dose effects
(88) remain to be elucidated. These facts might lead to the point
that acute pesticide poisoning is not the main route by which
they impact on the risk of cancer. As much as pesticide usage has
enabled the increase of global food production and prosperity,

now may have come the time to re-evaluate strategies in farming,
to mitigate the increasing risk of CC and other cancer types.

COLLECTION OF PUBLIC DATA

CRCburden' and CC mortality (from 1984 to 1995, http://tabnet.
datasus.gov.br/cgi/deftohtm.exe?sim/cnv/obt09uf.def  [select:
Year, Capitulo CID-9 (IX), Categoria CID-9 (153)]; from 1996
to 2014, http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sim/cnv/
obt10uf.def [select: Year, Capitulo CID-10 (XI), Categoria CID-10
(C18)])? as well as mortality by endocrine, nutritional, and meta-
bolic diseases, were collected from the database of the Ministry of
Health. The same source provided data for the incidence of other
types of malignancies. Data on pesticides were also collected
from the UN®. The quantity of sold pesticides within the country
was downloaded from the website of the Brazilian Institute of
Environment and Renewable Natural Resources*®. Data on pes-
ticides poisoning and mortality were obtained from the National
Toxic-Pharmacological Information System® The Brazilian
National Health Surveillance Agency website was consulted for
data on food contamination by pesticides’. Complementary data
on pesticides and area (Km?*) were collected from the Brazilian
Institute of Geography and Statistics (see text footnote 5). Basic
calculations [fold change (FC), percentage, and normalization
(weight/area)] were performed. Figure 1 shows data from
the Pearson’s r test analysis. The increase in CC mortality and
pesticide levels was calculated in FC (values from 2014 against
previous years they were analyzed within each different Brazilian
regions, as well as for the whole country). Then, we statistically
analyzed the correlation between values by the Pearson’s r test in
the GraphPad Prism 5 software (Graph Pad Software Inc., US). A
strong correlation showed r squared () close to 1, and P < 0.05.
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