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Abstract

We prove two theorems about convolution operators on LP(G)
for a locally compact group G. First, if G has the approximation
property, then the algebra of convoluters is the algebra of pseudo-
measures. Second, the bicommutant of the algebra of pseudo-measures
is the algebra of convoluters.

arXiv:1308.1073v5 [math.FA] 27 Nov 2017

1 Introduction

Let G be a locally compact group and LP(G) denote the LP-space with
respect to left Haar measure, for p € [1,00]. The algebra of bounded oper-
ators B(LP(G)) for p € (1,00) admits a natural predual (which we specify
in Section 2, below) and hence admits a specified weak™® topology which is
finer than the weak operator topology. We consider the two subalgebras,
the pseudo-measures and convoluters, which are given by

PM,(G) =Tin""\,(G) (weak™ closed linear span)
CV,(G) = pp(GY (commutant)
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where the right and left regular representations Ay, p, : G — B(LP(G)) are
given by

Mo(8)f(8) = f(s't), pu(s) f(E) = A(s)Pf(ts)

for all s and a.e. t. Here A is the Haar modular function. Since \,(G) C
pp(G) and commutant algebras are weak operator closed, hence weak*
closed, we have that PM,(G) C CV,(G). Notice, moreover, that the in-
vertible isometry U in B(LP(G)), given by U f(t) = AVP(t= 1) f(t71), is self-
inverse and intertwines A, and p,, which shows we may interchange the roles
of left and right.

The approzimation property was defined by Haagerup and Kraus [9]. A
detailed definition is provided in Section [3], below.

Theorem 1.1. If G has the approximation property, then
CV,(G) = PM,(G).

A complete description of connected groups with the approximation
property is provided by Haagerup, Knudby and de Laat [10]: any simple
Lie quotient must have real rank 1. This builds on an enormous body of
work, including [I8| 11, 12]. The approximation property passes to closed
subgroups, extension groups, and is passed up from lattices [9]. In particu-
lar, countably generated free groups enjoy this property, even the stronger
property of weak amenability, defined by de Canniere and Haggerup [7].
The approximation property does not pass to general quotients: the finitely
generated lattice SL3(Z) in SL3(R) is a quotient of some free group F,. In
fact, we have the following implications of properties of G:

amenable = weakly amenable = approximation property.

The first implication is given by Leptin [19], i.e. a bounded approximate
identity in the Fourier algebra A, (G) satisfies the definition of weak amenabil-
ity of [7]. For amenable G, Theorem [L.1] is proved by Herz [15]; see Remark
29

A certain p-approximation property, which is implied by the approxima-
tion property was defined by An, Lee and Ruan [I], and studied vigorously
by Vergara [23]. Using this, Vergara strengthens our Theorem [L1] but relies
heavily on our methods. See Remark B.3] below.

On a related note, we also give an elementary proof of the following.
Recall that the intertwiner U is given above
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Theorem 1.2. We have commutation results:
PM,(G) =UCV,(G)U and (U CV,(G)U) = CV,(G).
In particular, we have bicommutant PM,(G)" = CV,(G).

For p = 2 the comutation result of convoluters was proved by Dixmier [§]
using left Hilbert algebras. Recently, Pham [21] gave an elementary proof in
the p = 2 case. This proof is similar to the one offered here, but we wish to
note that ours was conducted independently and posted on arXiv in 2016.

The present article is an updated version of our work [6], the main body
of which was first posted to the arXiv in 2013. Both theorems appear to
be folklore — see Cowling [3], and Herz [I5] — but we have been unable
to track down complete proofs. Theorem [L.I] was used in recent work of
Oztop and the second named author [20] to obtain, for a pair of groups
G and H with approximation property, a tensor product description of
A, (G x H). Given recent developments related to this work and interest in
it, in particular [21), 23], we have elected to update our results and submit
them for publication.

2 On preduals of pseudo-measures and con-
volvers

The entire goal of the present section is to present background for the proofs
of our two main theorems. We also redevelop some methods of Cowling [3],
who gave an innovative and insightful description of a predual of C'V,(G).
The present methods give a new perspective and help to illuminate the role
of the Herz-Schur multipliers which we discuss in 2.2] below.

We let p’ be the conjugate index to p, so % + z% = 1. We recall that
B(L*(G)) is the dual of the space NP(G) = LPI(G)®LP(G) by way of dual
pairing (T,£ ® f) = (£, Tf) = [,&(t t)dt. Elements w = Y 77 &, ®
fn of N?(G) may be viewed as functlons w(s,t) = > &u(s) fult) up to
marginal almost everywhere (m.a.e.) equivalence; i.e. excepting marginally
null sets, (N; X G) U (G x Ny), where Ny and N, are Haar null sets.

We let P : NP(G) — A,(G) C Cy(G) be given for s in G by

P (Zgn ®fn> (s) Z<£n, Zgn % f

n=1

where f(t) = f(t7') a.e., i.e. Pw(s fG w(t,s7't)dt. Hence A,(GQ) is
normed as the coimage of P, i.e. Ap(G) = NP(G)/ker P isometrically. It
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is straightforward to see that PM,(G) and CV,(G) admit the following
pre-annihilators in N?(G):
+PM,(G) = ker P

LOV,(G) =Tin{py(t7)E@ f — €@ pyp(t) f :
te G, e V(G), felP(G)}

where we note that adjoint of these right translation operators is given by

pp(t)* = pp’(t_l)-
It is standard that

PM,(G) = Ay(G)" and CV,(G) = [N?(G)/~CV,(G))'

which gives us distinguished preduals of these algebras of operators.

2.1 NP(G) as an algebra

Herz [I3] showed that A,(G) is always a subalgebra of Cy(G), and fur-
ther showed ([14]) that it has Gelfand spectrum given by evaluations at
points of G. We note that A,(G) is known as the Figa-Talamanca—Herz
algebra. Herz’s technique for showing that A,(G) is an algebra lifts natu-
rally to N?(G). We note that the amplification 7' — T'® I : B(L*(G)) —
B(Lr(G; LP(G))) = B(LP(G x G)) is an isometry. We consider the funda-
mental isometry W, in LP(G x G) given for a.e. (s,t) by

Wpf(S,t) = f(sv St)
We note that W, is invertible with W = Wp_,l. We define a co-product on
B(LP(G)), I : B(LP(G)) — B(L*(G x G)) by
(T) =W, (T @ I)W,.
This spatially implemented map is evidently weak*-weak* continuous, and
hence admits a preadjoint. We note that N?(G) @ N?(G) comprises a dense

subspace of N?(G x G) given on elementary tensors of elementary tensors

(“really elementary tensors”) by (€ ® f)®@ (n®g) — (£®@n) @ (f ®g). Let
us compute [', on these really elementary tensors. We have

(T.T.((€® flom ®g)) = (W, (T @ DW,, (€& f)® (1® g))
= Wy @n), (T HW,(f ©9))

_ /G /G Es)(st) (T ® D[(s,1) v £(s)g(st)] ds dt
- /G (EnT(fa0)) di
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where 7;(s) = n(st), for example. Hence we see that

(2.1) LE®H)®nog) = /G (em) ® (fg0) dt.

The equation

/G/G(fﬂtﬁs) ® (fgihs)dtds = /G/G(gmﬁts)@) (Fauhus) ds dt

shows that I', is an associative product. We note that though I'(\,(r)) =
Ap(1) @ Ap(r), which implies that I'| pas, () is cocommutative, we have for a
multiplication operator M, where ¢ € L>(G), that I'(M,,) = M,®I, which
shows that I' is not generally cocommutative. Hence I, is not commutative.

Let K(G) denote the family of all compact neighbourhoods of the identity
in G. For K in K(G) we let LP(K) = 1, L”(G), which is a 1-complemented
subspace. Likewise we define L' (K) and

NP(K) = LV (K)®LP(K)
which is a subspace of N?(G).

Proposition 2.1. The space *PM,(G) = ker P is a I',-ideal in N*(G),
while each of *CV,(G) and N?(K), for K in K(G), are right ideals.

Proof. That P : N?(G) — Cy(G) is I',-pointwise multiplicative is shown
n [13], hence *PM,(G) = ker P is an ideal. Let us consider the case of
LCV,(G), manually. On really elementary tensors we have

Co(py(s)E® f — €@ p(s)f) ® (0@ g)
- /G (o ()M © oo — Em  (ppl3)f)ge] it

- / oy (™) (En) ® Fau d — / £ ® py(s) (fgamse) dt
G G
- /G[/)p'(s_l)(mt) R fgr — Enst @ pp(s)(far)] dt

which is an integral of elements in *CV,(G). That each NP(K) is a right
ideal follows readily from (2.1I). Indeed if £ ® f € NP(K) then

(lx @ LT (E® f) ® (n® g)) = /G L @ L fa dt
“T.((E® ) ® e g)

so (€@ f) @ (n©yg)) € N°(K). m
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It will be convenient below, to consider the following space of elements.
We let Ll

loc

able functions on GG which are integrable on any compact set. An applica-
tion of Holder’s inequality shows that L¢(G) C L (G) for any ¢ in [1, 00].

loc

If h € LL.(G) and g € C.(G) then h x g is well-defined as an element of

loc
L (G). We let

(G) denote the space of locally a.e. equivalence classes of measur-

OV, (G) = {h € Ligo(G) s sup{||hx gll, : g € Ce(G), llgllp < 1} < 00}

p

Each element % of C'V,}(G) defines an operator A,(h) in B(L?(G)). By testing
on elements p, (s~ g ® f — g ® py(s)f where f,g € C.(G), and applying a
standard density argument, we see that \,(h) € CV,(G).

The next result is really a repackaging of the main result of Cowling [3],
and is used extensively through the rest of this note. The second part is a

localization theorem.

Theorem 2.2. (i) Each T in CV,(G) may be approzimated in the strong
operator topology by a bounded net of elements \,(h;) where each h; €
CVP(G) = C'Vpl N LP(G).

(ii) For each K in K(G), we have that
LPM,(G)N NP(K) = +CV,(G) N N?(K).

Proof. (i) Let T' € CV,(G). Let (f;) C C.(G) be a contractive approximate
identity for L'(G). Then for g in C.(G) we have

T(fi*g) =T(pp(AP9) f)) = pp(ATPHT(fi) = T(fi) % g

where §(t) = g(t™!) a.e. Notice then, that

ITCf) * glly = 1T (Six Ollp < NTUi  gllo < I Tl]gll
and [|T(fi) * g — Tgll, = IT(fi* g — 9)ll, — 0.

It follows that h; = T'(f;) gives the desired net of elements in CVP(G).

(ii) Since *PM,(G) 2 +CV,(G), it suffices to show that +PM,(G) N
NP(K) C +CV,(G). From (i), above, it suffices to show that for any h in
CV,(G), that \,(h) annihilates ~PM,(G) N N?(K).

Now let € ® f € NP(K), and let (f,) be a sequence in C.(G) whose
supports are in the neighbourhood K K~! of K and converges to f in L?(G).
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Then we have that

@mwwmmwwmzméwmwmw

—tim [ &) [ )l ds

= lim h(s) /K () fu(s™t) dt ds

n K2K-1
= lim h(s)P(£® fn)(s)ds
n Jreg-1

~ [ roPEs s

where each interchange of integrals is justified by Fubini’s theorem, as ({ ®
h)1 g« k2k-1 is integrable and each f,, is bounded, and the limits are justified
by LP-convergence of f,, then uniform convergence of P({ ® f,). Hence, if
w = >"2.6 ® fn € *PM,(G) N NP(K), then uniform convergence of
> P& ® fn) = Pw = 0 provides that

Do) ) = 3 60 M) ) = Z/Wl P(0@ f,)(s) ds = 0

n=1

which is the desired annihilation condition. O

We note that proving Theorem [T amounts, in effect, to showing that
M (CVH(G)) € PM,(G), even that \,(CVP(G)) € PM,(G). Attacking this
directly seems very delicate; see Cowling’s approach [2] for certain simple
connected Lie groups with real rank 1. We will proceed through a different
sequence of observations.

Corollary 2.3. (i) The space UKeK(G)lPMp(G) N NP(K) is dense in
“CV(G).

(ii) Ewvery L.-commutator is an element of *CV,(G). Hence *CV,(G) is a
two-sided 1, -ideal.

Proof. (i) We observe that the family of elements

U {ow(s™e@ f—¢@pp(s)f s € K, £ € IP(K), f € L’(K)}

KeK(G)

is contained in (g i TOVo(G) N NP(KK ' U K?), and its linear span is
dense in +CV,(G).



8 M. Daws and N. Spronk

(ii) Any commutator I',(w® pu— p®w) can be approximated by elements
of the form I',([1x ® 1x]w @ [1xk @ 1]p — [1x @ 1g|p @ [1x @ 1x|w) where
K € K(G). Such elements are in + PM,(G) N NP(K), hence in *CV,(G).

Now, if w € *CV,(G) and p € NP(G) we have

Fp@w) =T(wep) +T(t@w—wep) € *CV,(G)
which establishes the second fact. 0
Hence I', induces a commutative product on
A,(G) = N/(G)/*CV,(G)

which is a predual of CV,(G). We let P : NP(G) — A,(G) denote the
quotient map. We note that there is a further natural quotient map P(w)

Pw : A,(G) — Ay(G). It is shown by Cowling [3] that this is the Gelfand
transform. In particular, semisimplicty of A,(G) is equivalent to having
LCV,(G) =+ PM,(G), i.e. CV,(G) = PM,(G).

Now we let for K in K(G)

Ap(K) = P(N?(K)).

We remark that if /K is an open subgroup of G, then our definition of A, (K)
coincides with the usual definition. For a in A,(K)

lalla,x) = inf{[|lwllne) : w e NP(K), a = P(w)}

is a norm on A,(K).

The set Ugcx(q) Ap(K) is the algebra Ay (G) of compactly supported
elements of A,(G). Indeed, if u in A, .(G) is supported on compact S, let
L € K(G) and uy, = ﬁlsL % 17 is 1 on S, hence u = uu, € A (K)
whenever SLU L C K.

The following will play a critical role in the proof of Lemma B2 and

hence in the proof of Theorem [I.1l

Corollary 2.4. Let N*(G) = Ugexe NP(K). Then P(NP(Q)) is a dense
ideal in A,(G) which is algebraically isomorphic to A,.(G). Furthermore,
for w in NP(G) we have

1P ()l ) = inf{1P(W)]la,) - w € NP(K)}

and the pairing with CV,(G) depends only on P(w); i.e. if T € CV,(G) we
may write

(2.2) (T, w) = (T, Pw).
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Proof. It is evident that NP(G) is a dense right I'.-ideal in N?(G), so
P(NP(G)) is a dense ideal in A,(G), by part (ii) of the prior corollary.
We use part (i) of the prior corollary to see that

1P(w)|lz5;c) = dist(w, “CV,(G))

o . . 1 D
= Ké%{c;) dist(w, “PM,(G) N NP(K))
= inf{||P(w)||a,x) : K € K(G), w € NP(K)}

where we note that the norm on A,(K) is given as the coimage: A,(K) =
NP(K)/ker P|y»(x), where ker P|no(r) = “PM,(G) N NP?(K). Hence if, fur-
ther, Pw = 0 then for T" in CV,(G) we have

(T, w)| < TP W)l =0
which establishes (2.2]). O

We record the following localization principle. In terminology of Herz
[15], (b), below, is the condition of being “formally of compact support”.

Theorem 2.5. The following are equivalent:
(a) CVp(G) = PM,(G);
(b) for each u in A, .(G) we have

wll a, ) = inf{[Jul|a,x) : K € K(G), u€ Ay(K)}; and

(c) there is C' > 0 such that for each u in A, .(G) we have

inf{|Jull k) : K € K(G), u e A(K)} < Cllullayo)-

Proof. That (a) implies (b) is immediate form the last corollary, whilst that
(b) implies (c) is obvious for C' > 1. If (c) holds, then on the dense subspace
A, (@), which we may identify with P(N?(G)), we have that || - ||4,(q) and
Il (c) are equivalent norms, so the map w++CV,(G) = P(w) is injective,
which implies that *CV,(G) = * PM,(G). The latter fact gives (a). O

2.2 The action of Herz-Schur multipliers

Let [SQ,] denote the class of spaces which are isometrically isomorphic to
a subspace of a quotient of an LP-space. Kwapien [17] noted that for F
in [SQ,]| that the ampliation 7' — T'® I : B(LP(G)) — B(L*(G; E)) is an
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isometry. In fact, he showed that this property characterizes elements of the
class [SQ,]. See Dales et al [4] for an exposition on this. Hence, by duality,
the map g : LY (G; E*)®LP(G; E) — NP(G) given on elementary tensors
m.a.e. by

(2.3) E(E® F)(s,t) = (E(s), (1)) 2.

is a quotient map, in particular a contraction. Also see Herz [14]. Let us
define the p-Herz-Schur multiplier space by

M,(G)={p:G— C|o(st™)=(8(s),al(t)) where each
a:G— E,p:G— E*is continuous
and bounded for some E in [SQ, ]}

These were essentially described by Herz [15], 16], and the specific version
we are using here was given by the first named author [5]. As shown in [5],
M, (G) is the algebra of “p-completely bounded multipliers” of A,(G), and
a Banach algebra with respect to the norm

lellag, = inf{llBllocllrlloe  o(st™) = (B(s), a(t)) as above}.

Proposition 2.6. (i) N?(G) is a Banach M,(G)-module via the action
gien m.a.e. by

@ - w(s,t) = @(st™Hw(s, t).

(ii) Each of *PM,(G) and N?(K) (K € K(G)) are M,(GQ)-submodules,
hence so too is *CV,(G).

Proof. (i) This is an immediate application of the map g in (2.3)), above. If
© € M,(G) with ¢(st™1) = (B(s), a(t)), and £ ® f is an elementary tensor
in N?(G), then let £8(s) = £(s)B(s) in LP(G; E*) and fa(t) = f(t)a(t)
in LP(G; E). Notice that |68 ]yse- < I€]y18 and [[falle < IIf /1ol
Then

¢ (€® f)=76({B® fa) € NP(G)
and hence
lo - (€@ line < NEBNwse- Il fetllpr < NBlloollallcol|€lly Il f1Io

from which it follows that ||¢ - (£ ® f)|lnr < |@llag, € ® fllne.
(ii) If p € M,(G) and w € ker P = - PM,(G) then

P(p-w)(s) = /Ggp(t(s_lt)_l)w(t, s71) dt = p(s)Pw(s) = 0.
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It is facile that each NP(K) is an M,,(G)-submodule. Thus each + PM,(G)N
NP(K) is an M, (G)-submodule, and the result for *CV,,(G) follows from
the density result, Corollary 2.3 (i), above. O

It is immediate that the action in (ii), above, induces actions of M, (G)
on each of A,(G) and A,(K) (each by pointwise multiplication) and on
A,(G), making each a continuous module. The spaces A,(K) are shown
to be Banach A,(G)-modules in [20], by a method quite similar to that
above. We note that the natural map P(w) — Pw : A,(G) — A,(G) is an
M, (G)-module map.

We shall have need to consider the adjoint action on the dual spaces.
That CV,(G) is a M,(G)-module seems also to be shown by Herz [16].

Corollary 2.7. The algebras CV,(G) and PM,(G) are dual Banach M,(G)-
modules:

<30'T7w> = <T730w>
If o € My(G) and h € CV}(G), then oh € CV,}(G) and
© - Ap(h) = Ap(h).

Proof. The first statement being an evident adjoint module operation, we
are left only to inspect the second statement. However, if £ ® f is an ele-
mentary tensor in N?(G), i.e. in NP(K) for some K, then arguments just
as in the proof of Theorem 2.2] (ii) provide that

(o Mh),€® 1) = (B 6 (€@ £)
= [ WP (o)) ds

:AK;mM@[g@ﬂf%w@

= (&, (ph) * f)

where the last interchange of integrals is justified as

(5:8) = lo(s)h(s)EE) f(s™')]
is integrable thanks to Holder’s inequality and Tonelli’s theorem. If f €
C.(G) then
[(0h) * fll, = sup{[{p - Ap(h), € @ f)] : € € LP(K), K € K(G), [|€][, < 1}
< [ - Ap(W ] f1lp-

Then taking supremum over such f with ||f||, < 1, reveals that ph €
CV,(G), and further gives the desired formula. O
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We note that A,(G) C M,(G), is an ideal within the latter space,
and the inclusion is a contractive map. Indeed if a = > "7 (&, A\p(+) fn)
in Ap(G), with > 77 [|Eall | fallp < 00 and each [[&ally [l fullp > 0, let &, =

—1 1/p 1 —-1/p’ — 00
€ully " 1 ally’” € and £, = 1&ally N Fully ™ fo Then 5(s) = (780002
in 7' (N, LP(G)) and a(t) = (A\,(t71) 1), in 2(N, LP(G)) show that a €
M, (G), with [lalla, < lalla,)-

Hence we get the following crucial result which will help us in the proof
of Theorem [L.11

Corollary 2.8. Let T € CV,(G) and a € A,(G). Then a-T € PM,y(G).

Proof. By a norm estimate, we may assume that a € A, (G). Furthermore,
Theorem (i) provides that 7" is a weak™® limit of \,(h;) for some h; in
CV,(G). Then the prior corollary provides that each a - A, (hs) = Ay(ah;),
where ah; € L] (G) with compact support, hence ah; € L*(G), so \,(ah;) €
PM,(G). Thus a - T = lim; a - A\p(h;) = lim; A\y(ah;) € PM,(G). O

Remark 2.9. We say that G is p-weakly amenable whenever A,(G) — if we
like A,.(G) — admits a net (¢;) of elements which is bounded in M,(G)
and tends to 1 uniformly on compact sets. For p = 2, this is the property of
weak amenability of de Canniere and Haagerup [7]. Remarks in the proof
of Theorem [L.T] in Section [ below, show that the assumption of 2-weak
amenability is sufficient to obtain general p-weak amenability.

Suppose that G is p-weakly amenable. Using the density of N?(G) in
NP(G), it is easy to conclude that ¢; - w tends in norm to w, for any w
in N?(G). Hence, by the last corollary, any 7" in C'V,(G) is approximated
weak™ by the (bounded) net of elements ¢; - T' from PM,(G). Hence we
have proved Theorem [L.1] for such groups. For amenable groups, this is the
proof of Herz [15]. For weakly amenable groups, this proof is hinted at by
Cowling [3].

3 Proof of the approximation result, Theo-

rem [1.1]

We recall that M (G) is a dual space. We identify L'(G) with its evident
image in My(G)*, acting by integration, and let Q(G) = Ll(G)MQ(G) ,
the closure of L'(G) in My(G)*. De Canniere and Haagerup [7] show that

My (G) = Q(G)*, and thus we define a weak*-topology on My (G).



On convoluters 13

As in Haagerup and Kraus [9], we say that G admits the approzimation
property if 1 € mm, i.e. there is a net (¢;) C A2(G) — we may suppose,
in fact that (p;) C Ay (G) — for which (1, ¢) = lim,(p;, q) for ¢ in Q(G).

The following claim is implicit in [9] (see notes prior to Proposition
1.3, there), but the proof offered seems incomplete since it is not known if
translations on My (@) are continuous in the translating variable.

Lemma 3.1. If f € L}Y(G) and ¢ € My(G), then f* o € My(G).

Proof. Since we have a contractive embedding My(G) — L*(G), we have
that for g in L*(G) that ||gllq < |lg]l1. Further My(G) is closed under left
translations, and translation operators are isometries, so Q(G) is a homoge-
neous space for left translation, and thus admits left convolution by elements
of LY(@). Also, Ms(G) consists of weakly almost periodic functions (see the
observation of Xu [24]) and hence of uniformly continuous functions, so fx*p

makes sense as a uniformly continuous function. Now we have

mm{ £ * o(s)g(s) ds
G

—mm{ o) * g(s) ds

<wmwpﬂf

where f(t) = A(t~1)f(t™"). Hence f o € My(G). O

weLWﬁans@

geLW%ans@

geL%>mmms1}:wmﬂmMz

The fact that Hilbert spaces, which are exactly the [SQs]-spaces, are also
[SQ,] spaces (see [17]) gives a contractive embedding Ms(G) — M, (G).

The following construction is modelled after Proposition 1.3 of [9].

Lemma 3.2. Fiz a in Ay, (G) with a >0 and [,a=1. For T in CV,(G)
and w in NP(G) let

Grw € Ma(G)" be given by qr.(e) = (T, (ax ¢) - w).

Then qr,., € Q(G).

Proof. It is evident that [|gru[lag < ||T]|||lw|lne(e). Hence by norm ap-
proximation, it suffices to show that if w € NP(G), say w € NP(K) for
some K in K(G), then qr.(¢) = [, ¢g for some g in L'(G). We may fur-
ther assume K is so large that a € A,(K). With these assumptions, let
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S = supp(a)~'supp(Pw), and we have
(@ Q) Po() = [ altholt™s)Pals)
= [ a5 el s) Puts) a
= [ 15t o) Pat) .

Let L = KK~'S7'U KK~ in K(G), which contains the support of each
a;Pw. We note that ¢ — a; : S™' — A,(L) is continuous. Indeed, on
elementary tensors £ ® f in NP(K), we have that (€ * f), = & x (\,(t)f)"
and left translation is continuous on elements of LP(G). Hence we realize

(a* p)Pw = / Ls(t et a; Pw] dt
G
as a Bochner integral in A,(L), i.e. respecting the norm || - |4, (z). Then let
g(t) = 1s() A NT, a1 Pw)

which defines an element of L'(G). We may thus use the dual pairing (2.2])
to compute

/sog—/ls (T, a; Pw) dt
(. /G Le( (o Pl ) = (T ) ).

This establishes the desired claim. O

Proof of Theorem[1d]. Let a be as in Lemma and (p;) C Az.(G) be a
net converging weak* to 1. Note that Ay .(G) C My(G) € M,(G), and
hence A, .(G) is a space of compactly supported elements of M,(G). The
argument just before Corollary 2.4 tells us that any compactly supported
element of M,(G) is in A, .(G). Since A,(G) is a homogeneous space for
left translations, we find that each a * ¢; € A,(G).

Given T in CV,(G), let gr,, be as in Lemma 3.2l Then we see that

((ax @) Tyw) = (T, (a*p;) - w) = qru(e:)
s gro(1) = (T, (ax 1) - w) = (T, w)

since a x 1 = [ fG a] 1 =1, by assumption on a. But Corollary 2.8 provides
that each (a * ¢;) - T € PM,(T), and hence so too the weak™ limit of this
net, 7', is also in PM,(G). O
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Hints of the Theorem [[T] are given by Cowling [3]. Given how heavily
we have exploited his results, i.e. Theorem 2.2] we suspect he knew how to
prove this.

Remark 3.3. The space M,(G) generally has a predual @),(G), as was
verified by T. Miao in an unpublished manuscript. Using this, An, Lee and
Ruan [I] defined the p-approximation property (p-AP), which is having 1 in
the weak™ closure of A,(G) in M, (G). As verified by Vergara [23], p-AP is
equivalent to p’-AP, and if 2 < p < ¢ < oo, then p-AP implies ¢-AP. Hence
p-AP for p # 2 is ostensibly more general than approximation property (2-
AP). However, it is shown in [23] that certain canonical higher rank simple
Lie groups fail p-AP for any p — the same ones known to Lafforgue and de la
Salle [I8] and Haagerup and de Laat [11] — giving convincing evidence that,
at least for connected groups and lattices within, that p-AP is equivalent
to 2-AP. No examples are known of groups admitting p-AP for some p, but
not 2-AP.

Nonetheless, it is simple to modify the Lemmas of this section to acco-
modate the assumption of p-AP. We refer the reader [23] for details.

4 Proof of the commutation results, Theo-

rem [1.2

Theorem 2.2] above, provides a very useful approximation of a convoluter T’
in CV,(G) by a bounded net of operators (A, (h;)) where each h; € CVP(G).
If we were conducting approximations for p = 2, then we need only consider
self adjoint T = T™ and we need not worry about determining the structure
of A\,(h;)*. For p # 2 we have no such luck. We overcome this difficulty
below. Furthermore, in the spirit of Theorem 2.2 we give a careful pointwise
approximation of a convoluter, on a dense subspace, by convolutions with
elements of L!(G).

We note that f — f, where f(t) = A(t™1)f(t™") for (locally) a.e. s,
defines an isometric involution on L' (G), and clearly defines a linear map on
I,
Hence if (f;) is a contractive approximate identity on L'(G), then so too
is (f;). Furthermore, if f € LY(G), then A\, (f)* = Ay (f), as is standard to
check. We also observe that since p,(s)* = p,(s71) for all s in G, we have

(T T € CV,(G)} = CVy (@),

(G) which satisfies (h* f)~ = f«h for any convolvable pair of elements.

Theorem 4.1. Let T € CV,(G).
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(i) Then there is a net of elements (k;) in CVP(G) for which (Ay(k;)) is
a bounded net in CV,(G) converging strong operator to T, and also
(k;) is a net in C'szf/(G) for which (A (k;)) is bounded in CV,(G) and
converges to T™.

(ii) Given g, f in C.(G) and € > 0, there is k in C.(G) for which
ITf = X(k)fllp < & and | T*g — Ay (K)glly < <.
Here k is dependant upon the choices of g, f and ¢.

Proof. (i) As in Theorem 2.2l we let (f;) C C.(G) be a contractive approxi-
mate identity for L'(G) and set h; = T'f;. We note that

Ap(hi) = Ap(Tfi) = TA(fi)-

Let g, f € C.(G). Since h; € LL(G), hi * g € L\ .(G) and, letting S =
suppf U suppg, we have

/ ok g(s)f(s) ds = / / . (t1)g(t15) f(5) dt ds
/SS 1/ To)dsdt

9, M) f) = (9, TAp (fz)f>_<p’(fi)T*gaf>'

Hence by density it follows that ;g = Ay (f;)T*g, and hence h; € CVi(G)
with

Ap(hi) = A (fi)T™.
We do not know of a means to see that h; € C’V;ff/(G). We use another
convolution to overcome this difficulty.

Let k; = fi * h;. It is clear that k; € CVP(G) with Ay(ki) = A\p(fi)Ap(hi),
and hence || Ay (k)| < | £ill A (ko). Likewise k; = h; * f; € CV(G) with
A (ki) = Ay (hi)Ap (i), with HA,,,(I%Z-)/H < [[Ap (Ra) [l fallr- Moreover, as T* €
CVpy(G) we have that T*(f;) € CV,; (G) and

A (ki) = A (hi) A () = A (F)T N (i) = A (i x T )
so k= fixT*(f;) € C’VZZI(G) too. We have that

[Ap(ki) f =T fllp = Ifix [Tfix f1 =Tfll,
S\fix[Tfix fl = fixTfllp + IfixTf =Tfllp
ST fix f =Tfllp + IfixTf =TFfllp
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which tends to zero. By uniform boundedness of the operators A,(k;) and
density of C.(G) in LP(G), we see that A,(k;) tends to 7" in the strong
operator topology. Similarly, the net (A, (k;)) is bounded and tends to T*
in the strong operator topology.

(ii) Let 6 > 0. Let ¢ be such that

ITf — ki x fllp, < 6 and |T*g — ki + gy < 0.
Inner regularity of the Haar measure provides K in K(G) for which
sz — 1Kkl“p < ¢ and H];ZZ — 1K*1]%i||p’ < 0.

Let k = 1gk; which is in L' N LP(G), and note that k = 1g-1k;. Since
1% f = p,(A~Y7 )l for [ in LP(G), we have that

ITf = ks fllp < NTf = ki fllp + k= f = F = fllp
<3+ [lpp (AP f)lo.
Likewise we have that
ITg =k * glly <6+ oy (A g)]l0.
Hence an obvious choice of § yields the desired inequalities. O

We note that the sorts of global estimates found in (i), above, were
required to obtain the pointwise estimates of (ii).

Remark 4.2. As noted in the introduction, there is a self-inverting isometry
U on LP(G), which intertwines A, and p,: UM, (s) = p,(s)U for s in G. Hence
U* intertwines A,y and p,. We let CV)(G) = A\, (G)' so

CV(G) = (Upp(G)U) = Upy(GYU = U CV,(G) U.

If S e CV)(G)and g, f € Cc(G), then U*g, U f € C.(G). Hence, given € > 0
Theorem FT] (ii) provides &' in L'(G) for which

[USUUf = A(KVU flp < & and [[(USU)*U*g = A (K)U* g,y < &

hence multiplying the arguments of the expressions by the respective isome-
tries U and U* we obtain

I1Sf = pp(K) fllp < € and [[S*g — py (K) gl < e.

The key reason we have Theorem [T} is that for k, &’ in L'(G) we have
Mo(K)pp(K') = pp(K)Ap(k). We do not know how to verify directly that
Ap(h)pp(R') = pp(R)Ap(R) for b, B in CVP(G).
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Proof of Theorem[L2. Let PM)(G) = U PM,(G)U = Iin""p,(G). We have
that
PM,(G) = \(G) = CV)(G) 2 PM,(G) and PM,(G)" = CV,(G).
Thus it follows that
PM,(G)" = CV,(G) € PM,(G) = CV,(G).
Hence we will be done once we show that CV,(G) € CV)(G), ie. if T €
CV,(G) and S € CV)(G), we wish to see that T'S = ST.
To this end, fix g, f in C.(G). As in Theorem [L1] (ii) and Remark F2]
given ¢ > 0, find k, k" in L'(G) for which
ITf = Xp(k)fllp < € and [T%g — Ay (K)glly <&
1Sf = po(K) fllp < € and [|S"g — py (K)glly <e.
Then

(9. TSf) — (g, \p(k)pp(K') )]
< (T*g,Sf — pp(K)F)| + (T"g — Ay (k) g, pp(K') £)]
< |ITNgllye +ellpp(E) fllp, < AT Mgl + SNl + €)e

and, by a similar calculation, we see that

(g, STf) = (g, pp(K)Ap(R) L)1 < (1SN N9l + I TIMIgllp + €)e-
Since A\, (k)p, (k') = p,(K)\,(k) for any k, k' in L'(G), we can take € to 0
and see that
(9, TSf) = (9, 5Tf).
Hence by density we see that (¢, T'Sf) = (¢, STf) for any ¢ in L? (G) and
fin LP(G), so T'S = ST, as desired. O

We obtain an “elementary” proof of Dixmier’s result [§], i.e. without use
of left Hilbert algebras. The common algebra in the result below is usually
denoted V N(G) and called the group von Neuman algebra.

Corollary 4.3. We have that
CVa(G) = CV3(G)' = PMy(G) = PM3(G)'.

Proof. Here \o(@G) is a self-adjoint subset of B(L*(G)), so VN(G) = PM,y(G)
is self-adjoint. The bicommutant theorem of von Neumann, [22], I1.3.9] for
example, tells us that PMy(G)" is the o-strong® closure of PMy(G). As a
convex subspace of B(L?(G)) is weak*-closed if and only if it is o-strong*
closed (see [22, 11.2.6]), we see that PMy(G)" = PMs(G). The rest follows
from the theorem above. O
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