N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title The influence of expertise on maritime driving behaviour
Type Article

URL https://clok.uclan.ac.uk/id/eprint/22384/

DOI https://doi.org/10.1002/acp.2925

Date 2013

Citation | Godwin, Hayward J., Hyde, Stuart, Taunton, Dominic, Calver, James, Blake,
James I.R. and Liversedge, Simon Paul (2013) The influence of expertise on
maritime driving behaviour. Applied Cognitive Psychology, 27 (4). pp. 483-
492. ISSN 0888-4080

Creators | Godwin, Hayward J., Hyde, Stuart, Taunton, Dominic, Calver, James, Blake,
James I.R. and Liversedge, Simon Paul

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1002/acp.2925

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/



http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

EXPERTISE AND MARITIME DRIVING

Running head: EXPERTISE AND MARITIME DRIVING

The Influence of Expertise on Maritime Driving Behaviour
Hayward J. Godwin, Stuart Hyde, Dominic Taunton, James Calver, James I. R. Blake
and Simon P. Liversedge

University of Southampton, UK

Author Note
H.G. and S.P.L. supported by funding from the Economic and Social Sciences Research
Council (grant ref. ES/1032398/1). S.P.L. supported by a grant from the Leverhulme Trust. The
authors wish to thank Eyal Reingold and one anonymous reviewer for their comments on an
earlier version of this paper. Correspondence regarding this article should be addressed to
Hayward J. Godwin, University of Southampton, School of Psychology, Highfield,
Southampton, Hampshire, SO17 1BJ. Tel: +44(0)2380 595078; Email:

hayward.godwin@soton.ac.uk.



mailto:hayward.godwin@soton.ac.uk

EXPERTISE AND MARITIME DRIVING 2

Compared to other driving tasks such as road driving, the study of human behaviour and
expertise in maritime behaviour has been relatively rare (Forsman, Sjors-Dahlman, Dahlman,
Falkmer, & Lee, 2012). This is unfortunate because studying expertise and maritime driving
behaviour not only offers a route to determine whether the results obtained in road driving
studies are applicable to a wider variety of driving and related tasks, but it also offers a driving
environment which is markedly different from that of road driving.

In the present study we explored the influence of expertise upon maritime driving
behaviour, as well as how increasing the hazardous nature of the sea state influences maritime
driving behaviour. To our knowledge, this is only the second study that has examined eye
movement behaviour, expertise and maritime driving behaviour, following the work of Forsman
et al. (2012), which will be described in detail below. We used a simulated maritime driving task
and manipulated the severity of the sea state by increasing the wave amplitude (height) and
increasing the wave period (length of waves) between different conditions. Participants not only
had to react to waves that had a greater length, but they also had less information regarding the
height of upcoming waves, because the currently visible waves, when they had a higher

amplitude, obscured the upcoming waves from view.

Information Processing Demands in Driving

Visual information processing demands.

Although different driving tasks may place different demands upon the cognitive systems
of drivers, there are a number of commonalities amongst them. Drivers must observe and react to
a changing visual environment as they move through it. In road driving, drivers must

continuously monitor the road as well as other vehicles, road signs, pedestrians, and other



EXPERTISE AND MARITIME DRIVING 3

objects. Examinations of eye movement behaviour during road driving have demonstrated that
drivers tend to fixate the area surrounding the focus of expansion in the scene (Chapman &
Underwood, 1998). Doing so enables them to fixate, identify, and react to upcoming changes in
the road or environment as rapidly as possible. This process is supplemented by active visual
search (Treisman & Gelade, 1980) of the environment for potential hazards, which, in eye
movement terms, has been related to the horizontal spread of fixation positions during driving. In
a study which examined eye movement behaviour while participants watched a series of video
clips taken from a driver’s perspective, Chapman and Underwood (1998) found that roads which
placed greater monitoring demands upon participants increased the horizontal spread of fixation
locations. They compared rural driving, where no other vehicles or pedestrians were present,
with suburban driving, where many other vehicles and pedestrians needed to be monitored, and
dual carriageway driving, where multiple lanes of vehicles needed to be monitored. In the rural
driving conditions there was a limited horizontal spread of fixation positions, with participants
making fixations closer to the focus of expansion, which were, in addition, of longer duration
than those in the suburban and dual carriageway conditions.

When a hazard is detected during visual search, drivers reduce the spread of their search
and focus on the hazard itself. Chapman and Underwood (1998) also presented participants with
a series of video clips of road driving from the driver’s perspective and examined fixation
patterns at the time of the appearance of various hazards (e.g., a bicycle appearing on the side of
the road). They found that participants rapidly fixated the hazards after they appeared, but also
that the participants then fixated the hazards to the detriment of continuing to search the
environment for other hazards. This, they suggested, could be a significant risk factor in drivers

detecting one hazard at the expense of others.
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Turning to our maritime driving study, in terms of the horizontal and vertical spread of
fixations, we expected to observe a similar pattern of eye movement behaviour to that which has
been observed in road driving. Although the maritime environment may not often contain large
numbers of vehicles, pedestrians or signs to monitor, it does contain a large number of waves
that need to be monitored as the craft travels through the seaway. Upcoming waves can approach
maritime craft directly (so-called ‘head waves”), or can approach the craft from different angles,
and at different speeds. Waves can interact with one another, often in a manner that the driver
may not be readily able to predict. Thus, although the seaway may not contain as many discrete
objects as in road driving, there is still a great deal of information that needs to be monitored for
potential hazards in order to enable the driver to react appropriately to navigate the craft. In fact,
this monitoring process may be more difficult in maritime driving because of the fact that
individual waves are less salient than discrete objects such as pedestrians and other vehicles in
road driving, and because multiple waves can be travelling towards the craft simultaneously from
different angles and at different speeds.

Interaction and multi-tasking demands.

Driving also involves the need to interact with control and navigation systems for a
vehicle (e.g., speedometers, GPS, route planners, radar, etc.). The use of these systems may, in
some cases, distract drivers from monitoring the visual environment around them. Furthermore
the use of these systems may be such that they constitute a secondary task that needs to be
conducted alongside driving. It has long been demonstrated that secondary tasks can often impair
performance in a primary task (for reviews, see Damos, 1991). In the study of road driving, it has
been found that interacting with in-vehicle systems such as the vehicle’s entertainment system

causes a significant reduction in the speed which hazards are responded to (Horberry, Anderson,
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Regan, Triggs, & Brown, 2006). From an eye movement perspective, this may well not be
surprising, since the drivers may fail to react to hazards simply because they had been fixating on
the in-vehicle systems instead of monitoring the road for upcoming hazards. In the context of
maritime driving, there are likely to be a number of in-vehicle systems for the drivers to interact
with, including auditory warning and instruction systems, navigation systems, a chart plotter
highlighting the route being taken, and others besides (though naturally this depends upon the
type of craft being driven).

The use of navigation systems in maritime driving is an important consideration, given
that, at sea, there are fewer features that can serve as landmarks to aid navigation. During road
driving, there is an abundance of navigational cues (road signs, familiar buildings or locations),
but this is not the case at sea. As such, it may be the case that maritime driving requires more
extensive reliance upon in-vehicle information systems than car driving. Forsman et al. (2012)
tracked participants’ eye movement behaviour when they were engaged in driving a maritime
craft at sea, and were given full access to navigational controls, charts, GPS and radar. At higher
driving speeds, participants spent less time fixating the navigational controls than fixating the
seaway. This is an important point since it suggests that, in live maritime driving, craft drivers
will prioritise the rapidly-changing visual information present in the seaway rather than the
navigational systems. Doing so could serve to minimise risks associated with driving at a higher
speed, but may come at the cost of drivers being less likely to follow their intended route that
was originally planned.

In addition, driving often involves the requirement to converse or communicate with
others. Again, this may serve as a form of secondary task that may impair the driver’s ability to

focus on the visual environment itself. To study distractions of this type, Recarte and Nunes
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(2003) engaged participants in a simulated road driving task and asked them to search for targets
while driving. Participants were given a secondary task to carry out alongside the primary visual
search task. When the secondary task involved participants listening to a sound stream for a later
recall test, there was no detriment upon search performance. However, when participants had to
perform mental calculus or recall previously learned information alongside the primary driving
and search task, there was a significant and negative influence upon search and driving
performance. The spread of fixations was also reduced, suggesting that some forms of secondary
tasks have a negative influence upon visual search for hazards while driving. Recarte and Nunes
(2003) also noted that conversations with others may only be detrimental to performance at
critical moments when hazards appear, and that drivers may develop compensatory strategies to
react to their reduction in performance: for example Haigney, Taylor and Westerman (2000)
reported that the use of a mobile telephone while driving did impair driving performance, but
also that participants did reduce their speed while engaged in conversation on the mobile
telephones (see also Beede & Kass, 2006).

Together the evidence described above points to a number of potential routes through
which maritime driving can be compared to road driving, and how both forms of driving may be
impaired given the demands of the visual environment, and also the demands of monitoring and
responding to the visual environment while also operating in-vehicle control and navigation

systems.

Expertise and Driving Hazards
There has been a long history of research examining expertise in relation to a wide

variety of visual cognitive tasks, including the analysis of eye movement behaviour and how it is
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modulated by expertise. Though divergent depending upon the tasks and forms of expertise,
many of these studies have demonstrated that experts are more readily able to extract information
and rapidly make decisions than novice participants, partly due to the manner in which they
sample visual information from the displays presented to them (for reviews, see Nodine &
Mello-Thoms, 2000; Reingold & Sheridan, 2011).

Within the context of driving behaviour, expertise has been shown to have a number of
direct influences on the two core aspects of eye movement control: when to move the eyes and
where to move the eyes (for a review, see Rayner, 2009). As discussed above, Chapman and
Underwood (1998) compared expert and novice eye movement behaviour while participants
viewed a series of video clips of driving scenarios with potentially dangerous events (e.g., cars
ahead braking unexpectedly). They found that novice participants had longer fixation durations
than experts, demonstrating that expertise influences the decision regarding when to move the
eyes. They also found that expert participants showed a greater horizontal spread of fixations
than novices, while novices had a greater vertical spread of fixations than experts, indicating that
expertise influences where to move the eyes. It appears that experts restrict the extent to which
they attend to aspects of the scene away from the horizontal mid-line, instead maintaining their
attention along the horizontal axis. These findings have since been replicated in subsequent
studies. For example, Crundall, Chapman, Phelps and Underwood (2003) asked participants to
view video clips from normal driving and police pursuit driving, where police officers were
driving to apprehend a target suspect. They found again that novice participants had longer
fixation durations than the police (regarded as experts), and that the police participants had a

greater horizontal spread and smaller vertical spread than the novices (see also Crundall &
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Underwood, 1998; Mourant & Rockwell, 1972; Underwood, Chapman, Bowden, & Crundall,
2002).

The results regarding expertise in the previous studies were explained as follows. For
fixation durations, it was argued that novice road drivers exhibited longer fixation durations than
experts because increases in fixation duration reflect an increase in the difficulty of processing
the information from a given fixation (Rayner, 2009). These previous studies have also shown
that smooth pursuit behaviour (i.e., fixations that track objects as they move through the scene)
decreases as road drivers gain more experience (Chapman & Underwood, 1998; Mourant &
Rockwell, 1972; Rogers, Kadar, & Costall, 2005). Next, for the horizontal spread of fixation
locations, this was explained in terms of the fact that expert participants had learned to broaden
their spread of fixation locations from experience in road driving, as doing so enabled them to be
more readily able to detect hazards on the road. Finally, the fact that novice participants show an
increased vertical spread of fixations proved more difficult to explain. It has been suggested that
novice participants show a basic tendency to look further ahead to the upcoming road than
experts, perhaps because they are taught to do so by their instructors (Chapman & Underwood,
1998).

In a live maritime driving task, Forsman et al. (2012) compared experienced versus
inexperienced driving behaviour while tracking participants’ eye movements. They found that
the inexperienced drivers spent a greater portion of time fixating the navigational equipment in
the vehicle than the experienced drivers. This finding was explained in terms of the notion that
experienced drivers either relied more upon environmental cues to navigate or that experienced
drivers could operate the navigational equipment more efficiently than inexperienced drivers, so

required less time using the equipment. They also found no differences in fixation durations
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between experienced and inexperienced drivers, though this result is somewhat difficult to
interpret since they did not break their analyses of fixation durations down as a function of the
area being fixated (e.g, seaway versus navigation instruments). However, it should be noted that
they did find evidence of shorter fixation durations when participants were travelling at higher

speeds, in line with studies of road driving described above.

The Present Study

In the present study, we engaged a group of novice and expert maritime drivers in a
maritime driving simulator while their eye movement behaviour was tracked. Participants
controlled their speed of travel as the craft traversed the seaway. The severity of the sea state
through which they were travelling was controlled. The levels of severity were selected from the
Douglas Scale, see Table 1, and utilised the sea states of “Slight”, “Moderate” and “Rough”. We
selected these levels of severity based on the fact that less-severe sea states than “Slight” present
very few waves for the participants to examine and that more-severe sea states than “Rough”
would be more likely to cause the craft to tip or roll, and the simulator is not yet able to respond
accurately to the tipping or rolling of the craft. The simulator has been developed to accurately
generate wave forms in real-time, as well as the interaction between a craft and those wave
forms.

Despite the high level of realism in terms of the waves themselves, there were a number
of limitations to the simulator and the simulated task. The simulator did not provide participants
with the ability to make left or right turns, and instead participants travelled in a straight line
through the seaway. The simulator also did not present navigational controls and instruments to

participants. Despite these limitations, the simulated environment was such that it did enable us
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to directly assess expert and novice behaviour in relation to the information presented by the
seaway during maritime driving.

We predicted that the novice participants would travel at a slower speed when using the
simulator. This prediction was based upon studies of road driving which have demonstrated that
novice drivers drive at a lower speed than experienced drivers (Mueller & Trick, 2012).
Furthermore, examinations of how novice and expert drivers adapt their speed to different road
conditions (e.g., fog versus clear weather) have demonstrated that experienced drivers adapt their
speed to the conditions. In conditions of fog, experienced drivers slow their speed considerably
(Mueller & Trick, 2012). We therefore predicted that, in the present study, the expert maritime
drivers will have a higher speed than the novice drivers, and that the expert drivers will also
adapt their speed to slow down as the severity of the sea states increase. This pattern of
behaviour can be explained in terms of the fact that experts have high-level knowledge and
experience to draw upon when operating the craft in severe wave conditions, and understand that
the appropriate response in such conditions is to slow their speed. This in turn enables them to
make judgements regarding the rapidly approaching waves more readily.

Given that the findings regarding the spread of fixations and changes in fixation durations
between novice and expert drivers have been replicated in a number of studies of road driving
behaviour, we also expected to find that novice drivers engaged in a maritime driving simulator
would have longer fixation durations than expert drivers, coupled with a decreased horizontal
spread of fixations (Chapman & Underwood, 1998), and a greater degree of smooth pursuit
behaviour (Chapman & Underwood, 1998; Mourant & Rockwell, 1972; Rogers et al., 2005).
Furthermore, as we varied the severity of the sea state through which they were driving the craft,

we anticipated that, as in previous studies, novice participants would fail to shift their eye
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movement behaviour dependent upon the sea state, while experts would modify their eye
movement behaviour in such a manner that would enable them to respond to the difficulties
presented by increasing sea severity.

Finally, turning to the vertical spread of fixations, we sought to determine whether the
previous results that found that novices had a broader vertical spread than experts was replicable
in a different form of driving task (Crundall & Underwood, 1998). Doing so could resolve
whether it was the case that novice participants in road driving studies described above had a
greater vertical spread of fixations because they had been taught to do so by their instructors.
Indeed, in the present study, we recruited novice participants who had no prior training or
experience in maritime driving. If we were also to find that novice participants had a broader
vertical spread of fixations than experts, then this would indicate that a broader vertical spread of
fixations reflects novice behaviour and a lack of expertise in driving task, rather than being a
result of the instruction and training given to novice drivers when initially learning to drive on
the roads.

Method

Participants

Thirty-six participants were recruited for the study: 18 novice participants (mean age =
23.39, SD= 4.43) who had no prior experience with boat driving and 18 expert participants
(mean age = 33.16, SD= 13.39) with at least four years of boat driving experience (mean boat
driving experience in years = 16.33, SD=10.19). The expert participants were recruited from an
opportunity sample of Royal National Lifeboat Institution (RNLI) drivers, P1 powerboat drivers
and Royal Yacht Association (RYA) boat drivers. All expert participants reported having

experience driving in a wide variety of weather and sea conditions. Participants were paid for
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their participation with £3 or course credits. In addition, all participants reported normal or

corrected-to-normal visual acuity as well as normal colour vision.

Apparatus

Stimuli were presented on a 19-in monitor with a resolution of 1280x1024 pixels, a
refresh rate of 100Hz and a viewing distance of 71cm. Eye movements were recorded using an
Eyelink 1000 running at 1000Hz (i.e., 1 sample per millisecond). A nine-point calibration
procedure was used and accepted only if the average error was less than 0.5° of visual angle and
the maximum error was less than 1.0° of visual angle. Head position was stabilised using a chin
rest. Finally, participants controlled the speed of the boat using a throttle attached to the

simulator computer.

Stimuli

Participants were presented with a simulated seascape for the duration of the study (see
Figure 1). The simulator itself was implemented in Matlab and Simulink. The simulator utilised a
wave physics engine that is based upon current modes of wave behaviour (Zarnick, 1979) and
has previously been validated by Blake (2000). It is important to note that wave behaviour and
modelling is a highly complex process, and the simulator produces a highly realistic and accurate
simulation of actual real-world boat dynamics subject to the encountered wave environment.

[Insert Figure 1 around here]

The severity of the waves was determined by entering a set of wave parameters into the
simulator. Each participant was presented with a randomly-generated set of waves based upon
the parameters which determined wave severity. Wave severity was determined by selecting

wave sizes based upon the standard measure of wave size: namely, the Douglas sea states
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(EuroWeather, 2012). We chose Douglas sea states three, four and five, which corresponded to
slight, moderate and rough seas respectively. Each sea state was composed of two different wave
characteristics, wave amplitude, wave frequency and wave period (see Table 1). All waves
presented were head waves: in other words, these were waves that approached the boat head on,
rather than oblique (side) waves or a combination of the two (Calver et al., 2011).

[Insert Table 1 around here]

Design and Procedure

Participants were asked to drive the simulated craft safely through the seascape whilst
controlling the speed of the boat with a throttle. Participants completed three practice trials, each
lasting 90 seconds, to familiarise themselves with the task and throttle controls. There were
three main trials 90 seconds each. We counterbalanced the order of the three different levels of
wave severity using a Latin Square design.

At the start of each trial the throttle was returned to the upright position. During the first
ten seconds of each trial the seascape slowly ramped from a flat state into a seascape of the

required intensity for the wave size and period selected.

Results
In the results below, we begin by describing our analytic approach for this study, and the
manner in which the data were prepared for analyses. We then describe the results of those
analyses in relation to a series of dependent measures. First, we examined the behavioural
measure of throttle speed in order to assess the ability of the expert and novice participants to
react to the complexity of the sea states. Next, we examined fixation durations to determine

whether there were any basic processing differences between expert and novice participants.
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Finally, we examined the spread of fixations in expert and novice participants as a function of
wave severity, examining the spread of fixation position both within fixations, and across
fixations in the task. It should be noted from the outset that although it would have been ideal to
examine fixation locations in terms of the specific waves being fixated, this was not possible
with the current simulator set-up. For that reason we focus on broader, global measures of eye
movement behaviour in order to assess the predictions described above.
[Insert Figure 2 around here]

Analytic Approach

Studies in which dynamic, moving displays produce a qualitatively different form of eye
movement data than studies which use static displays. Unlike static displays, where participants
tend to make fixations of relatively short duration, in dynamic displays like those used here,
participants often make longer, ‘smooth pursuit’ fixations, during which the fixation position
moves slowly enough to enable the acquisition of visual information without making a saccade
(which would prevent the acquisition of visual information). This fact is highlighted below in
Figure 2, which presents a histogram of fixation durations (after the data had been cleaned as
described in the ‘Data Preparation’ section below). Note that there is a long tail to this skewed
distribution. With that in mind, we utilised Mixed Linear Models (MLMs) to determine if, and
how, expertise modulated behaviour when engaged with the task.

[Insert Figure 3 around here]

The use of MLMs to analyse our data offered a number of significant advantages over
standard statistical tests (e.g., ANOVAs, t-tests). First, we were able to capture the full variability
of the dataset, since MLMs examine data pertaining to each fixation or saccade, rather than

mean-averaging the data as is the case with standard statistical tests. This is important since we
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are analysing data derived from a dynamic, changing environment so the data were naturally
more variable than would be observed in a static task. Second, MLMs are able to take into
account the fact that different participants were involved in the study. Participants can be added
as a random factor to the models, and the resulting models can shift their fits based on each
individual participant. This is useful for the goals of the present study, because, although we
compared expert and novice behaviour, it is likely that the experts, though defined as a group
here, may be able to achieve a level of ‘expert’ performance in many different ways. As a result,
the variable strategies or methods adopted by the expert participants to complete the task can be
captured, to a certain extent, by allowing the model to modify its fit based on each participant.
We conducted a series of five MLMs in total. These examined throttle speed, fixation
durations, distance travelled during smooth pursuit fixations, saccade amplitudes, fixation
position on the x-axis and fixation position on the y-axis. The models were constructed and
examined using R (R Development Core Team, 2011). All reported p-values were generated
from posterior distributions for the model parameters which were obtained using Markov Chain
Monte Carlo sampling. For all models, we entered participants as a random factor. We also
included sea severity and expertise as fixed factors. In the first instance of each model, we
allowed expertise and sea severity to interact. We then compared the initial model fit for each
dependent variable with a series of subsequent models which removed the interaction term and
the factors. In the analyses below, we report results from only the best-fitting models in all cases.
We conducted contrasts in order to explain main effects and interactions within the models using
the multcomp R package (Bretz, Horthorn, & Westfall, 2011), using the Tukey correction for

multiple comparisons where required.

Data Preparation
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We began by removing any fixations in the first ten seconds of each trial. During this
time, the sea state went from being flat to reaching the desired characteristics set out for that
particular condition. Next, we removed any fixations that were shorter than 80ms in duration,
causing the removal of 2.1% of all fixations. We also removed fixations that were greater than
2000ms in duration, causing the removal of 1.6% of all fixations. The final dataset consisted of

13,121 fixations in total.

Throttle Speed

To explore the speed at which the participants travelled, we examined the throttle speed
as a function of expertise and sea severity. Throttle speed is an indication of speed given by the
throttle position, similar to the accelerator position in a car. As the throttle speed was recorded
every 25 milliseconds, this gave us a substantial dataset to examine (387,288 throttle samples in
total). As can be seen in Table 2, there was a significant effect of sea severity, no main effect of
expertise, and an interaction between sea severity and expertise. Overall, the expert participants
travelled at a faster speed than the novice participants, and both groups decreased their speed as
wave severity increased (see Table 3). However, the expert participants only made a significant
drop in speed for the rough seas; their speed in the slight and moderate conditions changed by
only a small degree. The novice participants, on the other hand, showed evidence of making
larger reductions in their speed between the three different levels of sea severity. In many senses,
this result is not surprising: the expert participants will have a considerable degree of experience
with driving boats in varied levels of sea severity, and so will be able to engage with the task
efficiently at faster speeds. Still, this is an important result as it indicates that there is a

fundamental difference in how the participants engaged with the task. To explore how this might
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relate to fundamental differences in information selection and processing, we next considered the
eye movement measures of expert and novice participants in detail.
[Insert Table 2 around here]

[Insert Table 3 around here]

Fixation Durations and Smooth Pursuit Behaviour

Fixation durations.

Fixation durations are known to increase when task difficulty increases, or when more
detailed processing is required to complete a task (for a review, see Rayner, 2009). If the novice
participants in the present study found it more difficult to extract information from the displays,
then they may have longer fixation durations than the expert participants, and furthermore, this
effect may become magnified as the wave size increased. We therefore used a MLM to examine
fixation durations in a similar manner to the throttle speeds, after log-transforming fixation
durations to reduce skew in the data. Results from the MLM are presented in Table 2 and
descriptive statistics are presented in Table 3. This MLM indicated that there was an overall
significant difference between expert and novice participants, significant differences in fixation
durations as a function of sea severity, and an interaction between sea severity and expertise.

The interaction was due to the fact that expert participants showed evidence of longer
fixation durations overall than novice participants, but the crucial difference between the two
groups is the fact that the two participant groups diverged in their fixation durations as a function
of sea severity. We used a series of contrasts to determine that the fixation durations of the
novice participants did not differ across the levels of sea severity (ps>.3). Next, although the

expert participants showed no evidence of differences in their fixation durations between the



EXPERTISE AND MARITIME DRIVING 18

slight and moderate levels of sea severity (p=.9), their fixation durations did significantly
decrease for the rough sea severity condition (ps<.0001).

Together with the behavioural throttle speed data, the analysis of the fixation durations
revealed that there were fundamental information processing differences between expert and
novice participants as they engaged with the task. The novice participants not only drove the
craft at a slower speed than experts, but they also failed to change their eye movement behaviour
as a function of wave severity. The most likely explanation for this finding is that the novice
participants could not draw upon any past experience in boat driving in order to respond
accordingly to the demands placed upon them by the task.

Smooth pursuit behaviour.

An important characteristic of the fixations made during this task is that, since the
displays were dynamic, then participants could follow or track the waves or other aspects of the
seascapes using ‘smooth pursuit’ eye movements. Such behaviour has previously been noted to
occur more often in novices than experts in road driving studies (Chapman & Underwood, 1998;
Mourant & Rockwell, 1972; Rogers et al., 2005). To assess smooth pursuit behaviour in our task,
we examined the distance travelled during such fixations using a MLM with the same design as
described for the fixation duration data, once again log-transforming the distances to reduce
skew. Results from the MLM are presented in Table 2 and descriptive statistics are presented in
Table 3.

The MLM indicated that there was an overall significant difference between expert and
novice participants in distance travelled during fixations as a function of sea severity, and finally
a marginal interaction between sea severity and expertise. We then compared the distance

travelled as a function of sea severity for the two participant groups using a series of contrasts.
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There were no differences in distance travelled during smooth pursuit fixations as a function of
sea severity for the novice participants (ps>.4). The expert participants showed a different pattern
of results, with there being no difference in the distance travelled between the slight and
moderate sea severity conditions (p=.93), however their distance travelled during fixations did
decrease for the rough condition (ps<.0001). In line with the examination of the fixation duration
data, the distance travelled data show evidence of novice participants being inflexible in adapting
to the changing levels of sea severity. Furthermore, contrary to studies of road driving, it was
found that experts, rather than novices, had a tendency to engage in more smooth pursuit eye

movement behaviour.

Spread of Fixations

Fixation durations can only inform us about the temporal aspects of eye movement
behaviour, and provide no information regarding the spatial aspects of eye movement behaviour.
Consequently, we examined the spread of fixations as it was predicted that expert and novice
participants would show differential sampling patterns of eye movement behaviour in terms of
their spread of fixations. We used a similar approach to previous studies (e.g., Underwood et al.,
2002) and examined fixation position on the x- and y-axes separately. These previous studies
have focused on examining the variance of fixation positions from the centre of the display,
aggregating the results into mean-averaged data. Here, since we are utilising MLMs, we
examined the actual distances of each fixation from the mean fixation location along the x- and
y-axes respectively, rather than the variances. For both the x- and y-axes, we log-transformed the
distances before analysis to reduce skew. Details of the model fits are presented in Table 2 and

means for the groups are presented in Table 3.
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The analyses of the spread of fixations in terms of both horizontal and vertical spread
both revealed evidence of main effects of expertise, sea severity, and an interaction between
these two factors. We will now explore these interactions separately for the horizontal and
vertical spread of fixation measures.

Both participant groups increased the horizontal spread of their fixations as sea severity
increased. However, the expert participants had reduced horizontal spread of fixations in slight
sea conditions relative to the novices, but their horizontal spread of fixations increased to a level
comparable to novices for moderate sea conditions and surpassed that of novices for rough seas.
Overall, the data indicate that experts modulate the horizontal extent of their saccadic behaviour
over a far greater range for different sea conditions than the novices. In line with this, a series of
post-hoc contrasts demonstrated that there were significant differences in horizontal spread for
both groups between the slight sea severity and rough severity conditions (ps<.01). The
difference between the shift in behaviour between the two groups is interesting, and may be
important when driving at sea: greater horizontal scanning could enable participants to detect
sudden changes in waves, especially in rough weather conditions. It appears that the expert
participants are aware of this and have learned to adapt their eye movement behaviour
accordingly.

Turning to the vertical spread of fixations, we found again, as with the horizontal spread
of fixations, that increasing sea severity caused participants to spread their fixations over a
greater distance. This was confirmed by a series of contrasts comparing slight with rough sea
conditions separately for expert and novice participants (ps<.001). Furthermore, the expert and
novice participants were compared at each level of sea severity, and significant differences were

found in their vertical spread of fixations for the moderate and rough sea levels only (ps<.001).
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What this means is that the expert participants, though they, like the novices, increased the
vertical spread of their fixations as wave severity increased, they did so to a lesser extent than the
novice participants.

As with the throttle speed analyses and fixation duration analyses, the spread of fixations
analyses indicated clear differences between expert and novice behaviour. This indicates that not
only are there behavioural differences in terms of the throttle speed, as well as basic information
processing differences in terms of fixation durations, but there are also fundamental differences

in where the information from the displays was sampled by the expert and novice participants.

Discussion

In the present study, we examined the influence of expertise upon maritime driving
behaviour. We examined behaviour both in terms of throttle speed and eye movement behaviour.
Overall, our goal was to compare results from maritime driving with those of other driving tasks,
and in particular, road driving, in order to determine commonalities in expertise between
different driving domains.

We began by examining the throttle speed for the expert and novice participants. As
anticipated, the expert participants travelled at a higher speed than the novice participants. This
result has also been found in studies of road driving (Mueller & Trick, 2012). In addition, we
found that both groups of participants reduced their speed as sea severity increased, and the
novice and expert participants did so to a similar degree, (c.f., Mueller & Trick, 2012). Within
maritime driving, a reduction in speed is beneficial since higher levels of sea severity both
decreases the time between waves and increases the height of the waves. As a result, the driver

needs to not only react to more waves approaching at any one time point, but also to the fact that
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the waves may not necessarily be visible due to the increased height of previous waves. This
makes it essential for drivers to reduce their speed in order to be able to make accurate
judgements and react to the upcoming waves. It is clear from the throttle speed data that the
expert participants modulated their throttle speed only very slightly for the moderate sea
conditions, but reduced throttle speed considerably for the rough sea conditions. In contrast, the
novices modulated their throttle speed to a similar degree between slight, moderate and rough
seas. Again, note that overall, experts maintained higher throttle speeds than novices. Taken
together the data indicate that experts drive with increased throttle speeds in moderate
conditions, and only reduce their throttle speed in rough sea conditions. Novices react similarly
to changes in sea state from slight to moderate to rough. This finding indicates that expert
maritime drivers are able to maintain increased speeds in less favourable sea conditions, which in
turn means that they must process visual information with respect to sea state at a faster rate than
novices (due to their increased speed). This suggestion is particularly interesting in relation to
differences between the eye movement behaviour of experts and novices discussed below.

In terms of the eye movement behaviour, we examined fixation durations and the spread
of fixations in the scene. Previous studies of road driving have found that novice drivers have
shorter fixation durations than expert drivers (Chapman & Underwood, 1998; Mourant &
Rockwell, 1972; Rogers et al., 2005). Surprisingly, we found the opposite effect here: expert
participants had longer fixation durations than novices. In a further divergence from studies of
road driving (Chapman & Underwood, 1998; Mourant & Rockwell, 1972; Rogers et al., 2005),
which have reported a decrease in smooth pursuit behaviour for experienced drivers, we found
that expert participants showed a tendency to engage in more smooth pursuit eye movements

than novice participants. Alongside the fixation duration data, the pattern of results can be
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explained in that fixations by experts during maritime driving involve steady pursuit movements
that enable the driver to gradually follow waves as they move within the display, rather than
making multiple static fixations at different points within the display. In order to explain why our
results do not match those observed in road driving studies, it is worth reflecting on the most
fundamental difference between the physical environment road driving, and that in maritime
driving. In road driving, the physical surface, and to some extent the environment within which
the vehicle is being driven, is quite static. Of course, during road driving there are aspects of the
scene that are dynamic (other vehicles, pedestrians, dashboard navigation systems, etc.),
however, the surface of the road and its contours do not move over time. In contrast, the most
dynamic aspect of the environment during sea driving is the surface on (or even through) which
the boat travels. This is a critical difference, and given this, it appears that expertise with a task
that involves engaging with complex, dynamic scenes does not always modulate eye movement
behaviour in the same manner, and the modulation of eye movement behaviour is, to a large
extent, dictated by the properties of the scenes and task at hand.

Aside from this, the most important aspect of the results concerning the fixation durations
is the fact that the expert participants modulated their fixation durations as a function of sea
severity, and decreased their fixation durations in the rough compared to slight conditions,
though this was not the case for the novice participants. This result is in line with studies of road
driving which have reported that inexperienced drivers are inflexible in terms of their eye
movement behaviour, and fail to reduce their fixation durations in dangerous scenarios
(Chapman & Underwood, 1998; Crundall et al., 2003). Furthermore, a similar inflexibility was
observed in the novice participants in relation to their smooth pursuit eye movements which

travelled a similar distance regardless of wave severity. A similar inflexibility for eye movement



EXPERTISE AND MARITIME DRIVING 24

behaviour was observed in the novice participants in the analyses of the horizontal spread of
fixations. Both participant groups increased the horizontal spread of their fixations with
increasing sea severity, though the expert participants did so to a greater degree than the novice
participants. Again, studies of road driving have also found that inexperienced drivers fail to shift
their visual search behaviour to the same degree as experienced drivers in dangerous scenarios:
instead, inexperienced drivers show a tendency to have a greater vertical spread of fixation
locations, to the detriment of widening their scanning behaviour on the horizontal axis (Chapman
& Underwood, 1998; Crundall et al., 2003; Mourant & Rockwell, 1972). We found this pattern
as well in our dataset, with novice participants increasing the vertical spread of their fixations to
a greater degree than expert participants as a function of increases in the sea severity.

Overall, it appears that experience teaches drivers to make longer fixation durations and
sample more widely on both the horizontal and vertical axes, though this effect is greater for the
horizontal axis than the vertical axis. In the context of real-world maritime driving, as in road
driving, this shift in behaviour will likely enable drivers to be able to detect, identify and react to
upcoming hazards or unexpected changes in the environment.

Taken together, our results largely replicated the findings reported in studies of road
driving behaviour. Common amongst all of the results reported here and in studies of road
driving is the fact that novice drivers show evidence of inflexibility to different sea conditions,
and do not modulate either their fixation locations, fixation durations or smooth pursuit
behaviour to the same extent as expert participants. This finding enables a more general model of
expertise and driving in dynamic, real-world tasks to be generated, focusing on the fact that
novice or inexperienced drivers may show a tendency to be inflexible and fail to react to the

changing demands of different driving scenarios (e.g., different weather conditions, busier roads,
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increasing levels of sea severity). Though this finding requires replication in a wider variety of
driving tasks, and with simulators that enable ecologically valid interactions with in-vehicle
control and entertainment systems, it may enable the development of generalised training
packages to teach inexperienced drivers to more rapidly recognise the change in conditions and
adapt their behaviour accordingly. This is especially the case for domains such as high speed
maritime driving, since driving maritime craft at high speeds can be very dangerous to the driver

and other crew situated in the craft.
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Table 1

Douglas Scale Category and different Wave Characteristics of level of Wave Severity

29

Wave Size Slight Moderate Rough
Douglas Scale Sea State 3 Sea State 4 Sea State 5
category
Characteristic wave
amplitude 1.3m 1.9m 2.6m
Characteristic wave
period 4.6 seconds 5.45 seconds 6.3 seconds
Corresponding
characteristic wave 0.2174 Hz 0.1835 Hz 0.1587 Hz

frequency
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Table 2

Results of Model Fits from Mixed Linear Models for all Factors

30

Effect Dependent Variable
Throttle Speed Fixation Duration Distance Travelled During X-axis Distance Y-axis Distance
(ms) Smooth Pursuit Fixations from Centre from Centre
Slope Slope Slope Slope Slope
(SEM) t (SEM) t (SEM) t (SEM) t (SEM) t
Intercept  0.58 5.76 6.33 115.64 5.99 48.04 2.64 15.47 1.98 27.43
(0.10) (0.05) (0.12) (0.17) (0.07)
Expertise ~ -0.09 -0.66 -0.19 -2.43* -0.36 -2.06* 0.47 1.97* 0.36 3.49***
(0.14) (0.08) (0.18) (0.24) (0.10)
Sea -0.11  -119.36***  -0.05 -5.78*** -0.04 -4.40%** 032  16.94***  0.27  15.10***
Severity  (0.01) (0.01) (0.01) (0.02) (0.02)
Expertise  0.01 2.01* 0.04 2.91** 0.02 1.84* -0.16  -5.99***  -0.06 -2.36***
* Sea (0.01) (0.01) (0.01) (0.03) (0.02)
Severity

Notes. ***p<.0001; **p<.01; *p<.05; *p<.07.
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Table 3

Table of Means for the Dependent Measures examined in this Study, broken down by Expertise and Sea Severity

Sea Severity Dependent Variable

Mean Distance

Mean Throttle Speed Mean Fixation Travelled During Mean X-axis Mean Y-axis
Duration Smooth Pursuit Distance from Centre Distance from
Fixations Centre

Novices Experts Novices Experts  Novices Experts Novices  Experts  Novices Experts

Slight 0.39 0.46 567.6 617.1 10.3 14.77 1.65 1.26 0.64 0.45
(0.12) (0.10) (32.9) (30.9) (1.47) (2.42) (0.25) (0.32) (0.07) (0.03)

Moderate 0.28 0.41 562.1 639.7 10.0 15.08 1.93 1.59 0.78 0.53
(0.12) (0.10) (34.9) (36.6) (1.32) (2.52) (0.29) (0.31) (0.13) (0.06)

Rough 0.17 0.24 558.1 581.8 9.87 13.63 2.15 2.38 1.03 0.81

(0.11) (0100  (33.3)  (326)  (1.29) (2.11) (0.28)  (0.35)  (0.09)  (0.07)
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Notes. Throttle speed is recorded in arbitrary units ranging from -1 (slow) to +1 (fast); Fixation durations are in ms; X- and Y-axis positions are

in degrees/visual angle from the mean fixation point for each participant on each axis. Parentheses indicate +-SEM
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Figure 1. Example display image from the task. Image has been converted to grayscale for publication.
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Figure 2. Plot of fixation positions as a function of expertise (top row: experts; bottom row: novices). As these positions have been aggregated

across the participants, the data have been binned into counts, forming a heat-map.
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Figure 3. Histogram showing fixation durations across all participants and levels of sea severity, demonstrating the skew in the fixation duration

data.



