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ABSTRACT
Radiative transfer is an important component of hydrodynamic simulations as it determines
the thermal properties of a physical system. It is especially important in cases where heating
and cooling regulate significant processes, such as in the collapse of molecular clouds, the
development of gravitational instabilities in protostellar discs, disc–planet interactions, and
planet migration. We compare two approximate radiative transfer methods that indirectly
estimate optical depths within hydrodynamic simulations using two different metrics: (i) the
gravitational potential and density of the gas and (ii) the pressure scale-height. We find that
both methods are accurate for spherical configurations, e.g. in collapsing molecular clouds and
within clumps that form in protostellar discs. However, the pressure scale-height approach is
more accurate in protostellar discs (low- and high-mass discs, discs with spiral features, discs
with embedded planets). We also investigate the β-cooling approximation that is commonly
used when simulating protostellar discs, and in which the cooling time is proportional to the
orbital period of the gas. We demonstrate that the use of a constant β cannot capture the wide
range of spatial and temporal variations of cooling in protostellar discs, which may affect
the development of gravitational instabilities, planet migration, planet mass growth, and the
orbital properties of planets.

Key words: hydrodynamics – radiative transfer – methods: numerical – protoplanetary sys-
tems: planet-disc interactions, protoplanetary discs.

1 IN T RO D U C T I O N

Full 3-dimensional, wavelength-dependent radiative transfer within
hydrodynamic simulations is computationally expensive (e.g. Har-
ries 2015; Harries, Douglas & Ali 2017). It is only typically used to
post-process snapshots of simulations to produce synthetic observa-
tions (e.g. RADMC-3D1). However, the inclusion of radiative transfer
is important when an accurate treatment of the thermal evolution of
the system is needed.

There are various methods that efficiently include approximate
radiative transfer in hydrodynamic simulations, each with their un-
derlying simplifying assumptions (Oxley & Woolfson 2003; White-
house & Bate 2004; Stamatellos et al. 2007b; Forgan et al. 2009;
Young et al. 2012; Lombardi, McInally & Faber 2015). There are
two main types of approach: (i) using the diffusion approximation
(e.g. Whitehouse & Bate 2004; Boley et al. 2006; Commerçon et al.
2011b; Commerçon, Hennebelle & Henning 2011a), a method that
may still be computationally expensive, or (ii) use a metric to esti-
mate the optical depth for each element of the fluid and hence the
heating/cooling rate (Stamatellos et al. 2007b; Forgan et al. 2009;
Young et al. 2012; Lombardi et al. 2015). Another method that is

� E-mail: apmercer@uclan.ac.uk (AM); dstamatellos@uclan.ac.uk (DS)
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used in the context of protostellar discs is the β-cooling approxima-
tion (e.g. Gammie 2001; Rice et al. 2003b). This method assumes
that the temporal evolution of the specific internal energy, u, is in-
versely proportional to the cooling time such that u̇ = −u/tcool.
The cooling time is set inversely proportional to the Keplerian fre-
quency with a constant β, i.e. tcool(R) = β�−1(R), where R is the
distance from the central star as measured on the disc midplane.
This method oversimplifies the underlying physics but comes at
low computational cost.

Stamatellos et al. (2007b) proposed a radiative transfer method
that uses the gravitational potential and the density of gas as a met-
ric to estimate the optical depth through which a gas element cools.
This is then used to calculate an estimated cooling rate, and in the
optically thick case, reduces to the diffusion approximation. The
method works well for roughly spherical systems and results in an
increase of computational time by less than ∼5 per cent. However,
Wilkins & Clarke (2012) showed that the cooling rate calculated
with the Stamatellos et al. (2007b) method can be systematically
underestimated in the optically thick midplane of protostellar discs.
Therefore, the Stamatellos et al. (2007b) method therefore may
not be suitable to provide accurate cooling rates in non-spherical
systems. This method has been combined with the diffusion ap-
proximation to increase accuracy in high-optical depth regions (e.g.
Forgan et al. 2009).
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Young et al. (2012) proposed a method in the context of proto-
stellar discs that uses the gravitational potential in the z direction
only, i.e. out of the disc midplane. From this, they obtain accurate
estimates (within a few tens of percent) of column density and opti-
cal depths. However, when fragments form due to the gravitational
instability in massive discs, Stamatellos et al. (2007b) give better
estimates of the cooling rates within the dense fragments, which
can be assumed to be approximately spherical.

Instead of using the gravitational potential to estimate the optical
depth, Lombardi et al. (2015) propose to use the pressure scale-
height. This retains the majority of the characteristics of the original
Stamatellos et al. (2007b) method, merely employing a different
metric to estimate optical depth. It is shown to provide a much
more accurate estimate of cooling rate in spherical polytropes and
protostellar discs with specified density and temperature profiles.

The aim of this paper is to compare how the above methods (Sta-
matellos et al. 2007b; Lombardi et al. 2015) behave when applied
in actual hydrodynamic simulations. We test the two methods in the
context of collapsing clouds and protostellar discs. In the case of
the latter, we consider relaxed discs, discs with spiral arms, discs
with clumps, and discs with embedded planets that carve gaps. We
also examine whether the β-cooling method, which is widely used
for protostellar discs, provides a good approximation to the ther-
mal physics. Such tests of different methods are needed as radiative
transfer plays a critical role in many cases (e.g. disc fragmentation
and gap opening in discs with planets).

In Section 2 we describe the radiative transfer techniques in more
detail. Section 3 shows the comparison between the aforementioned
methods for the collapse of spherically symmetric cloud. We test
the behaviour of both methods for protostellar discs in Section 4
and for discs with embedded planets in Section 5. A discussion
on the performance of the β-cooling approximation is presented in
Section 6. A comparison to demonstrate the effect on dynamical
evolution from the two radiative transfer methods discussed, as
well as the β-cooling approximation, is presented in Section 7. We
summarize our results in Section 8.

2 EFFIC IEN T R ADIATIVE TRANSFER
M E T H O D S

The radiative transfer technique ascribed to Stamatellos et al.
(2007b) is used to determine the heating and cooling of the gas.
The method incorporates the effects from the rotational and vibra-
tional degrees of freedom of H2, the dissociation of H2, ice melting,
dust sublimation, bound-free, free-free, and electron scattering in-
teractions. The equation of state used and the effect of each assumed
constituent are described in detail in section 3 of Stamatellos et al.
(2007b). The heating/cooling rate requires an estimate of the col-
umn density through which the heating/cooling happens as well as
the local opacity. It is expressed as

du

dt
= 4σSB

(
T 4

BGR
− T 4

)
�̄2κ̄R (ρ, T ) + κ−1

P
(ρ, T )

, (1)

where σSB is the Stefan–Boltzmann constant, TBGR is the pseudo-
background temperature below which the gas cannot cool radia-
tively, �̄ is the mass-weighted mean column density, and κ̄R and
κP are the Rosseland- and Planck-mean opacities, respectively. In
the original Stamatellos et al. (2007b) method, the estimated mass-
weighted column density is found via the local density ρ and grav-

itational potential ψ such that

�̄ = ζ

(−ψρ

4πG

)1/2

, (2)

where ζ = 0.372 is a dimensionless coefficient with a weak depen-
dence on polytropic index (set to n = 1.5). Particles are assumed
to be surrounded by a pseudo-cloud represented by a polytrope. A
particle heats or cools according to the characteristic optical depth
of its pseudo-cloud (wherein the particle can be located at any posi-
tion to account for non-spherical local geometry). The optical depth
can be found via

τ = �̄κ̄. (3)

When considering the collapse of a 1 M�spherical cloud of gas,
the method has been shown to produce similar results to the simu-
lations of Masunaga & Inutsuka (2000), which is a 1-D hydrody-
namic simulation where the radiative transfer is treated accurately
(Stamatellos et al. 2007b).

Lombardi et al. (2015) argue that the use of the gravitational po-
tential as a metric overestimates column densities and optical depths
in non-spherical configurations such as discs. Instead, they propose
the use of pressure scale-height as a metric for calculating the opti-
cal depth. This is because the pressure gradient is typically oriented
in the direction in which the optical depth increases most rapidly,
i.e. approximately perpendicular to the disc midplane. The Lom-
bardi et al. (2015) form for the estimated mass-weighted column
density is

�̄ = ζ ′ P

|ah| , (4)

where ζ
′= 1.014 is a dimensionless coefficient, P is the pressure

of the gas, and ah the hydrodynamical acceleration (i.e. the ac-
celeration without any gravitational or viscous contribution). This
quantity can be expressed in terms of the pressure gradient such that

ah = −∇P

ρ
. (5)

For either method, the required quantities are readily available in
any hydrodynamic method.

For a given particle density and temperature, a density-sorted
look-up table can be used to find specific internal energy, mean-
molecular mass, mass-weighted optical depth, Rosseland- and
Planck-mean optical depths, ratio of specific heat capacities, and
the first adiabatic index. This removes the requirement of calculat-
ing computationally expensive integrals on-the-fly (see section 2.2
of Stamatellos et al. 2007b).

We note that although the above methods have been devised for
Smooth Particle Hydrodynamics (Gingold & Monaghan 1977; Lucy
1977), they can be applied to grid-based (e.g. Fryxell et al. 2000)
and meshless techniques (Lanson & Vila 2008; Gaburov & Nitadori
2011; Hopkins 2015).

3 C LOUD COLLAPSE

We utilize the Graphical Astrophysics code for N-body Dynamics
and Lagrangian Fluids (GANDALF; Hubber, Rosotti & Booth 2018)
to perform simulations of a collapsing molecular cloud, using the
Stamatellos et al. (2007b) and Lombardi et al. (2015) methods of
estimating optical depths. The cloud is initially static, has a mass
of 1.5 M�, and is isothermal with a temperature 5 K. The cloud is
represented by N ≈ 2 × 106 SPH particles distributed such that the
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Figure 1. The evolution of central temperature as a function of central
density for the collapse of an initially isothermal, non-rotating, 1.5 M�
cloud with a radius of 104 au. The radiative transfer methods of Stamatellos
et al. (2007b) and Lombardi et al. (2015) are in good agreement.

density profile of the cloud is uniform across its radius Rcloud = 104

au.
Fig. 1 shows the evolution of the central density and temperature

for the two methods of estimating optical depths. Initially, the cloud
collapses almost isothermally and the core temperature increases
slowly with increasing density. The core temperature starts to in-
crease rapidly as the cloud becomes optically thick (ρ ∼ 10−13 g
cm−3). At ∼100 K the rotational degrees of freedom of molecu-
lar hydrogen are excited and the temperature increases at a slower
rate as the gravitational energy is diverted away from heating the
cloud. The increasing temperature leads to increased thermal pres-
sure that is able to slow down the collapse and the first hydrostatic
core forms (Larson 1969; Masunaga & Inutsuka 2000; Whitehouse
& Bate 2006; Stamatellos et al. 2007b). The first core contracts
and heats slowly to ∼2000 K at which point hydrogen begins to
dissociate. This results in the second collapse and the formation of
the second hydrostatic core (the protostar).

The Lombardi et al. (2015) method gives similar results regarding
the central density and temperature of the cloud with the Stamatellos
et al. (2007b) method, which is turn compares very well with the
Masunaga & Inutsuka (2000) method, indicating that both methods
work reasonably well for spherical geometries. The second collapse
in the case of the Stamatellos et al. (2007b) method is delayed by
∼100 yr, which may arise due to a slight overestimate in optical
depth and thus less efficient cooling, as can be seen from the slightly
higher temperatures calculated by this method (see Fig. 1).

4 PROTO STELLAR D ISCS

Protostellar discs form due to the turbulence and/or initial rotation
of their progenitor molecular clouds. Their study is important as
they are the birthplace of planets, which can form either through
core accretion (e.g Safronov & Zvjagina 1969; Lissauer 1993) or
by gravitational fragmentation of discs (Whitworth & Stamatel-
los 2006; Stamatellos, Hubber & Whitworth 2007a; Stamatellos
& Whitworth 2009; Kratter et al. 2010; Zhu et al. 2012; Mercer
& Stamatellos 2017). Massive protostellar discs fragment if two
conditions are met: (i) They are gravitationally unstable, i.e.

Q ≡ κcs

πG�
< Qcrit, (6)

where Q is the Toomre parameter (Toomre 1964), κ is the epicyclic
frequency, cs is the local sound speed,and � is the disc surface
density. The value of Qcrit is on the order of unity. (ii) They cool
sufficiently fast, i.e. tCOOL < (0.5 − 2)tORB, where tORB is the local or-
bital period (Gammie 2001; Johnson & Gammie 2003; Rice et al.
2003b; Rice, Lodato & Armitage 2005). Both requirements are
dependent on the thermal properties of the disc, and so it is impor-
tant that the cooling rate and the disc temperature are accurately
calculated with the employed radiative transfer method.

Here, we present comparisons of estimated optical depth and
cooling rate obtained via the Stamatellos et al. (2007b) and Lom-
bardi et al. (2015) radiative transfer methods. In Section 4.1 we
present our comparison methodology. Section 4.2 considers a low-
mass relaxed disc. Section 4.3 considers a high-mass disc that frag-
ments forming spiral arms (Section 4.4) and eventually gravitation-
ally bound clumps (Section 4.5).

4.1 Methodology

We use GANDALF (Hubber et al. 2018) to perform simulations pro-
tostellar discs (Section 4) and protostellar discs with embedded
planets (Section 5). From these simulations we select snapshots for
which we compare the behaviour of the Stamatellos et al. (2007b)
and Lombardi et al. (2015) radiative transfer methods.

The estimated column density for both the gravitational potential
and pressure scale-height metrics, �̄ ≡ �est, is found by post-
processing a snapshot of the GANDALF hydrodynamic simulation.
The corresponding estimated optical depth is τ̄ ≡ τest = �estκ̄R,
where κ̄R is the mass-weighted opacity for each method (note that
this is slightly different for the two methods; see Lombardi et al.
2015). The column density and optical depth are calculated for each
particle in the simulation. We emphasize that we calculate the optical
depths and cooling rates for the same snapshots for both methods,
i.e. using the same density and temperature disc configurations. We
provide azimuthally averaged radial profiles of the optical depth and
cooling rates at the disc midplane (defined such as |z| < 0.5 au) and
also vertical to the disc midplane profiles of the same quantities.
We also calculate the actual values of column density and optical
depth by integrating from the gas element that we consider, to the
disc surface along the z-axis (perpendicular to the disc midplane)
such that �actual = ∫

ρdz and τ actual = ∫
κ(ρ, T)ρdz.

The estimated cooling-rate per unit mass can then be found via
equation (1). We normalize this with respect to 4σSB

(
T 4 − T 4

BGR

)
such that we define the quantity

u̇est ≡ − du

dt

∣∣∣∣
est

1

4σSB

(
T 4 − T 4

BGR

) = 1

�̄2κ̄R + κ−1
P

(7)

to represent the estimated cooling-rate per unit mass. We compare
this with the actual cooling-rate per unit mass that is calculated
using the actual optical depth and column density, hence

u̇actual ≡ − du

dt

∣∣∣∣
actual

1

4σSB

(
T 4 − T 4

BGR

) = 1

�
(
τR + τ−1

P

) , (8)

where τR and τP are the optical depths calculated using the
Rosseland-mean and Planck-mean opacities, respectively (which
in many cases are assumed to be the same). We note that the above
equation is itself an approximation to the diffusion approximation
(Mihalas 1970) in which the radiative flux is

F = − 4

3κRρ
∇ (

σSBT
4
)
. (9)
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From this, we obtain the cooling rate per unit mass that is

u̇ = 1

ρ
∇ · F ≈ σSBT

4

κR�2
≈ σSBT

4

τR�
, (10)

and has the same form of equation (8) in the optically thick limit.

4.2 Relaxed low-mass disc

We simulate a protostellar disc with a mass of 0.01M� around a 1
M� protostar. N ≈ 2 × 106 SPH particles are distributed between
radii of 5 and 100 au such that the initial column density and tem-
perature profiles follow �(R) ∝ R−1 and T(R) ∝ R−1/2, respectively.
The temperature at 1 au from the central star is T0 = 250 K. The
disc is heated by an ambient radiation field of 10 K.

A steady-state is reached after a few outer orbital periods, shown
in Fig. 2(a). The disc is optically thin, thus both the Stamatellos and
Lombardi methods provide accurate cooling rate estimates (see Fig.
2b). However, the Stamatellos method generally overestimates the
optical depth, especially in the inner disc, consequently underesti-
mating the cooling rate. We also take an annulus of the disc between
34 and 36 au and show the azimuthally averaged vertical profiles
of optical depth and cooling rate ( Figs 2d and e). The cooling rate
from the disc midplane to the surface is accurately estimated as
the region is optically thin. In this regime, the optical depth is not
important for calculating the cooling rate (see equation 1).

4.3 High-mass disc

We simulate a massive protostellar disc that develops spiral features,
undergoes fragmentation, forming dense, gravitationally bound
clumps. The disc has an initial mass of 0.2 M� and attends a
0.8 M� protostar. N ≈ 2 × 106 SPH particles are distributed be-
tween radii of 5 and 100 au such that the initial column density and
temperature profiles follow �(R) ∝ R−1 and T(R) ∝ R−1/2, respec-
tively. The temperature at 1 au from the central star is T0 = 250 K.
The disc is heated by an ambient radiation field of 10 K.

Fig. 3(a) shows the column density of the disc before any sig-
nificant dynamical evolution occurs. The disc midplane is optically
thick (out to a radius of ∼30 au), but the optical depth does not drop
below τ = 0.1 further out (Fig. 3b). The Stamatellos method over-
estimates the optical depth by a factor of a few throughout the disc.
The Lombardi method yields a better estimate for both the optical
depth and the cooling rate. Similar results are found when con-
sidering the vertical profiles of these quantities in a radial annulus
between 34 and 36 au ( Figs 3d and e).

4.4 High-mass disc with spiral arms

After some time, the disc becomes unstable and spiral arms begin to
form. This is shown in Fig. 4(a). The optical depth and cooling rate
at the disc midplane are well described by the Lombardi method,
but are over- and underestimated, respectively, by the Stamatellos
method. The cooling rate estimated by the Stamatellos method is
in agreement with the actual value when the disc is optically thin
(Fig. 4b). We consider two cylindrical regions with a base radius of
5 au wherein we perform vertical analyses: one cylinder is inside
a spiral arm and the other outside (see marked regions in Fig. 4a).
Outside the spiral arm, the disc is optically thin and the cooling rate
is estimated well by both methods (Fig. 4e, dashed lines). However,
inside the spiral arm where the disc is optically thick, the Stamatellos
method overestimates the optical depth and therefore the cooling

rate. The Lombardi method provides more accurate values for both
quantities (Fig. 4e, solid lines).

4.5 High-mass disc with clumps

The disc eventually fragments and dense clumps form. The column
density snapshot in Fig. 5(a) contains four clumps. The central den-
sity of the densest clump is ∼10−6 g cm−3 and for the least dense
clump is ∼10−10 g cm−3. Fig. 5(b) shows that both the Stamatel-
los and Lombardi methods give good estimates of the azimuthally
averaged optical depth at the disc midplane, but it should be noted
that an azimuthally averaged analysis is not ideal for describing
this disc, as it is highly non-axisymmetric. Therefore, we focus on
two of the clumps: the inner, densest clump, and the least dense
clump. We consider a cylinder with a base radius of 5 au centred
on each of these clumps and we perform a vertical analysis in the
direction perpendicular to the disc midplane. Fig. 5(d) shows the
optical depth comparison. We find that for the least dense clump
(dashed lines), the Stamatellos method is accurate in the centre of
the clump. The Lombardi method overestimates the optical depth
by a factor of ∼2. In the centre of the densest clump, both methods
are inaccurate, but only by a factor of a few. In general, for the disc
as a whole as well as the clumps, the Lombardi method estimates
the cooling rate well, whilst the Stamatellos method systematically
underestimates the cooling rate.

5 PROTO STELLAR D I SCS WI TH EMBEDDED
PLANETS

The gravitational interaction between a planet and the surrounding
disc may result in the formation of planet-induced gaps (e.g. Goldre-
ich & Tremaine 1980; Lin & Papaloizou 1993; Bryden et al. 1999;
Kley & Nelson 2012). Such structures may provide indirect evi-
dence for the presence of planets in discs. The Crida, Morbidelli &
Masset (2006) semi-analytical criterion for gap formation involves
the balance between the tidal torque that opens the gap and the vis-
cous torque that closes the gap. It has been shown that planets with
masses down to 10 M⊕ can open gaps (Duffell & MacFadyen 2012).
However, for migrating planets, a gap must form on a rapid enough
timescale. Malik et al. (2015) argue that a gap can only form pro-
vided the gap opening time is longer than the migration timescale
of the planet. The accurate treatment of the radiative transfer in
such planet-disc systems is important and may play a significant
role when determining the rate and the direction (i.e. inwards or
outwards) of migration, and the final mass of the planet (Benı́tez-
Llambay et al. 2015; Stamatellos 2015; Stamatellos & Inutsuka
2018).

Here we examine two cases of protostellar discs with embedded
planets: one with an embedded 1.4 MJ planet (Section 5.1) and one
with an embedded higher-mass, 11 MJ, planet (Section 5.2). We
compare the estimated optical depth and cooling rate obtained via
the Stamatellos et al. (2007b) and Lombardi et al. (2015) radiative
transfer methods.

5.1 Disc with an embedded 1.4 MJ planet

We consider a disc with an initial mass 0.005 M� surrounding
a 1 M� protostar. A 1 MJ mass planet is embedded within the
disc at a radius of 5.2 au. The initial disc extends out to 15.6 au,
with a surface density profile �(R) ∝ R−1/2 (e.g. Bate et al. 2003),
temperature profile T(R) ∝ R−3/4, and is represented by 106 SPH
particles. The temperature at 1 au from the central star is T0= 250 K.
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3482 A. Mercer, D. Stamatellos, and A. Dunhill

Figure 2. A low-mass disc that has evolved for a few outer orbital periods and has reached a steady-state. Panel (a): a column density snapshot where the dashed
white line represents the radius at which we perform an analysis perpendicular to the disc midplane. Panels (b) and (c): comparisons of azimuthally averaged
optical depth and cooling rate at the disc midplane (|z| < 0.5 AU). Panels (d) and (e): azimuthally averaged optical depth and cooling rate perpendicular to the
disc midplane for a radial annulus of 34−36 au. The upper plots in panels (b–e) show the ratio between estimated and actual values. The black dashed lines
represent equality. The disc is optically thin, and as such, both methods give good estimates of the cooling rate. The Stamatellos method generally overestimates
the optical depth at the disc midplane, especially in the inner disc region, consequently underestimating the cooling rate.
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Radiative transfer in hydrodynamic simulations 3483

Figure 3. A high-mass disc that has not yet undergone significant evolution. Panel (a): a column density snapshot where the dashed white line represents the
radius at which we perform an analysis perpendicular to the disc midplane. Panels (b) and (c): comparisons of azimuthally averaged optical depth and cooling
rate at the disc midplane. Panels (d) and (e): azimuthally averaged optical depth and cooling rate perpendicular to the disc midplane for a radial annulus of
34−36 au. The upper plots in panels (b–e) show the ratio between estimated and actual values. The black dashed lines represent equality. The Stamatellos
method overestimates the optical depth at the disc midplane by a factor of ∼5 at all disc radii, but the Lombardi method yields a more accurate estimate. This
is reflected in the cooling rate. Similar results are found when considering the optical depth and cooling profiles perpendicular to the disc midplane (d–e).
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3484 A. Mercer, D. Stamatellos, and A. Dunhill

Figure 4. A high-mass disc that has evolved to form spiral arms. Panel (a): a column density snapshot. White circles represent cylindrical regions where we
perform an analysis perpendicular to the disc midplane. Panels (b) and (c): comparisons of azimuthally averaged optical depth and cooling rate at the disc
midplane. Panels (d) and (e): optical depth and cooling rate comparisons perpendicular to the disc midplane inside (solid lines) and outside (dashed lines) of
a spiral arm. The upper plots in panels (b–e) show the ratio between estimated and actual values. The black dashed lines represent equality. The optical depth
and cooling rate at the disc midplane are well estimated by the Lombardi method at all disc radii, but are over- and underestimated by the Stamatellos method,
respectively. Vertically to the disc midplane, the same result is observed within a spiral arm. However, outside of the spiral arms, where the disc is optically
thin, both methods yield a good estimate for the cooling rate.
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Figure 5. A high-mass disc that has evolved to form dense clumps. Panel (a): a column density snapshot. White circles represent regions where vertical
analyses are performed. Panels (b) and (c): comparisons of azimuthally averaged optical depth and cooling rate at the disc midplane. Panels (d) and (e): optical
depth and cooling rate comparisons perpendicular to the disc midplane for the densest clump (solid lines) and the least dense clump (dashed lines). The upper
plots in panels (b–e) show the ratio between estimated and actual values. The black dashed lines represent equality. The optical depth is generally overestimated
by the Stamatellos method. The Lombardi method gives a better estimate, even within the dense clump. The cooling rate is also estimated more accurately.
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The planet migrates slightly inwards (0.1 au) and increases in mass
by accreting gas from the disc. At the snapshot presented here (Fig.
6a), the planet is at 5.1 au and has carved out a gap between 4 and
6 au. Its mass has increased to 1.4 MJ.

The density of the disc is high and as such, the disc is optically
thick (Fig. 6b). The Stamatellos method overestimates the optical
depth at the disc midplane throughout the disc by a factor of a few,
whilst the Lombardi method provides a better estimate (accurate
within a factor of ∼2). This is reflected in the estimated cooling
rates (Fig. 6c).

Vertical profiles are shown for radial annuli at the planet gap
(4−6 au; Figs 6d and e, solid lines) as well as on a region interior
to the gap (3−4 au; Fig. 6d and e, dashed lines). We exclude gas
within the Hill radius (RHILL = 0.6 au) of the planet when analysing
the gap region. Both of these regions are optically thick. Again, the
Lombardi method provides a better estimate for the optical depth
and cooling rate.

In the gap region, which is important for the evolution of the
planet, the Lombardi method is very accurate, whereas the Sta-
matellos method overestimates the optical depth, and therefore un-
derestimates the cooling rate.

5.2 Disc with an embedded 11 MJ planet

We simulate a system comprising a star that has an initial mass 1
M�, which is attended by a protostellar disc with mass 0.1 M�
and an initial radius of 100 au. The disc is modelled by 106 SPH
particles, and has initial surface density and temperature profiles
�(R) ∝ R−1 and T(R) ∝ R−3/4, respectively (Stamatellos 2015).
The temperature at 1 au from the central star is T0 = 250 K. A
planet with an initial mass 1 MJ is embedded in the disc at a radius
of 50 au. At the snapshot we present (Fig. 7a) the disc mass has
dropped to 0.08 M� and the planet mass has increased to 11 MJ.
The planet has migrated inwards and is located at a radial distance
of 36 au. It has carved a gap between ∼30 and ∼40 au.

Fig. 7(b) shows that the Lombardi method estimates the optical
depth at the midplane of the disc well within the gap, but overes-
timates it by a factor of a few outside of the gap. The Stamatellos
method overestimates the optical depth at all radii: by a factor of
∼2 outside of the gap and ∼10 within the gap.

We consider two radial annuli where we perform vertical anal-
yses. One includes the gap (between 33 and 37 au; Figs 7d and e,
solid lines), the other a region interior to the gap (between 23 and
27 au; Figs 7d and e, dashed lines). The disc is optically thin within
the gap. Thus the cooling rate is well estimated by both methods.
We exclude gas within the Hill radius of the planet (RHILL = 8.0 au)
when analysing the gap. The region interior to the gap is optically
thick. The cooling rate is well estimated at all z by the Lombardi
method, but the Stamatellos method underestimates the cooling rate
by up to a factor of 10.

6 TESTING THE β- C O O L I N G
APPROX IMATION

The β-cooling approximation (e.g. Gammie 2001; Rice et al. 2003b)
is a computationally inexpensive technique used when simulating
accretion discs. This method assumes that the cooling rate at a given
radius R within the disc is inversely proportional to cooling time
such that

u̇ = u

tcool
, (11)

where the cooling time is

tcool = β�−1. (12)

� is the Keplerian frequency and β is a dimensionless parameter
that is typically assumed to be between 1 and 20. Provided a disc is
close to Toomre instability (i.e. Q ≈ 1), a disc may only be able to
fragment if the cooling is sufficiently fast (β on the order of a few).
The critical value at which gravitational fragmentation occurs, βcrit,
is still debated. Meru & Bate (2011) suggest that the limit may be
as high as βcrit ≈ 30. More recent studies by Baehr, Klahr & Kratter
(2017) suggest a value of βcrit = 3.

In this section, we compare the β-cooling approximation with
the cooling rates that we obtain from equation (8) (which is what
we refer to as actual cooling). We calculate an effective beta, βeff,
in order to determine whether the assumption of a constant β is a
reasonable approximation. Therefore, we define βeff as

βeff = u

u̇
�. (13)

where

u̇ = 4σSBT
4

�
(
τR + τ−1

P

) . (14)

We emphasize that when calculating u we use the detailed equation
of state used by Stamatellos et al. (2007b) (see the summary in
Section 2).

We present βeff that we calculate for the snapshots of protostellar
discs presented in Sections 4 and 5. Fig. 8 shows the azimuthally
averaged βeff at the disc midplane; Fig. 9 shows the value of βeff

vertically towards the surface of the disc at the given regions; Fig. 10
shows colour maps of βeff at the disc midplane. We can see that
βeff varies significantly throughout different regions of each disc,
between ∼0.1 and ∼200.

For the smooth axis-symmetric disc cases that we examine here
(Figs 10a and b), βeff is high in the inner disc regions (βeff > 20) but
drops down to ∼3 in the outer regions. For the disc with the spiral
arms (Fig. 10c), the spirals are regions where βeff ∼ 1, hence cooling
is efficient. Thus, spiral arms may be prone to gravitational collapse
as thermal energy generated by the contraction of a forming gas
clump can efficiently escape. The dense, bound clumps in Fig. 10d
cool inefficiently (βeff ∼ 200), due to being extremely optically
thick.

Fig. 10e shows βeff for a disc with a 1.4 MJ embedded planet. βeff

is high in the outer regions but is low within the planet gap. This
may be attributed to the associated high and low optical depths,
respectively, of these regions. For a disc with an embedded higher-
mass 11 MJ planet (Fig. 10f), the planet induces a high-density spiral
wake that cools fast (βeff ∼ 1), whereas the gap region cools slowly
(βeff > 50). The region around the planet has a low βeff (<1) and
thus cools more efficiently.

We see that, as expected, a region of the disc cools inefficiently
(slowly) when it is optically thin (low-density regions of the disc, e.g
in gaps), efficiently (quickly) when it is just optically thick (τ ∼ 1,
e.g. in spirals induced by gravitational instabilities or planets), and
again inefficiently (slowly) when it becomes extremely optically
thick (in clumps/fragments).

We conclude that the actual cooling rate in a protostellar disc
varies radially, vertically, and with time as the disc evolves. Signifi-
cant variations are observed within dense clumps that form through
gravitational fragmentation. This makes the β-cooling method a
rather crude approximation of the disc thermal physics when con-
sidering highly dynamical systems.
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Figure 6. A disc that has an embedded 1.4 MJ planet at a radius of 5.1 au. Panel (a): a column density snapshot. Panels (b) and (c): comparisons of azimuthally
averaged optical depth and cooling rate at the disc midplane. The vertical black dashed lines in panels (b) and (c) represent the location of the planet. Panels
(d) and (e): optical depth and cooling rate comparisons perpendicular to the disc midplane between radial annuli of 4−6 au (in the gap, solid lines), and 3−4
au (interior to the gap, dashed lines). Gas within RHILL = 0.6 au of the planet is excluded when analysing the gap. The upper plots in panels (b–e) show the
ratio between estimated and actual values. The black dashed lines represent equality. The Stamatellos method overestimates the optical depth by a factor of 3
or more throughout the disc. The Lombardi method estimates the optical depth within a factor of 2, and it also gives an accurate estimate of the cooling rate,
both inside and outside the planet-induced gap.
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Figure 7. A disc that has an embedded 11 MJ planet at a radius of 36 au. Panel (a): a column density snapshot. Panels (b) and (c): comparisons of azimuthally
averaged optical depth and cooling rate at the disc midplane. The vertical black dashed lines in panels (b) and (c) represent the location of the planet. Panels
(d) and (e): optical depth and cooling rate comparisons perpendicular to the disc midplane between radial annuli of 33−37 au (inside the gap, solid lines), and
23−27 au (outside the gap, dashed lines). Gas within RHILL = 8.0 au of the planet is excluded when analysing the gap. The upper plots in panels (b–e) show
the ratio between estimated and actual values. The black dashed lines represent equality. Both methods overestimate the optical depth in the outer disc by a
factor of 2 or 3. However, the Lombardi method estimates both the optical depth and the cooling within the gap more accurately than the Stamatellos method.
Outside and within the gap, the Lombardi method gives a good estimate for both quantities from the disc midplane to the disc surface. The Stamatellos method
estimates the cooling rate well within the gap as this region is optically thin.
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Figure 8. Azimuthally averaged effective β at the disc midplane for the following snapshots: (a) a low-mass relaxed disc; (b) a high-mass disc; (c) a high-mass
disc with spirals arms; (d) a high-mass disc with dense clumps; (e) a disc with an embedded 1.4 MJ planet; (f) a disc with an embedded higher-mass 11 MJ

planet. Horizontal dashed lines represent βeff = 3. Vertical dotted lines represent the radii of planets (in the last two cases).

Figure 9. Effective β from the disc midplane to the disc surface for the following snapshots: (a) a low-mass relaxed disc (radial annulus 34 < R< 36 au); (b)
a high-mass relaxed disc (radial annulus 34 <R< 36 au); (c) a disc with spirals arms (vertical cylinders with a base with radius of 5 au regions centred within
a spiral arm, solid line, and outside spiral arms, dashed line); (d) a disc with dense clumps (vertical cylinders with a base with radius of 5 au centred within
the densest clump, solid line, and the least dense clump, dashed line); (e) a disc with an embedded 1.4 MJ planet (radial annuli 4 < R< 6 au, solid line) and
3 <R< 4 au, dashed line); (f) a disc with an embedded higher-mass 11 MJ planet (radial annuli 33 < R< 37 au, solid line) and 23 <R< 27 au, dashed line).
Horizontal dashed lines represent βeff = 3.

7 DY NA M I C A L E VO L U T I O N C O M PA R I S O N

We perform three simulations to demonstrate the differences that
the β-cooling approximation, the Stamatellos et al. (2007b), and
the Lombardi et al. (2015) radiative transfer methods exhibit. We
simulate a 0.8 M� protostar that is attended by a 0.2 M� disc with
surface density and temperature profiles �(R) ∝ R−1 and T(R) ∝

R−1/2, respectively. N ≈ 2 × 106 particles represent the disc, which
is heated by a 10 K external radiative field. No heating from the
central star is included. We test the β-cooling approximation with
a value of β = 3, a limit at which cooling is efficient enough for
gravitational instability to occur (Rice et al. 2003a).

Fig. 11 shows the three discs after 1.5 kyr of evolution using (a)
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Figure 10. Effective β values at the disc midplane for the following snapshots: (a) a low-mass relaxed disc; (b) a high-mass disc; (c) a disc with spirals arms;
(d) a disc with dense clumps; (e) a disc with an embedded 1.4 MJ planet; (f) a disc with an embedded higher-mass 11 MJ planet. Regions where βeff is lower
cool more efficiently. Gravitational instability is typically considered to occur for β < 3 provided that the Toomre parameter is also on the order of unity.
We show that β varies across the disc, especially within spiral features and dense clumps. As such, it may not be appropriate to assume that β is constant
throughout the disc.

the β-cooling approximation, (b) the Stamatellos radiative trans-
fer method, and (c) the Lombardi radiative transfer method. We

note that whilst all three discs become gravitationally unstable, the
β-cooling approximation yields a more stable disc than the two
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Figure 11. Surface density plots of a 0.2 M� disc around a 0.8 M� protostar after 1.5 kyr of evolution. Panel (a): a disc evolved using the β-cooling
approximation with β = 3. Panel (b): a disc evolved using the Stamatellos et al. (2007b) radiative transfer method. Panel (c): a disc evolved using the Lombardi
et al. (2015) method. Each disc becomes gravitationally unstable, but it is clear that the Lombardi disc (panel c) is more unstable, demonstrated by the stronger,
more detailed spiral arms.

radiative transfer methods. Due to a generally higher estimation of
the cooling rate, the Lombardi method allows the disc to cool more
efficiently and develop stronger spiral arms.

8 D ISCUSSION

We have compared two approximate (but computationally inexpen-
sive) methods to include radiative transfer in hydrodynamic sim-
ulations. These methods use two different metrics to calculate the
optical depth through which the gas heats and cools: (i) the Sta-
matellos et al. (2007b) method uses the gravitational potential and
the density and (ii) the Lombardi et al. (2015) method instead uses
the pressure scale-height.

We find that although both methods yield accurate estimates in
the case of collapsing clouds, the use of the pressure scale-height
metric to estimate optical depths (Lombardi et al. 2015) is more
accurate when considering protostellar discs. We summarize our
results in Fig. 12, which illustrates the difference of optical depth
estimation for the cases we examined in this paper for both methods.
Using the pressure scale-height as a metric, a more accurate estimate
of optical depth (by a factor of 2 or better) and cooling rate is
obtained for protostellar discs in a variety of configurations: low-
mass and high-mass discs, with or without an embedded planet, as
well as gravitationally unstable discs that develop spiral arms and
form bound clumps. The Stamatellos et al. (2007b) method may
overestimate the optical depth by a factor of 10 in some cases, but
the Lombardi et al. (2015) method is generally accurate within a
factor of 3. Consequently, the Stamatellos et al. (2007b) method
underestimates the cooling rate in optically thick protostellar discs,
whereas the Lombardi et al. (2015) method provides better accuracy
(although generally it also underestimates the cooling rate). Both
methods give accurate estimates in the optically thin regime.

We also compare the cooling rates in hydrodynamic simulations
of discs with those of the commonly used β-cooling approximation
(e.g. Gammie 2001; Rice et al. 2003b). We find that using a constant
value of β for a disc may not be a suitable approximation as this
parameter may vary radially and vertically throughout the disc (be-
tween ∼0.1 and ∼200 in the cases that we examined here). It also

varies with time as the disc evolves (e.g. when spiral arms and/or
gaps form in the disc), but most significantly within dense clumps.
The approximate radiative transfer methods discussed previously
may be more appropriate to use as, at comparable computational
cost, they are adaptive to the changes that happen as the disc evolves
(e.g. the formation of spiral arms and clumps). Nevertheless, the β-
cooling approximation is a useful parametrization that facilitates
greater control in numerical experiments considering the thermal
behaviour of a disc.

Many hydrodynamic simulations of protostellar discs (in the con-
text of e.g. disc evolution, disc fragmentation, disc–planet inter-
actions, planet migration) have used such approximations for the
radiative transfer to avoid excessive computational cost (e.g Rice
et al. 2003a; Lodato & Rice 2004; Clarke, Harper-Clark & Lodato
2007; Lodato et al. 2007; Forgan & Rice 2009; Meru & Bate 2010;
Stamatellos & Whitworth 2011; Ilee et al. 2017). Their results need
to be seen in the context of the accuracy of the radiative transfer
method used.

Studies of disc fragmentation (e.g Stamatellos & Whitworth
2009; Stamatellos et al. 2011) that use the Stamatellos et al. (2007b)
method may have underestimated disc cooling by a factor of a few,
so that their discs are less prone to fragmentation. This would mean
that even discs with lower masses than the ones studied by Sta-
matellos et al. (2011) may be able to fragment (i.e. a disc with mass
less than 0.25 M� around a 0.7 M� star). However, we should
note that the uncertainties in the disc opacities could also be up to
an order of magnitude, i.e. the uncertainty introduced is similar to
that of the Stamatellos et al. (2007b) method.

Disc simulations using the β-cooling approximation also suffer
from uncertainties in calculating cooling rates. For discs that start
off optically thin, the cooling is inefficient (i.e. βeff is large). The βeff

decreases (i.e. the cooling becomes more efficient) as the density
increases in spiral arms and in the region around a planet (i.e.
its circumplanetary disc). If the density continues to increase (i.e.
if clumps form), the cooling becomes inefficient due to the high
optical depth, and βeff increases. The use of a constant β misses
this variation of cooling efficiency (both in space and in time).
Therefore, the physics of disc fragmentation may not be captured
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Figure 12. The ratio between estimated and actual optical depth for (a) the Stamatellos et al. (2007b) method and (b) the Lombardi et al. (2015) method.
Various disc configurations are shown. Radii have been normalized to the outer radius of each disc. The black dashed lines represent equal values of estimated
and actual optical depth. The upper and lower grey dashed lines represent factors of 3 over- and underestimation, respectively. The Lombardi et al. (2015)
metric of estimating optical depths provides better accuracy in all cases presented. The optical depth is accurate by a factor of less than 3. The Stamatellos
et al. (2007b) method is accurate within dense clumps/fragments.

appropriately. We demonstrate that a disc evolved using the β-
cooling approximation, with a value of β = 3, results in a more stable
disc as compared to similar simulations that employ the Stamatellos
et al. (2007b) and Lombardi et al. (2015) radiative transfer methods
(see Section 7).

In the case of planets embedded in discs, it has been suggested
that efficient cooling promotes gas accretion (Nayakshin 2017; Sta-
matellos & Inutsuka 2018) and dust accretion (Humphries & Nayak-
shin 2018) onto the planet. Therefore, cooling rates may affect the
mass growth of planets, their metallicity, and their associated cir-
cumplanetary discs. This in turn results in different migration rates,
final masses, and orbital characteristics for these planets e.g. as
seen in Stamatellos (2015) in comparison with Baruteau, Meru &
Paardekooper (2011) (see Stamatellos & Inutsuka 2018).

9 C O N C L U S I O N

Approximate radiative transfer methods are useful due to their
computational efficiency, but they should be treated with caution
as radiative transfer may, in many cases, fundamentally affect the
evolution of an astrophysical system. The Lombardi et al. (2015)
method (which uses the pressure scale-height to calculate optical
depths) is more accurate than the Stamatellos et al. (2007b) method
(which uses the gravitational potential and the gas density as a
proxy for optical depths) for disc simulations. Both methods be-
have accurately for spherical geometries (i.e. collapsing clouds or
clumps in discs). When used for modelling protostellar discs, both
methods are more accurate than the β-cooling approximation (at
similar computational cost), which nevertheless is a good tool for
controlled numerical experiments of disc thermodynamics.
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