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ALTERED FRONTO-STRIATAL FUNCTIONS IN THE GDI1-NULL
MOUSE MODEL OF X-LINKED INTELLECTUAL DISABILITY
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Abstract—RAB-GDP dissociation inhibitor 1 (GD/1) loss-of-
function mutations are responsible for a form of non-
specific X-linked Intellectual Disability (XLID) where the only
clinical feature is cognitive impairment. GDI1 patients are
impaired in specific aspects of executive functions and con-
ditioned response, which are controlled by fronto-striatal
circuitries. Previous molecular and behavioral characteriza-
tion of the Gdi7-null mouse revealed alterations in the total
number/distribution of hippocampal and cortical synaptic
vesicles as well as hippocampal short-term synaptic plastic-
ity, and memory deficits. In this study, we employed cogni-
tive protocols with high translational validity to human
condition that target the functionality of cortico-striatal cir-
cuitry such as attention and stimulus selection ability with
progressive degree of complexity. We previously showed
that Gdi1-null mice are impaired in some hippocampus-
dependent forms of associative learning assessed by aver-
sive procedures. Here, using appetitive-conditioning proce-
dures we further investigated associative learning deficits
sustained by the fronto-striatal system. We report that
Gdi1-null mice are impaired in attention and associative
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learning processes, which are a key part of the cognitive
impairment observed in XLID patients. © 2017 Published
by Elsevier Ltd on behalf of IBRO.

Key words: X-linked Intellectual Disability, Gdi7-null mice,
appetitive conditioning, excitatory synapses, fronto-striatal
synaptic plasticity.

INTRODUCTION

Intellectual Disability (ID) accounts for 1-2% of the human
population (Lubs et al., 2012; Srivastava and Schwartz,
2014). In some cases, the ID phenotype could be part
of a syndrome (the syndromic forms such as the Down
syndrome) or to be the only clinical manifestation, defined
as non-syndromic ID. Genetic studies on large ID families’
revealed many genes on the X-chromosome (XLID),
explaining the huge incidence on male patients (Ropers
and Hamel, 2005). ID is defined by significant limitation
in both intellectual functioning and adaptive behavior.
Intellectual functioning is referred to mental abilities such
as reasoning, problem-solving, abstract thinking, judg-
ment and learning from experience instead adaptive
behavior concerned conceptual, social and practical skills
(Schalock et al., 2011). Specific aspects of executive
functions and conditioned response, which are controlled
by fronto-striatal circuitries, are consistently reported to
be altered in ID patients (Baker et al., 2011; Bexkens
et al.,, 2014a, 2014b). Recent work on cognitive impair-
ment in animal models of XLID genes have reported
memory deficits in trace fear conditioning, inhibition avoid-
ance, extinction and reversal learning. However, defining
other aspects like attention and stimulus selection in XLID
mouse models might be relevant to the pathology and
could provide powerful translational measurements.

One of the first identified X-linked gene to cause
human XLID was the guanine nucleotide dissociation
inhibitor, GDI/1 (D’Adamo et al., 1998). It encodes for
the brain-enriched protein RAB-GDP dissociation inhibitor
alpha (aGDI), a protein that controls the cycling of RAB
GTPases, a class of small GTPases directly involved in
intracellular vesicular trafficking (Grosshans et al,
2006). Previous work on Gdi7-null mice reported normal
explorative and motivational behavior as well as motor
coordination but revealed impaired hippocampal-
dependent forms of memory (D’Adamo et al., 2002).
Moreover, the major cause of Gdi7-null mice cognitive
deficit has to be ascribed to alterations in the total number
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of hippocampal and cortical synaptic vesicles (SV) during
postnatal synaptic differentiation. In adult mice the distri-
bution of SV is altered in differentiated neuronal terminals,
and the reserve pool appears to be specifically affected.
This results in a slow recovery after SV depletion, which
leads to a memory deficit whenever the synaptic SV
demand should increase both with task duration and task
difficulty (Bianchi et al., 2009). Neuropsychological and
imaging analysis in GDI/1-mutated patients, with
non-specific XLID, revealed a mean intelligent quotient
(1Q) of 45 (moderate ID) and functional brain alteration
suggesting impairment of cerebello-thalamo-frontal
pathway (Curie et al., 2009).

Thus, we asked whether Gdi7-null mice might reveal
deficits due to a reduced inhibitory action of the frontal
cortex (FC) on the basal ganglia leading to a lack of
selective attention (Pezze et al., 2009; Kahn et al.,
2012). In the present study, inhibitory processes and
attention were systematically evaluated in the Gdi7-null
mouse using a battery of newly developed set of
behavioral procedures able to define the prominence of
fronto-striatal functional deficits, similar to those reported
in ID patients (Curie et al., 2016). Moreover, we used
functional magnetic resonance imaging as a translational
approach to obtain an integral view of neuro-functional
alterations in the Gdi7-null brain and potentially link these
to the cognitive deficits. Finally, behavioral and functional
readouts were supported by electrophysiological and neu-
rochemical investigations that addressed the cellular
alterations and provided specific evidence of a major
involvement of the glutamatergic system also in the
fronto-striatal pathway.

EXPERIMENTAL PROCEDURES
Animals

Male Gdi1™Y mice and Gdi1*/Y littermates (denoted
Gdi1-null and Gdi1 WT for simplicity) (D’Adamo et al.,
2002) were used for this study. All efforts were made to
minimize animal suffering and to reduce the number of
mice used, in accordance with the European Communi-
ties Council Directive of November 24, 1986 (86/609/
EEC) and the subsequent ltalian Law on the “Protection
of animal used for experimental and other scientific rea-
sons”. All procedures on animals reported here were
approved by both the Department of Biotechnologies
(DIBIT) Institutional Animal Care (Milan, Italy) and by
the National Ministry of Health (IACUC #653).

Animal used in behavioral procedures

Behavioral analysis started at the age of 3 months and
mice were housed in pairs and had water freely
available in the home-cage. The holding room was on a
12-h light-dark cycle (lights on from 8.00pm to
8.00 am). All experiments were carried out during the
dark phase of the cycle. Food-deprived mice
(maintained at 85% of their free-feeding weight) were
weighed twice a day, before and at the end of the
experimental session. Food restriction started one week
before the beginning of the experiment and mice were

fed with a restricted daily ration of food at the end of
each experimental session. Before the start of an
experiment mice were exposed to the food pellets (in
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Fig. 1. Discriminative Delay Conditioning and Peak procedure. (A)
Schematic representation of the protocol used. In trial type 1, a CS A
is paired with food (CS A+ ; red box) whereas in trial type 2, a CS B is
not paired with food presentation (CS B-; light blue box). This
experiment lasted 5 days. (B) Responses per minute obtained by
subtracting the scores for CS A+ or CS B— from pre-CS (solid lines
and dotted lines, respectively). (C) Schematic representation of the
protocol used in peak procedure. In trial type 1, a CS A is paired with
food whereas in trial type 2, the CS AA is not paired with food
presentation. (D) Responses relative to CS AA— (40 s) trial obtained
by the peak procedure on all trials pooled together and averaged in
blocks of 5 s each. Black arrow indicates the correct mean peak value
around 20 s. Values represent the mean + SEM. 'p < 0.05. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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their home-cage) and were habituated to the test boxes
(1 h/day for 3 days). Five independent cohorts of naive
Gdi1-null and WT littermates, each composed of 8 mice
per genotype were subjected each to the five behavioral
procedures described below. Mice were randomly
assigned to the conditioning boxes in order to have 2
Gdi1-WT and 2 Gdi1-null in each squad and all
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experiments were conducted with experimenters blinded
to genotype.

Behavioral apparatus

Experiments were conducted using 4 identical fully
automated Classic Modular Test conditioning Chambers
for Mouse (Med-Associates Product # ENV-307A). Each
of those boxes was housed within an Expanded PVC
Sound Attenuating Cubicle (Med-Associates Product #
ENV-022V) equipped with a ventilation fan. Mounted in
the center of the right wall was a food-tray with an
opening measuring 2.5cm x 2.5cm x 1.9 cm. This was
located 1 cm above the grid floor and was connected to
a pellet dispenser through which 14-mg sucrose pellets
(Formula P) could be delivered (US). Head entries to
the food-tray were detected and recorded by the
breaking of an infrared light-beam across the opening.
On the top of the food-tray a LED light was placed. At
the opposite side of the LED-light there was the house
light, a 12-W bulb, mounted in a partially open hood that
directed the light upward. The loudspeakers for the
presentation of the auditory stimuli were placed in the
left wall of the chamber. Employed stimuli were the
house-light, the LED-light (CS C) and two pure sounds
at 4-kHz and 9-kHz (CS A and B counterbalanced
between squads). Med-PC for Windows controlled all
the experimental events, and recorded the time at which
events occurred with 10-ms resolution.

Fixed time intervals and stimuli present in all
behavioral procedure

All behavioral procedures described below (represented
schematically in Figs. 1A, C; 2A, D; 3A, C; 4A, B, D, E),
are composed by so defined trial type that always
started with a variable Inter Trial Interval (ITl; 60s on
average), necessary to perturb mice’s responses based
on the average cycle time of reinforce deliveries (US:
food) (Balsam et al., 2006), and followed by a fixed ITI
of 100s (ITI 80s + pre-CS 20s). The called “pre-CS”
(the last 20 s of the ITI before the CS) served as measure
of uncorrected anticipatory response immediately preced-

<

Fig. 2. Discriminative Trace Conditioning and Trace Peak procedure.
(A) Schematic representation of the protocol used. In trial type 1, a
CS Ais paired with food (CS +; red box) whereas in trial type 2, a CS
B is not paired with food presentation (CS—; light blue box). Empty
orange boxes following the CSs are the 5 s trace period. This
experiment lasted 6 days. (B) Responses per minute for CSs
obtained by subtracting the scores for CS A+ or CS B— from pre-
CS (solid lines and dotted lines, respectively). C) Responses per
minute for trace + or trace— obtained by subtracting the score for the
trace period from pre-CS. (D) Schematic representation of the
protocol used in peak procedure. In trial type 1, a CS A is paired
with food after the trace (empty orange box) whereas in trial type 2,
the CS A is not paired with food presentation after a longer trace
period (15 s). E) Responses relative to trace period (15 s) obtained by
the peak procedure on all trials pooled together and averaged in
blocks of 3 s each. Black arrow indicates the correct mean peak value
around 5 s. Values represent the mean + SEM. “p < 0.01. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Latent Inhibition. (A) Schematic representation of the pre-
exposure phase. A CS A is not paired with food presentation (CS—;
red box). (B) Responses per minute for CS obtained by subtracting
the scores for CS A— from pre-CS. (C) Schematic representation of
the acquisition phase where the pre-exposed stimulus (CS A; red
box) and a second novel stimulus (CS B; light blue box) were paired
with food delivery. (D) Responses per minute for CSs obtained by
subtracting the scores for CS A+ or CS B+ from pre-CS (solid lines
and dotted lines, respectively). (E) Difference scores relative to the
NON pre-exposed CS B minus the pre-exposed CS A. Values
represent the mean + SEM. "p < 0.05. (For interpretation of the
references to colour in this figure legend, the reader is referred to the
web version of this article.)

ing each CS presentation. Number and presentation of
trial types are specified in each procedure.

The duration and type of CSs is specified in each
procedure. CSs could be paired with food reward (+) or
not (—).

Dependent variable analyzed in all behavioral
procedures

Head entries into the food-tray were measured during
CSs and trace intervals. We also scored head entry into
the food-tray during the “pre-CS”, immediately
preceding each CS presentation, as a baseline
measure. The measure of conditioning for each type of
procedure was then calculated as (if not otherwise
stated) responses per minute during the CS period
minus responses during the pre-CS period and pooled
over all trials in a given session.

Discriminative delay conditioning procedure

To evaluate associative memory, two different trials
types, type 1 (CS A+) and type 2 (CS B-), were
designed (Fig. 1A). The MED-PC software delivered 30
trials for each trial type in a random way for every daily
session. The procedure was repeated for five
consecutive days. The CS presentation was of 20s in
duration.

Discriminative delay conditioning and peak
procedure

To evaluate timing behavior, after a different
discriminative delay conditioning experiment lasting only
four days, mice were subjected for four more
consecutive days to two randomly assorted trial types:
trial type 1 (40 trials) and trial type 2 (20 trials) — the
peak procedure task (Fig. 1C).

Trial type 1 was exactly as described above, and used
in order to maintain mice responding; while trial type 2
was as trial type 1 but differing on CS duration in the
way that it did not stop after 20 s but kept going for a
total of 40 s and no food was presented. This is called a
peak procedure trial. Data from the peak procedure
trials were collected and then each 1-s bin was divided
by the highest value of response (the peak value), in
order to normalized the average response, and then
averaged over 5s. This way, the highest response in
distribution was equal to 1, and each mouse contributed
equally to the shape of the distribution regardless of its
overall response rate.

Discriminative trace conditioning and peak
procedure

To evaluate how a time gap between CS and US could
affect associative learning, an interval of 5s (a trace)
between the CSs and US was introduced, on a
procedure design called discriminative trace conditioning
(Fig. 2A). During the discriminative trace conditioning
experiment, MED-PC software delivered 30 trials for
each trial type in a random way in every daily session,
this stage of the experiment was repeated for six
consecutive days. The CS presentation was of 15s
followed by 5s trace and CS A+ in trial type 1 or CS
B— in trial type 2. After this acquisition stage, mice were
subjected to the peak procedure for the trace, which
lasted for four days. Two randomly assorted trial types:
trial type 1 (40 trials) and trial type 2 (20 trials) — the
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peak procedure task (Fig. 2D). Trial type 1 was exactly as
described above, and used in order to maintain mice
responding; while trial type 2 was as trial type 1 but
differing on trace duration which here was 15-s long and
was not rewarded (instead of being 5-s long and
followed by a food pellet). Measures of conditioning
were calculated as in discriminative delay conditioning
and peak procedures described above, except for the
averages of the responses in the peak-procedure, which
were computed over bins of three seconds each.

Latent inhibition procedure

To evaluate loss of attention to irrelevant stimuli, mice
were first exposed to a non-food rewarded CS and
assessed for their background responding (Fig. 3A).
Forty trials (trial type 1) a day were presented for six
consecutive days, these consisted of a 20-s CS A not
food rewarded.

In the second stage of the procedure, the same mice
were subjected to two different trial types: trial type 1 now
paired with food CS A+ and trial type 2, a new stimulus
also paired with food CS B+. MED-PC software
delivered 20 trials for each trial type in a random way a
day, and the entire stage lasted 4 days (Fig. 3C). This
protocol aimed to test the inhibitory effect of a previous
learnt outcome of a CS (A—) when in a second stage of
the experiment, it was associated with food, leading to a
slower learning for this CS (A) compared to a new CS B
+ (which was never pre-exposed).

The CS presentation was of 20 s in duration.

Conditioned inhibition

To deeply evaluate attention and more active inhibitory
processes, mice were first subjected to two different trial
types: trial type 1, CS A+ and trial type 2, CS B+, 20
trials each, randomly delivered, for four consecutive
days, exactly as the second stage of latent inhibition
protocol (Fig. 4A).

On the next three consecutive days, three trial types
were now randomly presented with the introduction of a
new ftrial type, as a compound CS: CS AC— (where C
was the LED-light) for 30 trials and not food rewarded
(Fig. 4B). In that way, the function of the CS AC-—
presentation is to acquire inhibitory property for C since
when A is presented alone it is rewarded but not when it
is presented together with C, normally C becomes a
conditioned inhibitor.

Following this procedure, mice were then tested in a
one-day summation test, with two different trial types:
trial type 4, CS B—, and trial type 5, CS BC—, 20 ftrials

each, randomly assorted (Fig. 4D). In that way, the CS
C that was never paired before with CS B has the ability
to suppress what previously learnt for the CS B+. This
is one of the classic ways to assess the strength of a
conditioned inhibitor.

Over the next two days, mice were subjected to a
retardation test where the conditioned inhibitor CS C
was now paired with food. In that way, it is possible to
test mice’s ability to show the acquired inhibition in the
stages before. The retardation test stage was just one
trial, type 6, CS C+, 40 trials. Acquired inhibition is
here seen as a slower responding to C.

All CS presentations were of 20 s in duration.

Statistical analysis in behavioral procedure

For behavioral procedures, a two-way analysis of
variance (ANOVA) or repeated measure ANOVA was
used with genotype and day as independent factors
(StatView Software; SAS Institute, Cary, NC, USA). T-
test was used to analyze single variables. In all
statistical tests, the significance level was set at
p < 0.05. Error bars indicated mean + S.E.M.

Dopamine release experiment

P2 crude synaptosomal fraction was obtained as
described in Raiteri et al. (1984). Briefly, amygdala was
dissected from Gdi1 WT (n=12) and Gdi1-null
(n = 12) mice and homogenized in sucrose (0.32 M,
40:1 volume:tissue weight) buffered at pH 7.4 with phos-
phate (Raiteri et al., 1984). The homogenate was first
centrifuged for 5 min at 1,000g (4 °C) to remove nuclei
and debris and then at 12,0009 for 20 min (4 °C) to isolate
synaptosomes. The P2 synaptosomal pellet was sus-
pended in physiological HEPES-buffered medium with
the following composition (mmol/L): NaCl, 140; KCI, 3;
MgS04, 1.2; NaH2PO4, 1.2; HEPES, 10; glucose, 10;
pH 7.4). Synaptosomes were subsequently incubated at
37°C for 15 min with 0.05 umol/L [7,8-3H]dopamine
(PHIDA, specific activity 90 Ci/mmol, Amersham, Buck-
inghamshire, UK) in physiological medium containing
0.1 uM/L 6-nitroquipazine and desipramine (Tocris Cook-
son, Bristol, UK) to block possible entry of [*H]DA into
serotonergic and noradrenergic nerve terminals, respec-
tively. After the incubation, equal aliquots of synaptoso-
mal suspension were stratified on Millipore filters
present at the bottom of twenty superfusion chambers
thermostated at 37 °C and superfusion was accomplished
by means of a peristaltic pump (flow rate of 0.5 ml/min).
After 36 min of superfusion to reach a steady sponta-
neous release of [°H]DA, samples of superfusate were

<

Fig. 4. Conditioned Inhibition. This experiment had four stages. (A) Schematic representation of the acquisition phase (days 1 to 4) where CS A
(red box) and a CS B (light blue box) were paired with food delivery. (B) Schematic representation of the subsequent inhibitor training phase (days 5
to 7) where three stimuli were presented: CS A+, CS B+ and AC— where C was the LED-light (orange box). C) Responses per minute for stimuli
obtained by subtracting the scores for CS A+ or CS B+ or AC— from pre-CS. (D) Schematic representation of the summation test (day 8) where
two stimuli were presented: CS B— and BC— where C was the LED-light (orange box). (E) Schematic representation of the retardation test (days 9
and 10) where the LED-light C (orange box) is rewarded with food. (F) The BC/(BC) + (B) suppression ratio was employed to represent the results.
(G) Responses per minute for light stimulus obtained by subtracting the scores for C+ from pre-CS. Values represent the mean + SEM.
“p < 0.01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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collected in plastic vials according to the following proto-
col: t=36-39min pre-depolarization spontaneous
release, t = 39-45 min KCl-evoked release (a period of
90 s of depolarization was applied at { = 39 min with
15 mmol/L KCl), t = 45—48 min post-depolarization spon-
taneous release. Radioactivity present in the fractions col-
lected and in superfused synaptosomes was quantified by
liquid scintillation counting.

The amount of [PH]DA present in each fraction
collected was expressed as a percentage of the total
radioactivity content of present in synaptosomes at the
beginning of the respective collection period (fractional
rate x 100).  Depolarization-evoked overflow was
calculated by subtracting the transmitter content present
in the two 3-min fractions (spontaneous pre- and post-
depolarization release) from that present in the 6-min
fraction collected during and after the depolarization with
KCI.

Functional magnetic resonance imaging (fMRI)

Brain imaging was performed in naive Gdi1 WT (n = 7)
and Gdi1-null (n = 11) mice (age 22-27w) under
shallow etomidate anesthesia as described previously
(Petrinovic et al., 2016). In brief, anesthesia was induced
with 3% isoflurane (Abbott, Baar, Switzerland) in oxygen
and air (1:5 vj/v), and maintained with etomidate
(B. Braun Melsungen AG. Melsungen, Germany) admin-
istered intravenously at a rate of 0.75 mg/kg/min. Body
temperature was maintained at 37 °C and breathing rate
and concentrations of inhaled and exhaled oxygen and
CO, were continuously monitored on a PowerlLab data
acquisition  system  (ADInstruments,  Spechbach,
Germany).

The fMRI study was conducted on a 9.4 T Bruker
Biospec, 20 cm bore animal scanner (Bruker Biospin,
Ettlingen, Germany), equipped with a 7-cm-diameter
birdcage coil for signal excitation and a surface coil for
signal reception. Perfusion imaging as a proxy readout
of neural activity was conducted based on the
continuous arterial spin-labelling (CASL) method
(Centered RARE, TR/TE = 3.75s/5.4ms, RARE-
factor = 32, 20 mm x 20 mm field-of-view, 128 x 64
matrix, 0.6-mm slice thickness, 2 averages, 3-s labeling
pulse, 0.4 s post labeling delay). Three sets of perfusion
images were collected over 12 min from eight coronal
slices positioned at +1.9, +1.0, +0.1, —-0.8, —1.7,
—2.6, —3.5 and —4.4 mm relative to the bregma. fMRI
data were processed and analyzed as described
previously (Bruns et al., 2009). Absolute perfusion values
obtained from the CASL-images were normalized for
each brain area to the mean perfusion of each slice in
order to account for possible systemic changes affecting
brain perfusion as a whole, and to eliminate part of the
inter-individual variability. Normalized blood perfusion in
Gdi1 WT and Gdi1-null mice was compared region-wise
using two-tailed f-tests with no correction for multiple test-
ing. (Given the exploratory character of the present study,
we aimed for an assessment subserving hypothesis build-
ing rather than a strictly confirmatory analysis.

Electrophysiology in cortico-striatal brain slices

Male mice (60—70 days of age) were anesthetized with an
intraperitoneal injection of a mixture of ketamine/xylazine
(100 mg/kg and 10 mg/kg, respectively) and perfused
transcardially with ice-cold artificial cerebrospinal fluid
(ACSF) containing (in mM): 125 NaCl, 3.5 KCI, 1.25
NaH,PO,, 2 CaCl,, 25 NaHCO;, 1 MgCl,, and 11 D-
glucose, saturated with 95% O, and 5% CO, (pH 7.3).
After decapitation, brains were removed from the skull
and 300 um-thick horizontal cortico-striatal slices were
cut in ACSF at 4 °C using a VT1000S vibratome (Leica
Microsystems, Wetzlar, Germany). Individual slices were
then submerged in a recording chamber mounted on the
stage of an upright BX51WI microscope (Olympus,
Japan) equipped with differential interference contrast
optics (DIC). Slices were perfused with ACSF
continuously flowing at a rate of 2-3 ml/min at 32 °C.
Whole-cell patch-clamp recordings were performed in
neostriatal medium spiny neurons (MSNs) using pipettes
filled with a solution containing the following (in mM): 10
NaCl, 124 KH,PO,, 10 HEPES, 0.5 EGTA, 2 MgCl,, 2
Na>-ATP, 0.02 Na-GTP, (pH 7.2, adjusted with KOH; tip
resistance: 4-6 MQ). Excitatory postsynaptic currents
(EPSCs) were evoked in MSNs by electrical stimulation
of the neocortex using a bipolar tungsten electrode
(FHC, Greenville, PA), placed near the external capsule
at the border between cortex and neostriatum and
connected to a stimulus isolator (WPl Europe, Berlin,
Germany). To isolate AMPA-receptor dependent
EPSCs, the ACSF was added with the GABA-receptor
antagonist gabazine (10uM) and recordings were
performed at a holding potential of —80 mV.

Paired-pulse protocols were applied using dual stimuli
at 50- through 250-ms inter-stimulus intervals in 50-ms
increasing steps. Each stimulus lasted 0.2 ms, while
current intensity was previously adjusted in order to
obtain steady, reliable EPSCs with no failures during
low-frequency stimulation (0.1 Hz). Paired-pulse ratios
(PPRs) were calculated by dividing the second EPSC
peak amplitude by the first one for any paired-pulse
sequence. High-frequency stimulus trains (20 Hz, 4 s)
were applied to assess SV readily releasable pools
(RRPs) (Bianchi et al., 2009). Cumulative EPSC peak
amplitudes were plotted and the late phase (20—25 points)
of the dataset was linearly fit. Back-extrapolation of the fit
line to the Y-axis intercept provided an estimate of the
RRP (Schneggenburger et al., 1999). The probability of
release (Pr) of any given vesicle in the RRP was calcu-
lated as the ratio between the first-evoked EPSC in the
train and the RRP size.

All recordings were performed using a MultiClamp
700B amplifier interfaced with a PC through a Digidata
1440A (Molecular Devices, Sunnyvale, CA, USA). The
series resistance was partially compensated (40-50%)
using the amplifier control circuit. Data were acquired
using pClamp10 software (Molecular Devices) and
analyzed with Origin 9.1 (Origin Lab, Northampton, MA,
USA). Voltage-clamp traces were sampled at a
frequency of 30 kHz and low-pass filtered at 2 kHz.
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RESULTS

aGDl is expressed in all brain regions and its lack has been
previously proven to affect hippocampal, cortical and
amygdala glutamatergic synapses in the process of
memory formation linked to SVs content defect
(D’Adamo et al., 2002; Bianchi et al., 2009). We thus inves-
tigate whether Gdi7-null mice show more pronounced def-
icits in tasks with higher SV demand and implicating not
only the limbic system but also the fronto-striatal system
as observedin ID patients. We subject the animals through
different paradigms necessary to evaluate Gdi7-null mice
responses to task difficulty and based on fronto-striatal
system such as discriminative delay conditioning, discrim-
inative trace conditioning, interval-timing behavior, latent
inhibition and conditioned inhibition.

Gdi1-null mouse lacks discriminative conditioning
over time and are impaired in interval timing behavior

A discriminative delay-conditioning task was employed to
test whether Gdi7-null mice were able to take the most
appropriate action when presented with a food
reinforced conditioned stimulus (CS A+) and a non-
reinforced CS (CS B-) (Fig. 1A). Both Gdi1 WT and
Gdi1-null mice displayed discriminative response to the
CS A+ (Fig. 1B, solid lines) over CS B-— (Fig. 1B,
dotted lines) but a significant interaction between
genotypes and days was observed (ANOVA
genotype*day: F[4,1] = 2.5; p = 0.049) and factorial
analysis showed a main effect that became significant
for day 5 (ANOVA genotype effect: F[1,14] = 5.9;
p =0.03; Fig.1B) which indicates a greater
discriminative conditioning achieved by Gdi7-WT mice.
This result demonstrates in a goal tracking procedure
that the level of conditioning to a CS predicting a
biological relevant stimulus vs. a CS, which did not, was
greater in Gdi1 WT than in the Gdi7-null mice. We thus
conclude that Gdi7-null mice are less efficient in
engaging the appropriate action with regard to stimuli
carrying different qualitative information.

We then subjected a new cohort of Gdi1 mice to four
days discriminative delay conditioning task followed by
interval timing behavior procedure in order to investigate
the functioning of a key brain structure involved in
attention and stimulus processing i.e. the frontal cortex
and the striatum (Lustig et al., 2005; Meck et al., 2013;
Merchant et al., 2013).

As expected, no significant differences were observed
between genotype in the responses to the CS A+ over
the CS B— after only four days of training (data not
shown) allowing thus to switch to a peak procedure
(Fig. 1C) under similar conditions for both groups. As
shown in Fig. 1D, the response of Gdi7 WT mice
correctly peaked around 20 s, while Gdi7-null mice had
their peak response later (shifted to the right). The
difference between the peak times of the two groups
was statistically significant (Gdi1 WT 17.6 £ 1.17 s,
Gdi1-null 26.5 + 2.49 s; t-test, p = 0.002).

This experiment demonstrates that Gdi7-null mice
performed poorer in timing a well-known interval as they
showed less precision in their peak response and more

variability. This result suggests a deficit in processing
temporal information that involves the medium spiny
neurons in the striatum and frontal cortices (the Beat
Frequency Model) (Matell et al., 2003; Meck, 2006;
Meck et al., 2008; Petter et al., 2016).12

Gdi1-null mouse exhibits prominent deficits in a
Pavlovian discriminative trace-conditioning task

We then subjected a new cohort of mice to discriminative
trace conditioning in order to evaluate their ability to take
the most appropriate action when presented with different
trace interval tasks, one of which was paired with food
(CS A+) at trace-end while the other was not (CS B—)
(Fig. 2A). The ability to properly respond to trace
intervals is of major interest in the field of associative
learning and interval timing since behavioral theories
make different predictions and this might have profound
implications on the translational validity of the tasks
between mice and humans. Briefly, Informational
processing theories (Gallistel and Balsam, 2014) see
the onset of offset of stimuli (when CS switch on and
off) as the major information-providing sources. They thus
assume that responses during the trace interval should
not decay (as we have confirmed).

Both genotypes displayed discriminative response to
the CSs (i.e. for the CS whose trace was followed by a
reward Fig. 2B) but Gdi7-null mice did not achieve the
greater discriminative conditioning observed in Gdi1 WT
mice for CS A+ (ANOVA genotype effect: F[1,14] =
13.45; p = 0.002) (Fig.2B, solid lines). The same
analysis carried out for the trace interval however did not
revealed any significant genotype effect (ANOVA genotype
effect for trace +: F[1,14] = 4; p = 0.07) (Fig. 2C).

These results show that Gdi7 WT mice associated
both trace and CS intervals while Gdi7-null mice
showed poorer associative strength for the longer (15s
vs. 5) and further away interval (the CS is not
contiguous with the food reward as in fact the trace is)
since this interval carries less information than the
Trace (Gallistel and Balsam, 2014).

After 6 days of acquisition, we switched to a trace-
peak procedure (Fig.2D) under similar conditions
between groups. Fig. 2E shows that Gdi71 WT mice had
a correct trace-peak response around 5s, while Gdi7-
null mice peaked later (peak moved to the right). The
difference of the peak times of the two groups was
statistically significant (Gdi1 WT 5.38 +£ 1.72s, Gdi1-
null 9.63 + 1.19s; t-test, p = 0.03).

This experiment showed a less efficient conditioning
in the Gdi7-null mice to the longer CS interval while no
statistically relevant difference was seen for the shorter
trace interval. It also showed that both groups increased
their response rate during the trace interval in a similar
fashion, which supports information processing models’
predictions for which subjects started timing when the
CS switched off.

Gdi1-null mouse does not show latent inhibition (LI)

To further evaluate fronto-striatal function we then
investigated with LI which is a reliable paradigm that
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reflects attentional processes (Lazar et al., 2012; Lubow
et al., 2014).

A within-subject design was employed and the a priori
prediction was that conditioning to the pre-exposed
stimulus (CS A—) would proceed more slowly than to a
novel stimulus (Fig. 3A, C).

Both groups of Gdi1 mice did not differ in the
responses to the pre-exposed CS A-— (ANOVA
genotype effect: F[1,14] = 0.016; p = 0.9; Fig. 3B).
Thus, we switched to the acquisition phase (Fig. 3C),
where the CS A— became now rewarded (CS A+),
randomly presented in between with a new CS (CS B+
non pre-exposed), in order to evaluate the strength of
CS A-— latent inhibition during pre-exposure stage. Both
genotypes learnt and did not differ in the responses to
the novel CS B+ (dotted lines) (ANOVA genotype
effect: F[1,14] = 0.17; p = 0.7; Fig.3D) providing
further evidence of a similar hedonic response to
appetitive conditioning. However, while in the Gdi1 WT
mice the former CS A— had an inhibitory effect on
learning CS A+, this did not happen in Gdi7-null, which
learnt the two CSs at the same rate (Fig.3E). A
significant interaction was observed between genotypes
and day (ANOVA genotype x day: F[3,1] = 3.3;
p = 0.03) and factorial analysis showed a significant
difference between genotypes at day 9 (ANOVA
factorial analysis day 9: F[1,14] = 7.6; p = 0.015),
suggesting a lack of LI in the Gdi7-null group.

Gdi1-null mouse has an impaired ability to develop
conditioned inhibition (Cl)

We further investigated attention-related and inhibitory
deficit since LI and Cl share some basic features. While
Ll is seen as a loss of attention to the pre-exposed CS,
during the Cl an expected signaled food rewarded CS A
is paired with a second CS C that is not rewarded and
an active inhibition is formed.

In the first four days of acquisition (Fig. 4A, C left part
of the graph), both genotypes responded equally to CS A
+ (ANOVA genotype effect: F[1,14] = 0.341, p = 0.57)
and to CS B+ (ANOVA genotype effect: F[1,14] = 3.05,
p = 0.1) suggesting that both groups did not
significantly differ in the acquisition phase and had
similar hedonic response to food reward. Mice were
then subjected to three days inhibitory training
(fig. 4B, C right part of the graph) where a compound
CS AC- was added to the previous two. Even in this
inhibitory phase both groups quickly learnt to not
respond to the CS AC— compound (ANOVA genotype
effect for CS A: F[1,14] = 0.096; p = 0.76; CS B: F
[1,14] = 0.082; p = 0.78; compound AC: F[1,14]
= 0.171; p = 0.69). Next, on the following day
(Fig. 4D, F) in a “Summation test” the Gdi7-WT group
showed a trend to a greater suppression acquired in the
previous stage for the conditioned inhibitor C (ANOVA
genotype effect: F[1,14] = 2, p = 0.1). Yet on days 9
and 10 in the “Retardation test” (Fig. E, G), Gdi1-null
mice were quicker in increasing their response to the
former conditioned inhibitor CS C (ANOVA genotype
effect: F[1,14] = 9.1; p = 0.009), indicating that the

conditioned inhibition was not as effectively learnt as in
the Gdi1 WT.

This experiment demonstrates that while conditioning
to stimuli had occurred equally in the first part of the test
(Fig. 4A—C), Cl ensued to a greater extent in Gdi1 WT,
as seen in the second part of the test (Fig. 4D-G), thus
providing further evidence for a deficit in stimulus
processing, and support for the LI results.

Dopamine release in the amygdaloidal nuclei is
normal in Gdi71-null mouse

Most of the associative learning tasks are exclusively or at
least largely dependent on the amygdaloidal nuclei as
major brain structure involved in learning. Furthermore,
reward learning and interval-timing behavior both involve
dopamine release (Buhusi and Meck, 2006; Ward et al.,
2009, 2012).

Hence to exclude a different hedonic state or a
different valence of the US in Gdi7-null versus WT mice,
we measured the ability of these mice to release
dopamine in the amygdala (Galtress et al., 2012).

Synaptosomes prepared from Gdi7-null mice were
comparable to those of Gdi7T-WT mice for [*H]DA total
content (148290 + 26759 vs 158991 + 35644 d.p.m.,
p = 0.8). The spontaneous efflux of [PHJDA was not
different in the two animal groups (Gdi7-WT mice 2.19
+ 0.24%, n = 8; Gdi1-null mice 2.7 + 0.26%, n = 11),
as well as the 15 mM KCl-induced overflow of [°*H]DA
(Gdi1T-WT mice 2.23 + 0.42%, n = 8; Gdi1-null mice 2.5
+ 0.46%, n = 11). These data clearly indicate that both
genotypes have no difference in dopamine release in a
key brain area underpinning associative reward learning.

Functional magnetic resonance imaging suggests
modification of brain activity in Gdi1-null mice

To obtain a general overview of Gdi7-null brain function,
we used a non-invasive in vivo imaging technique to
support mechanistic hypotheses and yield information of
translational relevance.

Structural MRI data obtained confirmed that gross
cerebral morphology in Gdi1 WT and Gdi7-null mice are
alike and that the brain-wide lack of aGDI has no overt
morphological consequences.

Functional MRI suggested that the brain perfusion,
which was taken as a proxy for neural activity, tended to
be different in some brain areas (Table 1, Fig. 5). Even
though none of these differences reached statistical
significance, altered neural activity of some potential
relevance (i.e., p < 0.20) between Gdi7-null and Gdi1
WT mice was observed in the dorsal peduncular
(+14%), prelimbic (+8%) and infralimbic (+14%)
cortices, the dorsal/ventral hippocampus (—6%), and the
superior colliculus (—12%). However, no difference was
seen in the striatum, which led us to further investigate
its role in disease pathology at a more microscopic level.

Cortico-striatal synaptic vesicle readily releasable
pool is reduced in Gdi1-null mice

Under the hypothesis that the neural substrate for the
observed behavioral deficits is a reduced glutamatergic
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Table 1. Brain areas examined by fMRI

Abbreviation Brain area Difference of p-
neural activity Value
Gdi1-null vs
Gdi1 WT (%)
mPFC Medial prefrontal 4.23 0.45
cortex
PrL Prelimbic cortex 8.27 0.13
IL Infralimbic cortex 13.50 0.14
DP Dorsal peduncular 14.10 0.10
cortex
S1 Primary 0.56 0.93
somatosensory
cortex
S2 Secondary 0.56 0.90
somatosensory
cortex
M1 Primary motor cortex —2.17 0.75
M2 Secondary motor 1.90 0.75
cortex
\% Visual cortex 4.37 0.54
Ent Entorhinal cortex 0.11 0.99
Ins Insula cortex —0.92 0.82
Str Striatum 4.15 0.30
Acb Accumbens nucleus 0.82 0.85
VP Ventral pallidum —-1.36 0.85
BST Bed nucleus of stria  0.54 0.90
terminalis
VTA Ventral tegmental —2.01 0.84
area
SNC Substantia nigra 4.26 0.63
Ltha Lateral thalamus —4.59 0.57
Mtha Median thalamus —4.95 0.53
Amg Amygdala 4.58 0.47
Hpc Hippocampus —1.89 0.43
Hpc (dv) Hippocampus —-6.14 0.07
(dorsal + ventral)
CA1 Hippocampus —0.51 0.88
cornus ammonis 1
S Subiculum 1.23 0.68
DG Hippocampus 0.58 0.85
dentate gyrus
Sep Septum -0.23 0.95
dPAG Dorsal -3.20 0.70
periaqueductal gray
vPAG Ventral —5.42 0.66
periaqueductal gray
DR Dorsal raphe —2.89 0.78
nucleus
MR Medial raphe 8.92 0.54
nucleus
SC Superior colliculus -12.10 0.12
LHyp Lateral —13.36 0.38
hypothalamus
MHyp Median 16.74 0.27

hypothalamus

release in medial prefrontal-cortex (mPFC), whole-cell
patch-clamp recordings were performed in Gdi1 WT and
Gdi1-null  brain slices in order to investigate
electrophysiological properties of excitatory cortico-
striatal synapses and gather further evidence for the
involvement of the fronto-striatal pathway.

The peak amplitude of individual EPSCs evoked in
striatal MSNs by cortical extracellular stimulation was
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Fig. 5. Functional magnetic resonance imaging suggests brain
region-specific alterations of neural activity in Gdi7-null mice. Left
panel: anatomical images of the mouse brain acquired from eight
coronal slices. The images are overlaid with a digital atlas defining 33
bilateral regions. The numbers indicate the distance to the bregma.
Right panel: color-coded maps of normalized perfusion difference
between Gdi7-null (n = 11) and Gdi7-WT mice (n = 7) at rest under
etomidate anesthesia. Normalized perfusion was taken as a proxy for
neural activity. Visually most prominent is an elevated activity in the
infralimbic and prelimbic cortex of Gdi7-null mice. (For interpretation
of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

significantly smaller in Gdi7-null than in Gdi7 WT brain
slices (206 + 55 pA vs. 538 + 108 pA, respectively,
p=0.011, n=28, unpaired t test; Fig.6A, B).
Conversely, paired-pulse ratios did not change at any of
the different inter-stimulus intervals tested (Fig. 6C),
suggesting that the SV release probability was
unaltered. Stimulation trains at high-frequency (20 Hz,
4s) were then applied in order to construct EPSC
amplitude cumulative plots and estimate the size of SV
readily releasable pool (RRP; see Methods). The
average RRP size was significantly smaller in Gdi7-null
slices as compared to Gdi1 WT slices (2.4 + 0.4 nA vs.
8.0 £ 2.6 nA, respectively, p = 0.04, n = 6, unpaired
t test; Fig. 6D, E), while the release probability (Pr) —
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Fig. 6. The RRP size of synaptic vesicles is reduced in Gdi7-null cortico-striatal projections. (A) Representative traces showing superimposed
EPSC responses to paired-pulse stimulations at various inter-stimulus intervals (ISls; from 50 ms to 250 ms in 50-ms steps). Traces obtained from
Gdi1-WT and Gdi7-null slices are shown in black and gray, respectively. (B) Summary histogram of average Gdi7-WT and Gdi7-null EPSC peak
amplitudes. Data were obtained only from the first EPSC recorded in any paired-pulse stimulation protocol. (C) Mean paired-pulse ratios (PPR)
plotted against ISls. (D) Representative EPSC trains recorded in Gdi7-WT (black) and Gdi7-null (gray) MSNs in response to a high-frequency
stimulus train (20 Hz, 4 s; shown in bottom trace). (E) Average cumulative plots of peak amplitudes of Gdi7-WT (black dots) and Gdi7-null (white
squares) EPSCs. The straight lines represent linear extrapolations to the Y-axis intercept in order to obtain the RRP size (see Methods). (F)
Average histograms of RRP sizes (leff) and probability of vesicle release (Pr; right) calculated in 6 Gdi7-WT and 6 Gdi7-null MSNs. p < 0.05.

calculated by dividing the first EPSC in the train by the
RRP size — was unaltered (Gdi7-WT: 9.0 £ 1.1%, GdiT-
null: 85+ 1.0%, p=0.7, n=6, unpaired t test
Fig. 6F). Altogether, these data suggest that cortico-
striatal synaptic transmission is weaker in Gdi7-null
mice than in controls due to a smaller pool of readily
releasable glutamatergic SVs.

DISCUSSION

In the present study, Gdi7-null mice were subjected to
discriminative conditioning, interval-timing behavior,
latent inhibition and conditioned inhibition in appetitive
procedures to define the prominence of attention and
fronto-striatal functional deficits similar to those reported
in ID patients (Fernandez-Jaen, 2006; Aureli et al,
2010; Verhoeven et al., 2012).

Our results demonstrate that Gdi7-null mice, which
show clear deficits in short-term and associative
memory caused by alterations in the synaptic release
machinery in glutamatergic terminals (Bianchi et al.,
2009), are also impaired in appetitive Pavlovian condition-
ing paradigms.

Gdi1-null mice showed a poorer discriminative
conditioning between a sound (CS) that predicted food
(US) and one that did not in a delay-conditioning task.
Since both groups showed a clear discrimination
between the CS+ and CS-, the difference observed is
likely not due to a poorer ability to discriminate different

CSs, but rather caused by a change in the level of
anticipatory response to the reward-predicting CS.

Gdi1-null mice were also poorer in timing task working
memory that requires attention, stimulus processing
ability and intact executive functions (Lustig et al., 2005;
Meck et al., 2013; Merchant et al., 2013). The CS-onset
first triggers a timing mechanism resulting in the informa-
tion about the elapsed time being stored in working mem-
ory, and at the CS end this information on time duration
has to be transferred to the long-term memory. Thus,
the presentation of the same CS elicits the comparisons
between the elapsing time with the remembered time
and, when the comparison reaches the response thresh-
old, the probability for triggering the action increases
(Buhusi and Meck, 2005).

We then added a gap (a trace interval 5s long)
between a CS and US, in a discriminative conditioning
preparation, and Gdi7-null mice showed a poorer
conditioning to the CS interval (15 s long) while they did
not for the trace. This is in general agreement with the
overall hypothesis that Gdi7-null mice would perform
worse than Gdi7 WT in harder or longer tasks only. In
fact our previous studies showed that a decreased SV
reserve pool, which was demonstrated functionally by a
slow recovery after SV depletion, leads to a memory
deficit whenever the synaptic SV demand should
increase both with task duration and difficulty (Bianchi
et al., 2009). We also tested the Gdi1-null mice’s ability
in trace-peak procedure and also in this case the results
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provided evidence of poorer interval timing and delayed
peak position.

Conditioning deficit might likely be due to a poorer
fronto-striatal and ventral tegmental area (VTA) interplay
(Reichelt et al., 2013) and a reduced glutamatergic input
from the mPFC as indicated by previous work (Schubert
et al., 2015). With regard to interval timing, there is ample
literature that indicates a critical role for the basal ganglia
in temporal information processing and particularly of the
striatum and its connections with the PFC and dopaminer-
gic system (Buhusi and Meck, 2005; Valencia-Torres
etal., 2012; Cope et al., 2014). Many studies indicate that
temporal information processing can be distorted by
manipulations that target the dopaminergic system
(Buhusi and Meck, 2005). It has been suggested that stri-
atal MSNs may serve as a monitor of neural activity in
cortico-striatal circuits, and that they control working
memory during interval timing tasks (Matell and Meck,
2004). Thus it has been hypothesized that a pulse of
dopamine at the beginning of the interval to be timed trig-
gers the MSNs, which monitor the oscillations in the firing
of PFC neurons (Parker et al., 2011; Ward et al., 2012).
When then a second pulse of dopamine signals the end
of the interval the spatial pattern of firing in cortical neu-
rons is stored by strengthening the currently engaged
synapses (probably by a LTP mechanism), thus providing
a memory of the interval duration (Meck et al., 2008).

Since PFC lesions produce distortions in timing
(Olton, 1989; Picton et al., 2006) and modulate the effect
of drugs that target striatal D2 receptors (Meck, 2006), it
follows from the above reasoning that interval timing
requires the integrity of cortico-striatal circuits which seem
to be impaired by the lack of aGDI.

Finally, Gdi1-null mice showed attention-related
learning deficits, demonstrated by using latent inhibition
and conditioned inhibition paradigms. LI is a
phenomenon that occurs when the pre-exposure to a
stimulus reduces the speed with which it subsequently
conditions and it is often regarded as a loss of attention
to the pre-exposed cue (Mackintosh et al., 2010). On
the other hand, Cl is a phenomenon that occurs when a
stimulus is learnt to signal the absence of an otherwise
expected outcome. As a result, the inhibitor suppresses
conditioned response to other signals for the reward and
it is itself slower to become a signal than another CS.

In our LI protocol, where a pre-exposed CS was
compared to a new CS, Gdi7-null mice showed a lack of
LI since the pre-exposed stimulus was faster to acquire
associative strength when compared to Gdi7-WT mice,
which on the contrary showed LI.

In Cl summation test, although the difference between
groups was not sufficient to reach statistical significance,
the ability of the light (C) to suppress response to B was
greater in the Gdi7-WT mice. During the retardation test
in which the conditioned inhibitor (C) itself was paired
with food, here Cl would be evident as slower learning,
but GdiT-null mice were faster to increase their
response rate to C when compared to WT. Thus,
Gdi1-null mice showed both LI and CI| impairment that
we believe to be due to a poorer functioning of the

fronto-striatal pathway, because failure to show normal
LI and Cl has been considered a fronto-striatal function
(Rhodes and Killcross, 2007; Green et al., 2011) and
linked to the dopaminergic system as key substrate
(Tobler et al., 2003; Bay-Richter et al., 2013). All together
these data revealed marked behavioral deficits that are
directly correlated to the fronto-striatal pathway and impli-
cating glutamatergic system mal-functioning as the princi-
pal defect in neurotransmitter components.

Structural neuroimaging revealed that neuroanatomy,
as expected, did not differ in Gdi7-null and Gdi7 WT mice.
Our fMRI assessments shed some light on potential
functional differences and brain structures that tended to
be hyper- or hypo-activated due to the lack of aGDI. It
should be noted that these differences were observed at
resting conditions where no phenotypical differences are
otherwise apparent. It may be hypothesized that under
conditions of increased cognitive workload, such as the
behavioral paradigms reported here, the neuro-
functional alterations become more overt.
Notwithstanding, the current fMRI data are in alignment
with the notion that prelimbic and infralimbic cortices
might be more relevant in the temporal and reward
processing underlying Pavlovian conditioning (Galtress
et al., 2012).

To deeply investigate the role of fronto-striatal circuitry
we then performed whole-cell recordings, which revealed
significantly smaller individual glutamatergic EPSCs
evoked by brief cortical stimulation and recorded in
striatal MSNs. Such weaker transmission was not
accounted for by a reduced probability of
neurotransmitter release, but rather by a smaller sized
pool of readily releasable synaptic vesicles as previously
also described in the hippocampus.

As negative control for the validation of the
experimental conditions in our model, we went then to
investigate the release of dopamine in the amygdala
because of the key role of dopamine in the above
behavioral paradigms and the implication of the
amygdala in associative and reward learning.

We demonstrated that dopamine release in the
amygdala is normal in Gdi7-null mice, thus ruling out
dopamine related differences in incentive value
(Wassum et al., 2011; Kodama et al., 2014).

It shall also be noted that given the nature of the
mutation in this mouse, it is highly unlikely that it has
differentially affected dopamine release in other brain
areas such as the striatum. However, we cannot
exclude that other excitatory neurotransmitter systems
or the inhibitory system might play a role in Gdi7-null
mice cognitive phenotype and further analyses need to
be carried out to evaluate also this aspect.

Taken together, these data provide strong supportive
evidence for the hypothesis that the learning, memory
and interval-timing deficits observed in Gdi7-null mice
are mainly caused by a reduced glutamatergic release
in cortical, striatal, amygdala and hippocampal brain
areas. This finding suggests clinical studies in ID
patients that investigate pharmacological treatments
targeting and improving glutamatergic transmission.
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