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The Haagerup property for
locally compact quantum groups

By Matthew Daws at Leeds, Pierre Fima at Paris, Adam Skalski at Warsaw and
Stuart White at Glasgow

Abstract. The Haagerup property for locally compact groups is generalised to the con-
text of locally compact quantum groups, with several equivalent characterisations in terms of
the unitary representations and positive-definite functions established. In particular it is shown
that a locally compact quantum group G has the Haagerup property if and only if its mixing
representations are dense in the space of all unitary representations. For discrete G we char-
acterise the Haagerup property by the existence of a symmetric proper conditionally negative
functional on the dual quantum group G; by the existence of a real proper cocycle on G, and
further, if G is also unimodular we show that the Haagerup property is a von Neumann property
of G. This extends results of Akemann, Walter, Bekka, Cherix, Valette, and Jolissaint to the
quantum setting and provides a connection to the recent work of Brannan. We use these char-
acterisations to show that the Haagerup property is preserved under free products of discrete
quantum groups.

1. Introduction

The Haagerup property of locally compact groups has its origins in Haagerup’s funda-
mental paper [38], which establishes that the length function on the free group FF, is con-
ditionally negative-definite and uses this to obtain approximation properties for the reduced
C *-algebra, C;* (F,). For a locally compact group G, the key ingredient in [38] is now known
to be equivalent to several conditions (see [1,19,41]) which define the Haagerup property:

¢ G has the Haagerup property if it admits a mixing unitary representation which weakly
contains the trivial representation;

* G has the Haagerup property if there is a proper, continuous conditionally negative defi-
nite function G — C;
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e G has the Haagerup property if there is a normalised sequence of continuous, positive
definite functions vanishing at infinity which converges uniformly to 1 on compact sub-
sets of G;

e G has the Haagerup property if there is a proper continuous affine action of G on a real
Hilbert space, or equivalently, G admits a proper continuous cocycle for some represen-
tation of G on a real Hilbert space.

The Haagerup property can also be defined for von Neumann algebras (see for example
[42]) and, for discrete G, the Haagerup property is a von Neumann property: G enjoys the
Haagerup property precisely when the group von Neumann algebra VN(G) does [20].

The Haagerup property is often interpreted as a weak form of amenability. Indeed, the
left regular representation of an amenable group is mixing (i.e. its matrix coefficients vanish at
infinity) and weakly contains the trivial representation, so amenable groups have the Haagerup
property. Other examples include free groups (via Haagerup’s original paper [38]), finitely
generated Coxeter groups, SL(2,7), SO(1,n) and SU(1, n); moreover the Haagerup prop-
erty is preserved by free products. Striking applications include Higson and Kasparov’s proof
of the Baum—Connes conjecture in the presence of the Haagerup property [40], and Popa’s
deformation-rigidity approach to structural properties of type II; factors [62,63]. We refer to
[19] for the equivalence of the formulations above, examples and applications.

In this paper we undertake a systematic study of the Haagerup property in the setting of
locally compact quantum groups. The theory of topological quantum groups has developed
rapidly in the last twenty years through Woronowicz’s definition of a compact quantum group
[79] and the locally compact quantum group framework of Kustermans and Vaes [51]. Using
the language of operator algebras, the latter theory generalises the classical theory of locally
compact groups, providing a full extension of the Pontryagin duality for locally compact abel-
ian groups, and encompasses a large class of examples. A “locally compact quantum group” G
is studied via its “algebras of functions”: the von Neumann algebra L°°(G) and the C *-algebra
Co(G) correspond to the algebras of essentially bounded (with respect to the Haar measure)
functions on a locally compact group G and the continuous functions on G which vanish at
infinity respectively. As the theory reached a certain level of maturity, it became natural to in-
vestigate questions relating quantum groups to noncommutative probability, noncommutative
geometry, and analyse actions of quantum groups. In particular a study of approximation-
type/geometric properties such as amenability (see [5] and references there) or property (T)
[31,54] has recently been initiated, often with a special focus on the case of discrete quantum
groups. Recently Brannan established the Haagerup property for the von Neumann algebras as-
sociated to free orthogonal and unitary quantum groups [14] (analogous results have also been
obtained for the von Neumann algebras associated to certain quantum automorphism groups
[15], and quantum reflection groups [56]). Within the theory of quantum groups, VN(G) is
interpreted as the algebra L°°(GA), where G is the dual quantum group of G. Thus, by analogy
with the fact that the Haagerup property is a von Neumann property of a discrete group [20],
Brannan’s result can be viewed as the statement that the discrete dual quantum groups of the
free orthogonal and unitary quantum groups have the Haagerup property. It was shown in [75]
that the duals of free orthogonal groups satisfy an appropriate version of the Baum—Connes
conjecture.

The papers [14, 15] study the Haagerup approximation property for L°°(G), where G
is a discrete unimodular quantum group. However it would not be satisfactory to define the
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Haagerup property for general G by asking for L°°(G) to have the Haagerup property: this
is not phrased intrinsically in terms of properties of G, and, more importantly, is problematic
when L°°(G) does not admit a finite faithful trace. Thus our starting point is the classical
definition in terms of the existence of a mixing representation weakly containing the trivial
representation. We translate this into the quantum setting and show that it is equivalent to the
existence of an approximate identity for Co(G) arising from completely positive multipliers.
We set out how the Haagerup property can be viewed through the lens of global properties
of representations: when G is second countable, the Haagerup property is equivalent to the
density of mixing representations in the collection of all unitary representations of G on a
fixed infinite dimensional separable Hilbert space. This extends the philosophy of [45] to the
quantum setting and generalises work of Bergelson and Rosenblatt [8].

In the case when G is discrete we give three further characterisations of the Haagerup
property, summarised below. The precise terminology will be described in Sections 6 and 7
and the theorem is obtained by combining Theorems 7.4, 7.7, 7.18 and 7.23. Note that we do
not require G to be unimodular in the equivalence of (i)—(iv).

Theorem. Let G be a discrete quantum group. Then the following conditions are
equivalent:

(1) G has the Haagerup property.

(ii) There exists a convolution semigroup of states (i;)i>0 on C(')‘(@) such that each
a; = (uy ®1id) (W) is an element of Co(G) and a; tends strictly to 1 ast — 07

(iii) G admits a symmetric proper generating functional.
(iv) G admits a proper real cocycle.
Further, (1)-@iv) imply the following condition, and, for unimodular G, are equivalent to it:

v) Loo(@) has the Haagerup approximation property.

The equivalence of (i) and (iii) extends a classical result of Jolissaint on conditionally
negative-definite functions; the equivalence of (i) and (iv) is a quantum version of the result of
Bekka, Cherix and Valette from [6], which is the starting point of the geometric interpretations
of the Haagerup property. In the unimodular case, the final statement generalises Choda’s work
and justifies our interpretation of the results in [14] described above.

In the last section we use the characterisations obtained earlier, together with the theory
of conditionally free products of states, to prove that the Haagerup property is preserved under
taking free products of discrete quantum groups. The techniques used in this article are based
on the analysis of various properties of unitary representations of locally compact quantum
groups, on applications of completely positive multipliers of locally compact quantum groups,
as studied for example in [23,44], and on certain results concerning the convolution semigroups
of states on compact quantum groups and their generating functionals (see [59]).

The detailed plan of the paper is as follows: Section 2 introduces notation and termi-
nology, and proves an LZ-implementation results for certain completely positive multipliers.
Section 3 is devoted to the analysis of containment and weak containment of representations
of a given locally compact quantum group G; then in a short Section 4 we define, by anal-
ogy with the classical context, mixing representations and set out some of their properties. In
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Section 5 we equip the space of representations of G on a fixed Hilbert space with a Polish
topology. Section 6 introduces the Haagerup property for a locally compact quantum group
and presents the first part of the main results of the paper (Theorem 6.5). In Section 7 we spe-
cialise to discrete quantum groups and prove the theorem above. Finally, in Section 8 we apply
the earlier results and use a construction of conditionally free products of states to prove that
the Haagerup property is preserved under free products of discrete quantum groups. We also
give some generalisations of the last result concerning free products with amalgamation over a
finite quantum subgroup and quantum HNN extensions.

Acknowledgement. Some work on this paper was undertaken during a visit of AS and
SW to the University of Leeds in June 2012, funded by EPSRC grant EP/1026819/1. They
thank the faculty of the School of Mathematics for their hospitality. The authors would also
like to thank Jan Cameron, Caleb Eckhardt, David Kyed, Roland Vergnioux and the anonymous
referee for valuable comments and advice.

2. Notation, terminology and some technical facts

Scalar products (both for Hilbert spaces and Hilbert modules) will be linear on the left.
The symbol ® denotes the spatial tensor product of C *-algebras, and if A is a C *-algebra then
M(A) denotes its multiplier algebra; a morphism between C *-algebras A and B is a nondegen-
erate *-homomorphism from A to M(B), and we write Mor(A, B) for the collection of all these
morphisms (see [55] for a treatment of multiplier C *-algebras and corresponding morphisms).
For a Hilbert space H the symbol X (H) will denote the algebra of compact operators on H and
if £, € H, then wg , € K (H)* will be the vector functional, T’ — (T'£ 7).

For a C *-algebra A and a Hilbert space H, the Hilbert C *-module A®H is the completion
of the algebraic tensor product A® H in the A-valued inner-product (a ® £|b®n) = (§|n)b*a,
a,b e A, & neH. Write £(A ® H) for the space of “adjointable maps” on A ® H (see [55]).

We will often use the canonical isomorphism between M(A ® K (H)) and £(A ® H) and
think of it as mapping an element (usually a unitary) U € M(A ® K (H)) to an adjointable map
U € £(A ® H), the relation being

2.1 (Ua®E)Ib®n =b"(dQwg ) (U)a, a,beh & neH.

As is standard in the theory of quantum groups, we use the ‘leg’ notation for operators
acting on tensor products of Hilbert spaces or C *-algebras.

2.1. Locally compact quantum groups. For the theory of locally compact quantum
groups we refer the reader to [51] and to the lecture notes [50] (in particular we will use the
conventions of these papers). For a locally compact quantum group G the corresponding C *-
algebra of “continuous functions on G vanishing at infinity” will be denoted by Co(G). It
is equipped with a comultiplication (or coproduct) A € Mor(Co(G), Co(G) ® Co(G)) and
left and right Haar weights, ¢ and . The dual locally compact quantum group of G will
be denoted by G. We usually assume (using the GNS construction with respect to the left
invariant Haar weight) that both Cy(G) and CO(@) act on the Hilbert space L?(G). The
fundamental multiplicative unitary W € M(Cyp(G) ® Cy (@)) implements the comultiplication
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by A(x) = W*(1® x)W for all x € Co(G). The “universal” version of Co(G) (see [49]) will
be denoted by Cy'(G), with the canonical reducing morphism Ag : C§(G) — Co(G) and
the counit €, : Cj/(G) — C. The von Neumann algebra generated by Co(G) in B(L*(G))
will be denoted by L°°(G) and the densely defined antipode by S; it maps Ds C Co(G) into
Co(G). We shall occasionally use the strict extension of S to M(Co(G)) which has domain
53 (see [48]). The unitary antipode of G, which is a *-anti-automorphism of Cy(G), will
be denoted by R. The predual of L°°(G) will be denoted by L!(G). The pre-adjoint of the
comultiplication (which extends to L®(G) — L®(G)® L*®(G)) equips L'(G) with the
structure of a completely contractive Banach algebra with product *. The respective maps
related to the dual quantum group will be adorned with hats, so that for example the right
invariant weight on G will be denoted by lﬁ Similarly the maps acting on the universal algebra
C¢ (G) are equipped with an index u; for example Ry, is the universal version of the unitary
antipode.

We say that G is coamenable if the reducing morphism Ag is an isomorphism and
amenable if L°°(G) possesses an invariant mean, i.e. a state m on L°°(G) satisfying

m((w ® id)A(x)) = m((id ® w)A(x)) = w(D)m(x), o € LY(G), x € L®(G).

If the left and right Haar weights of G coincide, we say that G is unimodular. In the case
when G is compact (i.e. Co(G) is unital) recall that G is Kac if its antipode S is bounded, or
equivalently, G is unimodular. We say that G is finite if Co(G) is finite-dimensional.

For convenience, throughout this paper we will assume that all locally compact quantum
groups considered are second-countable (by which we mean that Co(G) is separable). How-
ever, we only make essential use of this assumption in Section 5, and again in Section 7.2 (in
particular Theorem 7.18) and in Section 8.

As shown by Kustermans in [49], the multiplicative unitary W admits a “‘semi-universal”
version, a unitary W € M(C§ (G) ® Cy (G)) characterised by the following “universal” prop-
erty: for a C*-algebra B, there is a bijection between

« unitary elements U € M(B ® Co(G)) with (id ® A)(U) = Uy3Uy» and
* non-degenerate *-homomorphisms ¢y : C§(G) — M(B),

given by (¢y ® id)(W) = U. When the unitary U is fixed, we will sometimes write ¢ rather
than ¢ .

Similarly, there is a unitary W € M(Co(G) ® C{' (G)), universal in the sense that for
every C *-algebra B, there is a bijection between

e unitary elements U € M(Cy(G) ® B) with (A ® id)(U) = U;3U3»3 and
* non-degenerate *-homomorphisms ¢y : C§f ((G) — M(B).

The bijection is again given by a similar relation: (id ® ¢y)(W) = U. Note that in [49], V
and 'V are used for W and W, respectively.

We can also consider the multiplicative unitary W e M(Co(@) ® Co(G)) of the dual
quantum group G. Itis equal to o (W)*, where

0 : M(Co(G) ® Co(G)) — M(Co(G) ® Co(G))

is the “swap map”.
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A Hopf *-homomorphism w : C¥(G) — M Co(H) is a non-degenerate *-homomor-
phism intertwining the coproducts. In this case there is a unique Hopf *-homomorphism
7 CY (H) —- M(C§ (G)) “dual” to 7 (see for example [61]). In addition to the unitaries
W and W, there is also a truly universal bicharacter W € M(C'(G) ® Cf (@)), which sat-
isfies the conditions W = (id ® Ag)(W) and W = (Ag ® id)(W). Then 7 is uniquely
determined by the relation

(71 ®id)(Wg) = (Ag ® 1) (W) = (id® 7)(Wg).

There are various notions of a “closed quantum subgroup” H of a locally compact quantum
group G in the literature and these are analysed in detail in the recent article [24]. The weakest
of these is when 7 maps surjectively onto Co(H), in which case H is called a closed quantum
subgroup of G in the sense of Woronowicz. If H is compact (in particular, finite) or G is discrete
(see Section 2.3) this notion is equivalent to the notion of closed quantum subgroup in the sense
of Vaes, i.e. to the existence of an injective normal *-homomorphism 6 : LOO(H:]I) — L°°((G),
intertwining the respective comultiplications (see [24, Section 6]). We then say simply that H
is a closed quantum subgroup of G.

2.2. Unitary representations of locally compact quantum groups. Let G be a locally
compact quantum group.

Definition 2.1. A unitary representation of G (or a unitary corepresentation of Co(G))
on a Hilbert space H is a unitary U € M(Cy(G) ® K (H)) with (A ®id)U = U;3U3. We will
often write Hy for the Hilbert space upon which U acts. The trivial representation of G, i.e.
U=181¢eM(Cy(G) ® C), will be denoted simply by 1.

The tensor product of two representations U and V is U @ V = Uy, V13, which acts on
Hy ® Hy. The direct sum of two representations is easy to understand, but a little harder to
write down. Formally, let 1y : Hy — Hy @ Hy be the inclusion, and py : Hy & Hy — Hy
be the projection, and similarly for ¢y and py . Then define

UV =(0101w)U(1Qpy)+ (18w)V(Q py) € M(Co(G) ® K(Hy & Hy)).

The last formula may seem strange at first sight if one thinks of multiplier algebras, but has a
natural interpretation in terms of adjointable operators. Slightly more informally, we first make
the identification
K(H K(Hy,H
KiHy & Hy) = ( (Hy) K (Hy U)).

K(Hy.Hy)  K(Hy)

From this viewpoint we see M(Cy(G)® K (Hy)) as a subalgebra of M(Co (G)® K (Hy ®Hy)),
essentially as the “upper left corner”. Similarly M(Cyp(G) ® K (Hy)) can be seen as the “lower
right corner”.

A representation of G is called irreducible if it is not (unitarily equivalent to) a direct
sum of two non-zero representations.

2.3. Compact/discrete quantum groups. A locally compact quantum group G is
called compact if the algebra Co(G) is unital (we then denote it simply by C(G)), or, equiva-
lently, the Haar weight is in fact a bi-invariant state. It is said to be discrete if Co(G) is a direct
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sum of matrix algebras (and is then denoted ¢o(G)), or, equivalently, G is compact. For a
compact quantum group G the symbol Irrg will denote the collection of equivalence classes of
finite-dimensional unitary representations of G (note that our assumptions imply it is a count-
able set). We will always assume that for each o € Irrg a particular representative has been
chosen and moreover identified with a unitary matrix U%* = (u“ )""‘_1 € M, (C(G)). The
span of all the coefficients u{: y is a dense (Hopf) *-subalgebra of C (G) denoted Pol(G). The
algebra of functions vamshmg at infinity on the dual discrete quantum group is given by the
equality co(@) = D, enr < My, . Thus the elements affiliated to o (@) can be identified with
functionals on Pol(G). Note that the Haar state of G is faithful on Pol(G); moreover in fact
C*(G) is the enveloping C *-algebra of Pol(G), and thus we can also view the latter algebra
as a subalgebra of C*(G). The (semi-)universal multiplicative unitary of G is then given by
the formula

22 W= ) uteeie [[ CUG)®M,, =MC“G)®co(G)).

a€lrg a€lrg

By a state on Pol(G) we mean a linear functional i : Pol(G) — C which is posi-
tive in the sense that pu(a*a) > 0 for all @ € Pol(G). We can follow the usual GNS con-
struction to obtain a pre-Hilbert space Hg, a cyclic vector £y € Hp and a x-homomorphism
Pol(G) — £(Hop), the collection of adjointable maps on Hy, with pu(a) = (w(a)éo|&o). As
argued in [27, Lemma 4.2] (compare [58, Lemma 8.7]) for the algebra Pol(G), the map 7w al-
ways extends to a x-homomorphism Pol(G) — B(H), where H is the completion of Hy. As
C*(G) is the enveloping C *-algebra of Pol(G), we see that there is a bijection between states
on C*(G) and states on Pol(G). To simplify the notation we will occasionally write simply €
to denote the counit of G understood as a character on Pol(G).

2.4. Multipliers of quantum groups. The notion of (completely bounded) multipliers
on locally compact quantum groups plays a crucial role in the paper. Here we review the
relevant notions and prove a technical result for later use.

Definition 2.2. A completely bounded left multiplier of L' (@) is a bounded linear map
Ly : LY(G) — LY(G) such that Ly(wq % w2) = L«(w1) % s for all w1, ws € L1(G), and
whose adjoint L = (L«)* is a completely bounded map on L*°(G).

The adjoints of completely bounded left multipliers can be characterised as follows.

Proposition 2.3. Let L : Loo(@) — L“(@) be a normal, completely bounded map.
Then the following are equivalent:

() L is the adjoint of a left multiplier of L (G)
(i) AoL = (L®id)oA.
(iii) Thereisa € L®(G) with (L @ id)(W) = (1 @ a)W.

If these conditions hold, then actually a € M(Co(G)), and we have that ak(a)) = /\(L (a))) for
wel! (G) where ). : L1 (G) — Co(G) is defined by )L(a)) (v ® 1d)(W)for wel! (G)
In this way, the multiplier L is given by left multiplication by the element a in the left regular
representation.
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Proof. Conditions (i) and (ii) are easily seen to be equivalent, and (iii) = (i) is a simple
calculation, compare [22, Proposition 2.3]. For (ii) = (iii) see [44, Theorem 4.10], or [23,
Proposition 3.1] for a quicker proof which also establishes that a € M(Co(G)). |

Remark 2.4. Condition (iii) actually implies that L restricts to a map on Cp (@). In-
deed, for v € B(L?*(G))«, we see that L((id ® w)(W)) = (id ® wa)(W). As Cy(G) is the
closure of {(id @ w)(W) : w € B(L?*(G))«)} the result follows.

There is a standard way to use a representation U € M(Cop(G) ® K(H)) of G and a
bounded functional on X (H) to induce a completely bounded left multiplier L of G, which is
explained in [23]. For w € K (H)*, the map defined by

(2.3) L(x)=(d® o) (Ux®HU*), xeL®G)

is a normal completely bounded map (completely positive if w is positive) whose pre-adjoint
is a left multiplier. The associated “representing” element a € M(Co(G)) is given by
a = (id ® w)(U*). Recall that b = (id ® w)(U) € Dy and satisfies S(b) = a. If w is
self-adjoint, then »* = (id ® w)(U*) = a.

Since every representation U is of the form U = (id® ¢ ) (W) for some non-degenerate
*-homomorphism ¢y : C}f (G) > B(H), we can write a = (id® p)(W*) = (u* ®id)(W)*,
where 4 = w o ¢y € C¥f (G)*. In this way, L is of the form

L(x) = (@({d® p)(W(x® )W) = (1 ® id)(W*(1 @ x)W).

The converse holds when L is completely positive:

Theorem 2.5 ([23, Theorem 5.1]). Let L : LOO(G) — L°°(@) be a completely positive
map which is the adjoint of a left multiplier of L' (G). Then L(x) = (1 ® id)(W*(1 ® x)W)
for some positive 1 € C}(G)*.

In the completely positive case, one might call the resulting representing elements a
“completely positive definite”; a somewhat intrinsic characterisation of such a is given in [25].

We will now show that completely positive multipliers induce bounded maps on the
Hilbert space L?(G), which have a natural interpretation in terms of U and . This result, or
rather its special case recorded in Proposition 2.8, will be of use in the proof of Theorem 7.4.
As we believe it is of independent interest, we present the general statement.

Let us first recall certain facts related to weights. For a proper weight y on a C *-algebra
Aweputn, = {x € A: y(x*x) < co}. Then we have the GNS construction (H, 7, 7) where
H is the completion of 1, for the pre-inner-product (n(x)|n(y)) = y(y*x) for x, y € n,,. Let
L : A — A be a positive linear map satisfying the Schwarz inequality L(x)*L(x) < L(x*x),
as would be true for any completely positive L. Assume furthermore that y(L(x)) < y(x)
for all x € AT (under the usual convention that ¢ < oo for all 0 < ¢ < oco). Then there is a
contractive linear map 7" : H — H which satisfies 7n(x) = n(L(x)) for all x € nn,,.

Theorem 2.6. Let G be a locally compact quantum group, let U be a representation
of G on H, let w € K(H)* be a state, and form L as in (2.3). Then L is unital, and satisfies
¢ o L < @. Thus L induces a contractive operator T : Lz(@) — Lz(@). Identifying LZ(@)
with L*(G), the operator T is equal to (id ® w)(U).
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Proof. Unitality of L follows directly from (2.3) and the fact that w is a state. Recall
the reducing morphism A Cy (G) — Co((@). Then the composition of LI(G) — Co(@)*
with A* : Co(G)* — Cg‘(@)* identifies L'(G) with a two-sided ideal in Cy (G)* (see
[21, Proposition 8.3]). We follow [23, Section 4.1] to see that under this identification there
is a state p € C§ (G)* such that A*(Ly(0)) = uA*(w) for all @ € L'(G). Define
Ly : C¥G) — C(G); x = (u®id)Ay(x), sothat A* o L, = L* o A*.

We now follow [49, Section 8], and define ¢, = ¢ o A, which is a proper, left-invariant
weight on Cf ((@) Then [49, Proposition 8.4] shows that for v € Cf (@)*+ and x € C§f (@)"'
with ¢y, (x) < oo we have that

Pu((@ ® id) Ay (x)) = (@, 1)Pu(x).

It follows that ¢y, (L, (x)) = ¢y (x) for such x. So for y € Co(G) with ¢(y) < oo, there is
X € C(')‘(G)-'- with A(x) = y, so ¢, (x) < oo, hence

() = @u(x) = Pu(Lp(x)) = @(L(y)).

In particular, ¢ o L < ¢.

If we denote the GNS inclusion for the dual weight by 7 : ng — L?(G), there is hence
a contraction T € B (Lz(@)) with T7(x) = A(L(x)) for x € ng. Let us now recall the dual
weight construction (see [52, Section 1.1] or [51, Section 8]). We define

J={y e L'(G):3E(y) € LX(G), E()In(@) = (a*,y) (a € ny)},

where this time 7 : 1, — L?(G) is the GNS inclusion for ¢. If we let A : L}(G) — LOO(G);
y > (y ® id)(W) be the left-regular representation, then 7(A(y)) = &(y), under the iden-
tification of Lz(@) with L2(G). Moreover, for x € MCo(G) and y € L'(G) we have that
E(xy) = x§(y).

As in the lines after (2.3), seta = (id ® w)(U*). Arguing as in Remark 2.4, we find that
L(A(y)) = A(a*y) for y € 4. Thus

Té(y) = Ta(A(y)) = AH(LAW)) = H(A(a”y)) = E@@y) = a™§(y).

However, a* = (idQw)(U*)* = (id®w)(U) as w is positive, which completes the proof. O

Remark 2.7. Working a bit harder, and following [51, Section 1.1] for how the weight
on Cy(G) extends to L>®(G), one can show that ¢ o L < ¢ on L®(G)™ as well.

If G is discrete, we can actually show that the left multiplier L preserves the Haar state
of G. We formulate this below, and leave the easy proof of the state preservation to the reader.

Proposition 2.8. Let G be a discrete quantum group, and denote the Haar state on G
by ¢. Let U be a representation of G on H, let w € K (H)* be a state, and form L as in (2.3).
Then L is unital, leaves ¢ invariant, and so induces T : L? (G) — LZ(G). Identifying L? (@)
with L%(G), the operator T is equal to (id @ @)(U) € M(co(G)).
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3. Containment and weak containment of representations of locally compact
quantum groups

In this section we recall the notions of containment and weak containment for unitary
representations of locally compact quantum groups. Similar considerations can be found in the
articles [3, 54]. Weak containment is defined in terms of the corresponding concept for repre-
sentations of C *-algebras, and so we begin by recalling this definition from [28, Section 3.4].
A positive functional associated to a representation ¢ : A — B(H) is one of the form wx x o ¢
for some x € H.

Theorem 3.1 ([30, Theorem 1.2]). Let A be a C*-algebra, ¢ : A — B(H) a repre-
sentation, and let 8 be a collection of representations of A. The following are equivalent, and
define what it means for ¢ to be weakly-contained in &, written ¢ < §:

(i) ker¢ contains (), g ker .

(ii) Every positive functional on A associated to ¢ is the weak™-limit of linear combinations
of positive functionals associated to representations in §.

(iii) Every positive functional on A associated to ¢ is the weak™-limit of sums of positive
functionals associated to representations in §.

(iv) Every positive functional w associated to ¢ is the weak™-limit of sums of positive func-
tionals associated to representations in 8 of norm at most |w||.

If ¢ is in addition irreducible, we can avoid linear combinations, as one can show, adapt-
ing the argument from [7, Appendix F].

For the rest of this section fix a locally compact quantum group G. Using the bijection
between unitary representations U of G on H and *-homomorphisms ¢y : Cy ((f}) — B(H)
given by U = (id ® ¢y ) (W), one can define containment, weak-containment, equivalence,
and weak-equivalence for unitary representations by importing the definitions for ¢, as in
[54, Section 2.3] (see also [5, Section 5]).

Definition 3.2. Let U, V' be unitary representations of G on respective Hilbert spaces
Hy and Hy, with respective *-homomorphisms ¢y and ¢y .

e U is contained in V (thatis, U is a sub-representation of V'), which we denote by U <V,
if ¢y is contained in ¢y. This means that there is an isometry v : Hy — Hy with
¢v(a)u = ugy(a) foralla € Cy(G). Equivalently, V(1 @ u) = (1 @ u)U.

e U and V are (unitarily) equivalent if ¢y and ¢y are equivalent, i.e. there is a unitary
u : Hy — Hy withu¢y (a) = ¢y (a)u foralla € C}(G).

e U is weakly-contained in V', which we denote by U <XV, if ¢y <X ¢y .

e U and V are weakly-equivalent if both U < V and V < U.

Definition 3.3. Let U € M(Cy(G) ® K (H)) be a representation of a locally compact
quantum group G. A vector £ € H is said to be invariant for U if U(n ® &) = n ® & for all
n € L?(G). We say that U has almost invariant vectors if there exists a net (£4) of unit vectors
in H such that |U(n ® &) — n ® £q|| — O foreach n € L?(G).



Daws, Fima, Skalski and White, The Haagerup property 199

The following proposition and corollary collect standard reformulations of containment
of representations; compare with [5, Proposition 5.1].

Proposition 3.4. Let U € M(Co(G) ® K (H)) be a unitary representation of G, with
a corresponding adjointable operator U € £(Co(G) ® H), and associated C*-algebraic
representation ¢y : C}(G) — B(H). Let § € H. Then the following are equivalent:

(1) & is invariant for U.
(i) (id ® wg ,)(U) = (§[n)l foralln € H.
(iii) (0 ® id)(V)E = (1, )& forall w € LY(G).
(iv) U(a® &) =a @& foralla € Co(G).
(V) pu(a)é = éy(a)§ foralla € C§ (G), where &, is the counit of G.

Corollary 3.5. A representation U of a locally compact quantum group has a non-zero
invariant vector if and only if 1 < U.

We now turn to characterisations of representations U which weakly contain the trivial
representation. We begin with a preparatory technical lemma.

Lemma 3.6. Foranya € Co(G) and wg € L' (G), the set
{(awa™) x wg : 0 € L'(G), ||lw|| <1}
is relatively compact in L'(G).

Proof. Throughout the proof we use the fact that L°°(G) is in the standard position in
B(L*(G)), so that in particular any element w € L!(G) can be represented in the form g
for £, € L?(G) with ||€]|||n]| = ||l]|. Let wp = Wg,.no for some &g, no € L?*(G). Choose
compact operators 01,0, € K(L?*(G)) with 01 (£9) = & and 65(179) = no. Let € > 0, and
recalling that W € M(Co(G) ® K (L?*(G))), we can find linear combinations of elementary
tensors Z,]Ll a,(11) ® 9,&1), Zflv:l a,(,z) ® 9,52) € Co(G) ® X(L?*(G)) with

s - ad e < [Waoom -3 o oo®] <<
n=1 n=1

For w = wg, g for some o, B € L?(G) with |||, | Bl < 1, then for x € L®(G),

(x. (awa™) * wo) = ((@* @ NA(x)(a ® 1), » ® wo)
= (@ @ HW* (1 @ x)W(a ® 1)(@ ® &) |B ® no)
(1@ x)W(a ® 61)(a® &) |W(a ® 62)(B ® no)).

It follows that

N
(x. (awa*) x wo) — > (aMNalaf? B)(x0V& |0 n0)| < 2¢|x]|. x € L¥(G),

n.m=1
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and hence N
H (awa™) * wg — Z (@)*aV, w)w Wge g, | < 2€
n,m=1
for all ||@| < 1. Now, the set
N
[ (@@ w)ogng, o, @ € L'G). o] <1}
n.m=1

is clearly compact and so has a finite e-net, which hence forms a finite 3e-net for
{(awa™) * wg : w € LY(G), ||o| < 1. o

Next we record characterisations of those representations U which weakly contain the
trivial representation. As €, is irreducible, these are precisely those for which €, is the weak™-
limit of states of the form wg o ¢y ; this is condition (iii) in the following proposition (for an
alternative approach, see [5, Theorem 5.1]). In [3] and [5, Section 5] the terminology U has
WCP (the weak containment property) is used for those representations U with €, < ¢y ; here
we use the terminology that U has almost invariant vectors for this condition.

Proposition 3.7. Let U € M(Co(G) ® K (H)) be a unitary representation of G, with
a corresponding adjointable operator U € £(Co(G) ® H), and associated C*-algebraic
representation ¢y : C{f (@) — B(H). Let (&y) be a net of unit vectors in H. The following are
equivalent:

@) 1U( ® &) =1 ® Eall — 0 for each n € L*(G).
(i) The net (id ® wg, )(U) converges weak™ to 1 in L*°(G).
(iii) The net of states (wg, © ¢pu)a on Cy (G) converges weak™ to &, in Cy (G)*.
(i) v (@)sa — éu(@)éall — 0foralla € C§(G).
V) U@ ®E&y) —a @ Ex| = 0foralla € Co(G).

Moreover the existence of a net of unit vectors satisfying the equivalent conditions above is
equivalent to the following statement:

(vi) There is a state g € B(H)* such that (id ® wo)(U) =1 € L*°(G).

Proof. The equivalences (i) < (ii) < (iii) < (iv) < (vi) are either straightforward or
can be viewed as variants of the results obtained in the articles [4,5]. We thus look only at (v).
If (v) holds, then

0= lién(‘l,((a Q) —aQE|b®E) = liglnb*(id Q wg,)(U)a —b*a, a,b e Cy(G),

from which (ii) follows, as Co(G) acts non-degenerately on L2(G).

We prove the converse using Lemma 3.6. For v € L1(G), let T, = (v ® id)(U), so as
U is a representation, Ty Ty = Toxe. Suppose that (iv) holds, so as T, = ¢y (0 ® id) W),
it follows that || T,y€x — (1, w)Eq|| — O forall w € L1(G). Fix a € Co(G) and & € L?(G)
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both of norm one, and set wg = wg, € L'(G). Now consider

| Uta ® Tugta) —a ® £a||” = || [ Twobull?a*a + a*a — 29 ((Ula ® Tugéa)|a ® &) |
We then see that
3.1) (U@ ® Twpba) |a ® £a) = a*(id ® wr,, £,.£,)(U)a
= a*(id ® we, ) (U(1 @ Twy))a
= a™(id ® wo ® wg,)(U13Uz3)a

= a*(id ® wo ® wg, ) ((A ®id)(U))a
= a*(id ® wo) A((id ® wg,)(U))a.

As wy is a state, limg || Ty — Eo || = 0, and so

lim | U(a @ &) — @ @ & | = lim|| U@ ® Topta) —a @ &

E
and by (3.1), this limit will be zero if and only if
(3.2) liéna*(id ® wo)A((id ® wg,)(U))a = a*a.
As (iv) holds, and hence (ii) holds, it follows that
(3.3) (a*a,w) = (1, (awa™) * wy) = liogn((id ® wg,)(U), (awa™) * wo)
= li&n(a*(id ® o) A((id ® wg,)(U))a, w),

for each w € L'(G). By Lemma 3.6 the set {(awa*) * wy : @ € L' (G), |o| < 1}
is relatively compact in L!(G) and hence the limit in (3.3) holds uniformly over the set
{w € LY(G) : ||w|| < 1}. This implies that (3.2) holds, as required to show that (v) holds. o

Corollary 3.8. A representation U of a locally compact quantum group admits almost
invariant vectors if and only if 1 < U (equivalently, €, is weakly-contained in ¢y ).

4. Mixing representations

In this section we introduce mixing (or Cy) representations of locally compact quantum
groups and analyse their properties.

Definition 4.1. A representation U € M(Co(G) ® K (H)) is said to be mixing if it has
Co-coefficients, which means that for all §, 7 € H, we have (id ® wg ,)(U) € Co(G).

The origins of the term mixing lie in the theory of dynamical systems — an action of
a group G on a probability space (X, n) is mixing in the usual dynamical sense (see [37,
Definition 3.4.6]) if and only if the associated unitary Koopman-type representation of G on
L?(X, )0 := L*>(X, u) © C1 is mixing.
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Proposition 4.2. Let U,V be representations of G. Then:
(1) IfU and V are mixing, then soisU & V.
(1) IfU is mixing, then soare U @V and V @ U.

Proof. Condition (i) is routine. For (ii) test on elementary tensors, as Co(G) is an ideal
in M(Co(G)). ]

The next lemma, connecting the mixing property of a representation to the properties of
a certain state, will be used in Section 6.

Lemma 4.3. Let ju be a state on C§ (@) and let x = (Id ® w)(\W) € M(Co(G)). Let
(¢, H, &) be the GNS construction for j, and let U be the representation of G associated to
¢ 1 C¥(G) — B(H). Then U is mixing if and only if x € Co(G).

Proof. We have that U = (id ® ¢)(\W). If U is mixing, then
x=({d® wgg o @) (W) = (id ® wg £)(U) € Co(G).

Conversely, let a,b € C(’)‘(G) and set « = ¢(a)é and B = ¢(b)é. Suppose further
that a = (w1 ® id)(W) and b* = (wr ® id)(W) for some w1,w; € LY (G). As W is a
representation of G,

1@ )YW(1®a) = (01 @ w, ® id @ id) (W24 34 W 14)
= (01 ® w2 ®id ®id)((1 ® (A ® id) (W))W 14)
= (01 ® w2 ®id ®id)((ild ® A ® id) (W23 13))
= (01 ® w2 ®id ®id)((ild ® A ® id)(A® ® id) (VT)).

Here A’ = o o A is the opposite coproduct. Now set y = (id ® wg,g)(U), so that

v = (4@ ($(@wged(B)*) 0 §)(H) = (d ® g 0 $)((1 ® BT ® a))
= (01 @ w2 ®id ® p)((id ® A ® id)(A® ® id)(\W))
= (01 ® w2 ®id)((i[d ® A)AP(x)) = (w2 ® id)A((id ® w1)A(x)).

Now, by [51, Corollary 6.11] we have that A(d)(c ® 1) € Co(G) ® Co(G) for any
c.d € Cyo(G). By Cohen factorisation (see for example [60, Appendix A]), any w € L1(G)
has the form w = cw’ for some ¢ € Cy(G), w’ € L1(G). Thus

(0 ®id)A(x) = (0’ ® id)(A(X)(c ® 1)) € Co(G).

Similarly, we can show that (id ® w)A(d) € Co(G) for any w € L'(G) and d € Co(G).
It follows that y = (w2 ® id)A((id ® w1)A(x)) € Co(G). Since a, b as above are dense in
Cy (@), and thus «, 8 as above are dense in H, we have shown that U has Cyp-coefficients, that
is, U is mixing. o
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5. Topologising representations of locally compact quantum groups

Let G denote a second countable locally compact quantum group. In this section, we
equip the set of all unitary representations of G on a fixed infinite-dimensional, separable
Hilbert space H with a natural Polish topology (for the analogous concepts in the classical
framework, see the book [45]) and give conditions for density of classes of representations.

Fix an infinite-dimensional separable Hilbert space H, and a unitary v : H — H ® H.
Let Repg (H) denote the collection of unitary representations of G on H. This is a monoidal
category for the product

URV =(18u*)U o V)13 u).

Note the use of u in this definition ensures that U X V' is a representation on H and not H ® H.

When A is a separable C *-algebra the unitary group U(M(A)) of M(A) is Polish in
the strict topology (see for example [65, p. 191]). As multiplication is strictly continuous on
bounded sets, Repg (H) is strictly closed in M(Cp(G) ® K (H)) and so is Polish in the relative
strict topology.

Denote by Rep(C{ (@), H) the set of non-degenerate *-representations of C§ (@) on H.
The following proposition implies that Repg (H) is a topological W*-category in the sense of
[77], equivalent to the W *-category Rep(C} (@, H)). Recall that on bounded sets the strong™*-
topology on B(H) agrees with the strict topology (defined via B(H) = M(X (H))).

Proposition 5.1.  Under the bijection between Repg (H) and Rep(C¥ ((f}), H), the topol-
ogy induced on Rep(C{' (@), H) is the point-strict topology (so ¢n — ¢ as n — oo if and only
if, foreacha € C§ (G), we have that ¢n(a) — ¢(a) strictly in B(H) = M(K (H)) asn — 00).

Proof. Let (Uy);2, be asequence in Repg (H) with the corresponding sequence (¢,);>
in Rep(Cyf (@), H); similarly let U € Repg (H) and ¢ € Rep(Cy' (G), H) correspond. Firstly,
suppose that ¢, — ¢ as n — oo in the point-strict topology. Let a € Co(G), a € Cy (@) and
0 € K (H), so that

Un(a ® ¢n(@)0) = (id ® ¢n) (W) (a ® ¢n(@)0) = (id ® ¢n) (W (a ® a))(1 ® 0).
As VT € M(Co(G) ® C¥(G)) it follows that W (a ® 4) € Co(G) ® C¥(G) and so
lim (id ® ¢n)(W(a ® 3))(1 ® 0) = (id ® ¢)(W(a ® 4))(1 ® 0) = Ula ® p(a)0).

Finally, observe that ¢,(a)0 — ¢(a)6@ in norm as n — oo, and so we may conclude that
Un(a ® ¢(a)0) — U(a ® ¢p(a)h) as n — oco. Similarly, we can show that

1im (a ® $(@)0)Uy = (a ® $(@)0)U.

As ¢ is non-degenerate, the collection of such ¢ (@)6 forms a linearly dense subspace of K (H),
and it follows that U,, — U strictly as n — o0, as required.

Conversely, suppose that U, — U strictly as n — oo. Leta € Co(G), w € L'(G), and
setd = (aw ® id)(W) € C¥(G). For 6 € X (H),

Pn(a@)0 = (aw ®@id)(Uy)0 = (0 ® id)(Up(a ® 6)) MmN (0w ®id)(U(a ® 0)) = ¢(a)0.
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By Cohen factorisation, we can find ', a’ with aw = w’a’, and so by repeating the argument
on the other side, it follows that ¢, (@) — ¢(a) strictly as n — oo. Since elements & arising in
this way are dense in Cy' (G), it follows that ¢, — ¢ in the point-strict topology as n — oo,
as required. |

As the multiplicity of representations does not play a role when weak containment is
considered, and we want to consider the trivial representation as an element of Repg (H), we
will use the notation 1 now for the unitary representation U = 1 ® 1 € M(Co(G) ® K (H)).

Proposition 5.2. If the mixing representations are dense in Repg(H), then there is a
mixing representation U € Repg (H) with 1 < U (that is, U has almost invariant vectors).

Proof. By assumption, there is a sequence (Uy),2; of mixing representations such that
U, — 1 as n — oo. Fix a unit vector £ € H. Consider U = €, ¢y Un, which is a mixing
representation on P,y H = H® £%(N) (as coefficients of U will be norm limits of sums of
coefficients of the representations U, and so will still be members of Co(G)).

Fix a unitary v : H - H ® £2(N), and define

U= (180v")(Un®05,5,)(1®v) € Repg (H),
neN
where 05, 5 is the rank-one orthogonal projection onto the span of §, € ¢2(N). For each
ne€N,leté, = v*(€ ® 8,). Then, for n € L*(G),
U ® &) —n @& = [(1 @ v")(Un(1 ® §0) ® 82) — (1 @ v™) (11 ® &0 ® 5,) |
= | Un(n ® 0) —n ® &0

Now, strict convergence in M(Co(G) ® K (H)) implies strong convergence in B(L?(G) ® H),
and so Uy, (n ® &p) converges in norm to n ® &p. It follows that we have verified condition (i)
of Proposition 3.7 for the sequence (&,). Hence U has almost invariant vectors. ]

The following lemma abstracts calculations used in the classical situation for establishing
density of mixing representations in [8] and weak mixing representations in [46].

Lemma 5.3. Let R C Repg (H) be a collection which

(i) is stable under unitary equivalence, i.e. for a unitary v on H, (1 ® v*)U(1 ® v) € R if
and only if U € R;

(ii) is stable under tensoring with another representation, i.e. if U € R, V € Repg(H) then
URV eR;

(iii) contains a representation with almost invariant vectors, i.e. by Corollary 3.8 there is

U® e Rwith1 <UD,
Then R is dense in Repg (H).

Proof. Assume that R is such a collection and fix U@ e R with 1 < U©®. We will use
the isomorphism M(Co(G) ® K (H)) = £(Co(G) ® H), see (2.1). As U has almost invariant
vectors, we can find a net (£4) of unit vectors in H with || U@ (¢ ® &) —a ® & || — O for
a € Co(G).
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Fix V € Repg (H). We will show that V' can be approximated by a sequence of elements
of R. Leta € Co(G), let n € H be a unit vector, and let € > 0. Let (e,);2; be an orthonormal
basis for H, and let

o0 o0
'V(a®r])=an®en, 'V*(a®n)=2yn®en
n=1

n=1

for some x,, vy, € Co(G), with convergence in the Hilbert module Co(G) ® H. Choose N € N

so that
| o] =] s
n>N n>N

Further choose « so that foralln < N
[UQ(xn ® &0) —xn @ Ea| <€/3N, [UP @@ &) —a @& <e/3.

Finally, set X = {n} U{e, : n < N}, afinite subset of H. As H is infinite-dimensional, we can
find a unitary v : H > H® H with v(§) = &, ® £ for all £ € X. Then

[((1 @ v) U@ & V)1 @ v) - V)@@ )|
= Hugoz)vw(a ®& @ —(10v)V(a |

1/2

<€/3, ”Zyn@)en < €/3.
n>N

00 00
= H‘Ug) an ®éa ®ey — an ® v(en)
n=1 n=1

< 26/3 + HUg;) Z Xn ®§a ® ey — Z Xp ® U(en)
n<N n<N

=2¢/3+ | D (UO (@ &) —1n B Ee) Ren| <.
n<N
Similarly,
(@& v UQ @ V)*(1®v)— V)@ ®n)|

= ViU @ @) — (1 ® V)V @)

<e/3+ V@& N -(1@v)V' (@@

=¢€/3+ ‘ZYn@)Ea@en_Yn@U(en)
neN

=€/3+ ‘Z In ®(§a X en _v(en))“
n>N

56/3+) Zyn ®§a®en + HZ yn®v(en) < €.
n>N n>N

The intertwiner v is not equal to our fixed intertwiner u, so (1 ® v*)(U O @ 1V)1®v)
need not be equal to U X V, but it is unitarily equivalent to it. By (i) and (i), it follows that
AR U ® V)(1 ® v) € R. In this way we can construct a net (V;);eg in R such that

jed jed
Vila®n) —> Va®n, Vie®n — Va®n

foralla € Co(G), n € H. As (V; — V),eq is a bounded net and we are dealing with linear
maps, this is enough to show that V; — V strictly, as required. |
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6. The Haagerup approximation property

In this section we introduce the notion of the Haagerup property for locally compact
quantum groups and provide several equivalent characterisations.

Definition 6.1. A locally compact quantum group G has the Haagerup property if there
exists a mixing representation of G which has almost invariant vectors.

The following statements are an immediate consequence of the definition. Recall that
a locally compact quantum group has property (T) if each of its representations with almost
invariant vectors has a nontrivial invariant vector — this notion was introduced (for discrete
quantum groups) in [31] and later studied in [54].

Proposition 6.2. If G is coamenable, then G has the Haagerup property. Further, G is
compact if and only if G has both the Haagerup property and property (T).

Proof. ltis easy to see that the left regular representation of G (given by the fundamental
unitary W € M(Co(G) ® CO(G))) is mixing. By [5, Theorem 3.1], W has almost invariant
vectors if and only if G is coamenable.

If G has both (T) and the Haagerup property, then it has a mixing representation with a
non-trivial invariant vector. However, then the corresponding coefficient is a non-zero scalar
multiple of unit in M(Cy(G)), which belongs to Co(G). Thus G is compact.

On the other hand, if G is compact, then each representation which has almost invariant
vectors actually has invariant vectors, so G has property (T) (see [3, Theorem 7.16]). As G is
discrete, it is coamenable (see [4, Proposition 5.1]), so G has the Haagerup property. |

Remark 6.3. Note that we do not know whether every amenable locally compact quan-
tum group has the Haagerup property (although this is true for discrete quantum groups, see
Proposition 7.1 below). Formally, providing the answer to this question should be easier than
deciding the equivalence of amenability of G and coamenability of G (a well-known open
problem) but they appear to be closely related.

The above proposition allows us to provide the first examples of non-discrete locally
compact quantum groups with the Haagerup property.

Example 6.4. The locally compact quantum groups quantum £, (2) (see [78]), its dual
l:?u(2) (see [72,78]), quantum az + b (see [80]) and quantum ax + b (see [81]) have the
Haagerup property. Indeed, they are all coamenable, as follows for example from [67, Theo-
rem 3.14]Y, and the two last examples are self-dual, up to ‘reversing the group operation’, i.e.
flipping the legs of the coproduct (see the original papers or [64]).

For part (iv) of the following theorem, we recall from Section 2.4 that if L is a completely
positive multiplier of L!(G) then there is a “representing element” a € M(Cy(G)) such that
ai(®) = AM(L(®)) forall ® € LY(G).

D' That result does not mention £ 1(2), but the information contained in [72, Section 1] suffices to construct
a bounded counit on the C *-algebra CO(E 1(2)) and this in turn implies coamenability, see [5, Theorem 3.1].
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Theorem 6.5. Let G be a locally compact quantum group. The following conditions
are equivalent:

(1) G has the Haagerup property.
(ii) The mixing representations form a dense subset of Repg (H).

(iii) There exists a net of states (i;);eg on C§ (@) such that the net ((id ® w;)(\W));eyq is an
approximate identity in Co(G).

(iv) There is a net (a;);ieg in Co(G) of representing elements of completely positive multipli-
ers which forms an approximate identity for Co(G).

Proof. (i) = (ii): This follows from Lemma 5.3, as the class of mixing representations
certainly satisfies conditions (i) and (ii), the latter by Proposition 4.2, and condition (iii) is the
hypothesis of having the Haagerup property.

(i) = (i): This is precisely Proposition 5.2.

(iii) = (i): For each i € d let (¢;,H;,&;) be the GNS construction corresponding to
wi. By Lemma 4.3, each of the representations Uy, (associated to ¢;) is mixing, and so
U := @Dy Ugp; will also be mixing. Let x; = (id ® u;)(\W) € Co(G), so that (x;);eq
is a bounded approximate identity for Co(G). Then, for a € Co(G),

61 |U@®E) —a®&| = |2a%a -2 (U@ @ &) |a ® &)
= HZa*a —20(a*(d ® wEi,Si)(Ui)a)”

= H2a*a —291(a*x,~a)” = !a*(Z—xi —x;")a”.

As (xj);eq is a bounded approximate identity, (6.1) converges to 0 for each fixed a € Co(G),
so by Proposition 3.7, U has almost invariant vectors. Thus G has the Haagerup property.

(i) = (iii): As G has the Haagerup property, there exists a mixing representation U of G
with almost invariant vectors, say (§;);eq4. Let ¢ be the representation of C¥f (@) associated to
U, and foreach i € J set u; = wg, ¢; © ¢. As U is mixing, we have

xi = (id® p;)) (W) = (id ® wg,; ¢, )(U) € Co(G)
foreachi. Fora,b € Cy(G),
0= %ig]l(U(a ®E&E)—aQ&|b®E)
= }ien}b*(id Q wg, ¢ )(U)a —b*a = }ien'[;b*x,-a —b*a.

So for u € Co(G)*,
(ub*,a) = }ien;(ub*,xia)-

By Cohen factorisation, every member of Co(G)* has the form ub*, so we conclude that
xja — a weakly. Similarly ax; — a weakly. As the weak and norm closures of convex
sets are equal, we can move to a convex combination of the net (x;);cg and obtain a bounded
approximate identity for Co(G). Notice that convex combinations of the x; will arise as slices
of W by convex combinations of states, that is, by slicing against states. Thus we obtain some
new family of states (4;);eg such that ((id ® A;)(W)),eg is a bounded approximate identity
in Co(G).
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(iii) = (iv): Notice that equivalently ((id ® w;)(W)*)icg = ((d ® w;)(W™*)); ey is
an approximate identity for Co(G). Then, as in Section 2.4, for each i € J the element
a; = (id ® wu;)(VT™*) represents a completely positive left multiplier of Ll(@)

(iv) = (iii): This follows from [23] as if a; € Co (G) represents a completely positive
left multiplier of L1 (G) then there is a state u; € C ”((G)* such thata; = (Id® u;)(W*). o

Example 6.6. After a preprint version of this paper appeared, the equivalence (i) < (iv)
was used in [17] to prove the Haagerup property for the (non-amenable, non-discrete) locally
compact quantum group arising as a quantum deformation of SU(1, 1).

Remark 6.7. Property (ii) was proved for Z by P. Halmos in [39]. The equivalence of
(1) and (ii) for classical locally compact groups is well known, dating back to [8], where the
harder direction (i) = (ii) is implicit in the proof of [8, Theorem 2.5]. Property (ii) can also be
compared with recent work of Brown and Guentner [16], who characterise the Haagerup prop-
erty for a discrete group in terms of the equality of the “Cy-completion” of the complex group
algebra and the full group C *-algebra, i.e. the fact that there are enough Cy-representations to
recover the universal norm. This was extended to the locally compact setting by Jolissaint in
[43].

Proposition 6.8. Let H be a closed quantum subgroup of G in the sense of Woronowicz.
If G has the Haagerup property and is coamenable, then H has the Haagerup property.

Proof. From Theorem 6.5 (iii), we can find (u;);eg a net of states in Cy' (@)* with

(id ® ui)(Wg) a bounded approximate identity in Co(G). Let m : C§(G) — Cy (H)

Verlfy that H is a closed quantum subgroup of G. For eachi € J set A; = Wi © 7, where
Gy (H) — M(Cy “(G)) is the dual morphism to 7, so that A; is a state on C “(H) Then

(d®A;)(Wg) = (Ag ® ui7)(Wy) = (Arr @ ui)(We).

Now, as G is coamenable, Co(G) = Cy'(G), and so W g = W g and also 7 can be considered
as amap Co(G) — C§ (H). Thus

(id ® A;)(Ww) = (Aum @ pi)(Wg) = Aum((d ® 1) (Wg)).

As 7 is onto, it follows that ((id ® A;)(\Wyy));eyg is an approximate identity for Co(H), veri-
fying that H has the Haagerup property. |

Remark 6.9. Every classical G and every discrete G is coamenable, and this extra
hypothesis is not excessive (in the way that asking for G to be amenable would be; compare
Remark 6.3!) To prove this result without assuming G coamenable seems tricky: we would,
for example, wish to know that if u € Cg(@)* is a state with (id ® u)(Wg) € Co(G) then
also (id ® u)(Wg) € C¥(G). This is related to the following question: if U is a mixing
corepresentation of Co(G), then following [49, Proposition 6.6] we can “lift” U to a unique
corepresentation V' of Cgf(G) with (Ag ® id)(V) = U. Will V still be mixing (that is, have
Co-coefficients)?
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Condition (iii) of Theorem 6.5 corresponds to the existence of a sequence/net of positive
definite Cp-functions on a classical group G converging to 1 pointwise (see [19]). Another
equivalent formulation is the existence of a proper conditionally negative definite function i on
G which, via Schonberg’s theorem, gives rise to a semigroup of positive definite Co-functions
(et 0)),_ ¢ connecting the trivial representation (at 1 = 0) to the regular representation (as
t — 00). The analogous statement in the quantum setting is phrased in terms of convolution
semigroups.

Definition 6.10. A convolution semigroup of states on C§'(G) is a family (us);>0 of
states on C§'(G) such that

() s+t = ps * gy := (s ® ) A forall s,z > 0;
(i1) Mo = €y,

(iii) p(a) — ey(a) ast — O foreacha € Ci (G).
We thus have the following trivial consequence of Theorem 6.5.

Proposition 6.11. Let G be a locally compact quantum group. If there exists a convolu-
tion semigroup of states (i¢)¢>0 on Ci'(G) such that each a; := (id ® ) (W) is an element
of Co(G) and ay tends strictlyto 1 ast — 0%, then G has the Haagerup property.

Convolution semigroups of states have generating functionals and are determined by
them (see [59]). Thus to prove the converse implication it suffices to construct for a given
quantum group with the Haagerup property a generating functional with certain additional
properties guaranteeing that the resulting convolution semigroup satisfies the conditions above.
However, in the general locally compact case it is difficult to decide whether a given densely
defined functional is the generator of a convolution semigroup of bounded functionals. The
situation is simpler if G is discrete, which we return to in the next section. A key task for us
there will be to see how much choice we have over the states which appear in Theorem 6.5 (iii).
A first step in that programme is the following proposition.

Proposition 6.12. Let G have the Haagerup property. Then there exists a net of states
(1i)ieg on Cy(G) such that ju; o Ry = ; for eachi € J, and the net ((id ® wu;)(\W));ey is
an approximate identity in Co(G).

Proof. Pick anet of states (i4;); g as in Theorem 6.5 (iii), and let A; = %(Mi + o ﬁu)

foreachi € 4. As ﬁu is a *-anti-homomorphism, each A; is state, and clearly A; o ﬁu = A;.
By [49, Proposition 7.2] we know that (R, ® R)(W) = W, and so (R® Ry)(\W) = W, again
using that R,, and R are x-maps. It follows that

(id ® pi o Ry)(W) = R((id ® pi)(W)) € Co(G),

as R is an anti-automorphism of Co(G). Similarly, it follows easily that a net (a;);cg in Co(G)
is an approximate identity if and only if (R(a;));eq is, if and only if (%(ai + R(a;)))ieq is.
Consequently, ((id ® A;)(W));cq is indeed an approximate identity for Co(G). |
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7. Haagerup approximation property for discrete quantum groups

In this section G will be a discrete quantum group, so that G is compact. We present
certain further equivalent characterisations of the Haagerup property in this case.
First observe the following consequence of Proposition 6.2.

Proposition 7.1. Every amenable discrete quantum group G has the Haagerup
property.

Proof. This follows from Proposition 6.2 and the fact that amenability of G implies the
coamenability of G, shown in [70]. O

Recall the notations of Section 2.3. We will first provide a simple reinterpretation of
condition (iii) appearing in Theorem 6.5 in the case of discrete G. In Theorem 6.5, for a state
p on Cgf (@), we considered the slice (id ® w)(\W). As W = U(W*), we can equivalently
look at (1 ® id) (W)*, and clearly as far as the hypothesis of Theorem 6.5 are concerned, we
may simply look at Fuu 1= (U ® id)(W). When G is discrete, for « € Irrg we shall write
(Fu)* € M, for the a-component. As noted in (2.2),

W — Z MZ X ejj € M(Cu(@r) ® CO(G)),
a€lrg

so that (¥ )% is the matrix with (i, j) entry ,u(u%). Furthermore, this now gives us a natural

interpretation of ¥ 1 for a (possibly unbounded) functional & on Pol(@).

Proposition 7.2. A discrete quantum group G has the Haagerup property if and only if
there is a net of states (l;);cgy on Pol(G) such that

) (Furi)*aemg, € ]_[aelrr@ M,,, is actually in @aelrr© M,,, foreachi € J;
(ii) the net ((¥11i)%)ieg converges in norm to lyy,,, for each o € Trre,.

If the conditions above hold, the indexing set d can be chosen to be equal to N.

Proof. As observed in Section 2.3, there is a bijection between states on Pol(@) and
states on C ”(G). So by Theorem 6.5 (i) < (iii), G has the Haagerup property if and only
if there is a net of states (i;);ecg On Pol(@) such that ((id ® u;)(W));eg is an approximate
identity in ¢o(G). Via the discussion above, this is equivalent to the two stated conditions.

The last statement follows easily from the fact that Irrg is countable. |

7.1. The Haagerup property for G via the von Neumann algebraic Haagerup
approximation property for L°°(@). Let M be a von Neumann algebra with a normal state
¢, and let (i, H, £&o) be the GNS construction (when ¢ is faithful, we shall tend to drop ). Let
® : M — M be aunital completely positive map which preserves ¢. Then, there is an induced
map T € B(H) with T(r(x)&) = 7 (T (x))&o.

The following definition of the von Neumann algebraic Haagerup approximation prop-
erty is usually considered only for a von Neumann algebra equipped with a faithful normal
trace, and in that case, does not depend on the actual choice of such a trace (see [42]). Here we
propose the least restrictive possible extension to the case of general faithful normal states (for
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an extension reaching also the case of faithful normal semifinite weights and its properties see
the forthcoming work [18]).

Definition 7.3. A von Neumann algebra M equipped with a faithful normal state ¢ is
said to have the Haagerup approximation property (for ¢) if there exists a family of unital com-
pletely positive ¢-preserving normal maps (®;);eg on M which converge to id ¢ in the point
o-weak topology such that each of the respective induced maps T; on L?(M, ¢) is compact.
As each T; is a contraction, a standard argument shows that the point o-weak convergence is
equivalent to lim;cy 7; = 1 strongly on L2(M, ¢).

We use condition (iii) of Theorem 6.5 to connect the Haagerup property for G and the
Haagerup approximation property for L>° (@). On one hand the states featuring in Theorem 6.5
can be used to construct certain approximating multipliers on Lw(@); on the other, given
approximating maps on LOO(G), we can attempt to “average” them into multipliers and thus
obtain states with the required properties.

For the following, recall that we denote the Haar state on G by ¢.

Theorem 7.4. Let G be a discrete quantum group. If G has the Haagerup property,
then L°°(G) has the Haagerup approximation property for ¢ (in the sense of Definition 7.3).

Proof. Let (1;)ieg be a net of states in Cy (@)* satisfying condition (iii) in Theo-
rem 6.5. For each i € J use the representation V/ and the states u; to build completely
positive left multipliers L; : L°°(G) — L°°(G) defined by

Li(x) = (d® p))(W(x @ HW*), x e L®G).

By Proposition 2.8, each L; is a normal, unital, ¢-preserving completely positive map, and
induces an operator 7; on Lz(@). Furthermore, 7; = (id ® w;)(W) which is a member of
co(G) by condition (iii) in Theorem 6.5. As G is discrete, co(G) is the co-direct sum of matrix
algebras, and so in particular 7; is a compact operator on Lz(@). Finally, as (T;);eq 1S a
bounded approximate identity for co(G), T; — 172(g) strongly, as required. |

For the converse we need to start with normal, unital, ¢-preserving completely positive
maps P : L“(G) — LOO(G), and “average” these into multipliers. This can be achieved
when G is discrete and unimodular. To this end we will use the following version of [47,
Theorem 5.5], rephrased in our language for the convenience of the reader. Recall that the
comultiplication of a locally compact quantum group is always injective.

Theorem 7.5 ([47, Theorem 5.5]). Let G be a discrete unimodular quantum group and
let @ : Loo(@) — Loo(@) be a normal, completely positive, unital map. Let E denote the
unique @-preserving conditional expectation from Lm(@)@LO"(@) to A(Loo(@)) (whose
existence follows from the fact that ¢ is a trace). Then the formula

(7.1) L=(A)"oEo(®®id @) oA

defines a normal unital completely positive map, which is (the adjoint of) a left multiplier on
L°°(G) represented by the element

a = (¢ ®id)((? ®id)(W)W*) € M(co(G)).
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Remark 7.6. The multiplier L above can be alternatively described by the following
formula (which makes sense for an arbitrary locally compact quantum group G):

L(x) = (¢ ®id)(W(® @ id)A(x)W*), x e L®(@G).

Using this alternative description, we can show that the suitably reformulated Theorem 7.5
remains valid if we only assume that G is unimodular (i.e. drop the discreteness assumption).

We can now generalise Choda’s result that the Haagerup property is a von Neumann
property of a discrete group from [20] to the quantum setting.

Theorem 7.7. Let G be a discrete quantum group and assume that G is of Kac type.
Then G has the Haagerup property if and only if L°°(G) has the Haagerup approximation

property.

Proof. The “only if” claim is Theorem 7.4, so suppose that L°°(@) has the Haagerup
property, as witnessed by a net (®;);cy of unital, completely positive, ¢-preserving normal
maps, whose induced maps (7;);eg are compact operators on LZ(G) with ®; — idLOO(G)
point o-weakly.

For each i, define the corresponding map L; by (7.1). By Theorem 7.5, this is the adjoint
of a left multiplier L;, which is “represented” by a;, where

a; = (¢ ®id)((®; ® id)(W)W*) € M(co(G)).

As L; is completely positive, Proposition 4.2 and Theorem 5.2 in [23] give a unique positive
functional p; € CX(G)* with a; = (id ® ;) (W*).

Write &y € LZ(@) for the cyclic vector arising in the GNS-construction, so that the
induced maps 7; € B(Lz(G)) satisfy T; (x&p) = ®;(x)&p for x € LOO(G). This means that
forx,y € Loo(@),

(yTix€o1£0) = (Tixéo|y*&0) = (Di(x)€0 |y 0) = G (y i (x)).
Then, as W = o (W*),
af = (d®@)(W*(id® @) (W)) = (id ® wg, g,) (W*(1 Q@ Ti)W).

For n1,m2 € L?(G) consider the rank-one operator 6y, n, = (- |72)n1 on Lz(@) = L%(G).
Then

(id® wé‘osé‘o)(W*(l ® 9771,712)W) = (d® wnlafo)(W*)(id ® Wy p,) (W) € co(G).

Approximating the compact operators 7; € £(L2(@)) by finite rank operators, we conclude
thata’ € co(G) for each i (note that this could be alternatively obtained from the last statement
of [47, Theorem 5.5 (1)]).

As G is discrete, co(G)* = L1(G), and so for x € ¢o(G), w € co(G)*, we have

lim(w, a;x) = lin}(W*(id ® P)(W).x0®¢)=(1® L,xo ®P) = (0, x),
1€

ied
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since ®; — 1id; @) point o-weakly. Therefore lim;egax = x weakly, and similarly
lim;cg xa* = x weakly for all x € ¢o(G). By Hahn—Banach, we can pass to a convex com-
bination of the (a;) to obtain a bounded approximate identity for ¢o(G) arising from slices of
W by states, just as at the end of the proof of Theorem 6.5 (i) = (iii). Theorem 6.5 (iv) = (i)
then finishes the proof. |

Remark 7.8. A C*-algebraic version of the Haagerup approximation property for a
pair (A, ), where A is a unital C*-algebra and t is a faithful tracial state on A, was intro-
duced in [29]. Using on one hand the fact that the C*-algebraic Haagerup approximation
property for (A, t) passes to the analogous von Neumann algebraic property for 7;(A)” (see
[69, Lemma 4.5]) and on the other the fact that the multipliers we construct in the proof of The-
orem 7.4 leave the C*-algebra C (@) invariant (see Remark 2.4), one can deduce easily from
the above theorem that a discrete unimodular quantum group G has the Haagerup property if
and only if the pair (C ((@), ¢) has Dong’s C *-algebraic Haagerup approximation property.

As remarked in Definition 7.3, for the von Neumann algebraic Haagerup property the
two natural notions of convergence, point o-weak on the algebra, or point-norm on the Hilbert
space, agree. For the C *-algebraic Haagerup property, both Dong [29] and Suzuki [69] choose
to work with point-norm convergence at the Hilbert space level, but one might also consider
point-norm convergence at the algebra level; in general this will be a strictly stronger condition.
However, in our setting we do indeed get point-norm convergence in C (@). Indeed, in Theo-
rem 7.4 we construct multipliers L;, each represented by a; € co(G), with (a;) a (contractive)
approximate identity. As argued in Remark 2.4, we see that for v € L1(G),

Li((id ® )(W)) = (id ® wa; ) (W) > (id @ o) (W),
the convergence being in norm. As C (@) is the norm closure of elements of the form
(id ® a))(W), and each L; is a contraction, we conclude that L; (x) — x for all x € C(G), as
claimed. We thank Caleb Eckhardt for an enquiry which prompted this observation.

We can now record a number of examples of quantum groups with the Haagerup property.

Example 7.9 ([14,15,56]). The duals of the free orthogonal quantum groups, of the free
unitary quantum groups, of the quantum automorphism groups of certain finite-dimensional
C *-algebras equipped with canonical traces, and of the quantum reflection groups H;T (the
free wreath products Zg 2 S,}, see [9]) forn > 4 and 1 < s < oo have the Haagerup property.

The following corollary is related to cocycle twisted products of discrete quantum groups
(studied for example in [34]) with the Haagerup property.

Corollary 7.10. Let G be a discrete unimodular quantum group and let I be a discrete
abelian group such that C*(I') C C “(@) with the inclusion intertwining the comultiplica-
tions. Let o : I' x I' — T be a bicharacter. Then G has the Haagerup property if and only if
the twisted quantum group G4 has the Haagerup property.

Proof. As the Haar state of G is a trace, it follows from [34] that the twisting does
not modify the von Neumann algebra: L°°(G) = L°°(Gg). The corollary now follows from
Theorem 7.7. o
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We finish the subsection by exhibiting another corollary, related to the wreath product of
compact quantum groups [9] and also to the considerations which will follow in Section 8.

Corollary 7.11. Let G be a discrete unimodular quantum group. Let H denote the dual
of the free wreath product G ? 52Jr . Then G has the Haagerup property if and only if H has the
Haagerup property.

Proof. Consider the algebra C “(H). It is generated by commuting copies of the C *-
algebras C*(G) « C*(G) and C(S;) = C(Z3). Thus C*(H) ~ (C*(G) * C*(G)) @ C(Z»).
Moreover it follows from [9] that the Haar measure of H is given with respect to this decom-
position by the formula 7 = hy ® hy, where & is the free product of Haar states of G and ho
is induced by the Haar measure of Z,. It follows that L°°(H) = (L°°(@) * Loo(@)) ® C?
which has the von Neumann algebraic Haagerup property if and only if Loo(@) has the von
Neumann algebraic Haagerup property by [42, Theorem 2.3]. Theorem 7.7 ends the proof. O

Remark 7.12. The free wreath product of a coamenable compact quantum group by
Sz"' is not coamenable in general. For example, taking G = Z, the free wreath product of
G =T by 52Jr is a non-coamenable compact quantum group (whose fusion rules are even
non-commutative, see [9]), and yet the above corollary shows that its dual has the Haagerup

property.

Some more examples of permanence of the Haagerup property with respect to construc-
tions involving discrete unimodular quantum groups are given in Propositions 8.13 and 8.14.

7.2. The Haagerup property via convolution semigroups of states and conditionally
negative definite functions. The quantum counterpart of a conditionally negative definite
function is a generating function as defined below.

Definition 7.13. A generating functional on G is a functional L : Pol(@) — C which
is selfadjoint, vanishes at 1 and is conditionally negative definite, i.e. negative on the kernel
of the counit (formally: if a € Pol(G) and €(a) = 0, then L(a*a) < 0).

The following fact can be viewed as a quantum version of Schonberg’s correspondence
and goes back to the work of Schiirmann (see [68]). In this precise formulation it can be
deduced for example from [58, Section 8]. Indeed, the correspondence between semigroups
of hermitian functions, and self-adjoint L with L(1) = 0 follows easily from one-parameter
semigroup theory, and bialgebra theory, see for example the sketch in [59, Section 2]. The
harder part is to show that the extra property of being conditionally negative definite is enough
to ensure a semigroup of states.

Lemma 7.14. There exists a one-to-one correspondence between
(i) convolution semigroups of states (jit)¢>0 on C "(@) and

(i1) generating functionals L on G,
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given by

(1.2) L@ = lim “YD=H@ p@) c cv @)

t—0t t

and

(73)  pi(a) = exp,(—tL)(@a) = Y (_’%L*" (@), a €Pol(G)c C*G).
n=0 ’

It will again be useful to consider the natural basis (u“ ) of Pol(G). Given a generat-
ing functional L, let (L%); ; = L(u J) so that L% is an ng X ng, matrix. For s > 0, write
as = (us ® 1d)(W) € M(co(G)), where (14)s>0 is the convolution semigroup associated to
L. As the map C* (G)* — M(co(G)); u = Fu =(u® 1d)(W) is a homomorphism, it is
easy to see that the «-component of a; satisfies

(7.4) (as)* = e LY g e Irrg, .
As a consequence we immediately obtain the following lemma, which is crucial in the sequel.

Lemma 7.15. Let L and (jit)t>0 be as in Lemma 7.14. Fix s > 0. The following
conditions are equivalent:
(1) The operator ag = (jLs ® id) (W) € M(co(G)) belongs to co(G).
(ii) The family of matrices (e~
tends to infinity.

a)aelrr© (with L% defined as above) converges to 0 as a

Definition 7.16. We call a generating functional L symmetric if the associated family
of matrices (L%)gerrr & consists of self-adjoint matrices. A symmetric generating function L is
said to be proper if it satisfies the following condition: for each M > 0 there exists a finite set
F C Irrg, such that for all « € Irrg, \ F we have that

LY > Ml,,.

Note that the self-adjointness of the matrices L% is equivalent to L being S-invariant,
because L(uf;.) = ij. while (L o S)(u%) = L((u;’.‘i)*) = L_j‘l This explains the use of the
word ‘symmetric’ in the definition. Moreover the assumption that a generating functional L is
S-invariant implies immediately that each L is in fact a positive matrix. This follows, as each
L® will be self-adjoint, and as each jug is a state, the norms of the matrices (ay)® = e~
do not exceed 1; then observe that if X is any self-adjoint matrix such that (e 5% )s~¢ is a
semigroup of contractions, then X must be positive. Note too that if L is symmetric, then each
of the states u; defined by (7.3) is S,,-invariant.

In Proposition 6.12 we showed that the net of states (i4;); c4 appearing in Theorem 6.5 (iii)
can be chosen to be ﬁu -invariant. We next show that, at least when G is discrete, we can choose
the states to be S‘u—invariant.
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Proposition 7.17. Let G be a discrete quantum group. Given an Ry-invariant state
w € C*(G)*, there exists an Sy -invariant state v € C*(G)* with

7.5 [NE* I = I[(Fw*l and  |[(Fv)* = Ing, || < I(F)* = Ingll. o €lrrg.

In particular if G has the Haagerup property, then the net of states (jLi)jeg on C "((f}) such
that (i ® id)(W));eyq forms an approximate identity in co(G) obtained in Proposition 6.12
can additionally be taken Sy-invariant.

Proof. Letu € C "(@)* be an R,-invariant state. Let M € L*°(R)* be an invariant
mean — so M is a state, and if f, g € L°°(R) and ¢ € R are such that f(s) = g(s + ¢) for all
s € R, then (M, f) = (M, g). Define v € C*(G)* by

(v.a) = (M, (1. 3(@))),cg): @ € C*(G),

where {7}’ : t € R} is the scaling automorphism group on C “(G) (see [49, Section 9]). As
each 7}’ is a x-automorphism it follows that v is a state, and by the invariance of M, it follows
that v o 7 = v for all s € R. We now use some elementary one-parameter group theory (see
for example [50, Section 4.3] or [48]). As v is invariant for {7}’ : ¢ € R} it follows that v is

analytic, and invariant for its extension to complex parameters, so in particular v o (A 2 = V-

As I 18 R -invariant, and each 7}/ commutes with Ru, it follows that v is R -invariant. Thus
voS, =voRy, O‘L'_/z—l)

By [49, Proposition 9.1] we have that (7} ®rt)(W) = (W) forallt € R. Letw € £1(G),
and seta = (id ® w)(W), so

7/(a) = (id ® a))(( ® 1d)(W)) =@{d® a))((ld ® t_,)(W)) =({id®wo r_,)(W)

The scaling group {t; : t € R} restricts to each matrix summand M, of ¢o(G), a fact
which is summarised in [71, Section 2.2] for example. Let {t¥ : € R} be the resulting
group of automorphisms acting on M. Let py : co(G) — M, be the projection, so that

« - My — £1(G) is the inclusion. Let w = pZ(¢) for some ¢ € M, . Then for all
o € Irr@,

(¢ (Fvi)*) = (Fv.0) = (v.(d ® 0)(W)) = (M. (1. 7' (@))) )

= (M, (1. (id ® @ 0 -) (W), g
= (M. (1. (id ® pg(¢p 0 %)) (W))), )
= (M. ((r® ¢, (ild ® %) (")), )
= (M. ({6, 7%, (F 1)) er)-

where we consider u* € C*(G) ® M, . As ¢ was arbitrary, it follows that
[EFEV < IF ™I
As t%,(Iy,) = Ip, forall t € R, it follows that

(¢, (Fv)* — Ina) = (M’ ((¢’ Tgt((ff'v,u)a - Ina)>)t€]R)'
Hence ||(Fv)* — I, || < [(Fu)* — I,, ||, establishing (7.5).

’

’

/-\A/-\/-\
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When G has the Haagerup property let (i4;);cg be a net of R, -invariant states, as given
by Proposition 6.12 combined with Proposition 7.2. Thus, for each fixed i € J, we have that
[(Fpi)*|| — 0as & — oo, and for each fixed « € Irrg, we have that ||(Fui)* — In, | — 0
fori € . Foreach i, form v; from p; as above. Then the net (v;) will satisfy the same limiting
conditions. |

Theorem 7.18. Let G be a discrete quantum group. The following are equivalent:
(i) G has the Haagerup property.

(ii) There exists a convolution semigroup of states (iit);>0 on Cg (@) such that each
a; = (uy ® id)(W) is an element of co(G), and a; tend strictlyto 1 ast — 0.

(iii) G admits a symmetric proper generating functional.

When these conditions hold, the semigroup of states in (ii) can additionally be chosen to be
Sy-invariant.

Proof. (ii1) = (i1): If L is a symmetric proper generating functional on G, then con-
dition (ii) in Lemma 7.15 is satisfied so that the operators a; arising from the corresponding
semigroup of states (i4;)s>0 given by Lemma 7.14 lie in co(G). As G is discrete, the strict
convergence in ¢o(G) is the same as convergence of the individual entries of the corresponding
matrices. For each fixed «, (7.4) gives (a;)* = e L%, so that (a;)* — In, ast — 0T, as
required. Further, as L is symmetric, the states (i;);>0 are S,,-invariant.

(i) = (i): Follows from Proposition 6.11.

(i) = (iii): Choose an increasing sequence (Fy),2; of finite subsets of Irrg such that
Ure Fn = Irrg,, a sequence (€n);2 of positive numbers tending to 0 and a sequence
(Bn)S2_, of positive numbers increasing to infinity such that Y ;= Bn€, < oco. For each
n € N use Proposition 7.17 to find an S,-invariant state Un such that £ u, € co(G) satisfies

(7.6) [ 1ng — (Fun)|| < €r, o€ Fy.

Each matrix (% j1,)® is contractive, and as [, is Sy-invariant, it is also self-adjoint.
Define L : Pol(G) — C by

(7.7) L= Bule— pn),
n=1

with the convergence understood pointwise. We claim that L is a (well-defined) symmetric
proper generating functional. Note first that for any o € Irrg, we have that

(L), ;=Y Bulng — (Fpn)*)
n=1

and the convergence of this sum is guaranteed by the fact that there exists N € N such that
o € Fy forallm > N, and using (7.6). Hence the sum in (7.7) does converge pointwise. As L
is a sum of self-adjoint functionals and further, on the kernel of the counit it is a sum of states
multiplied by non-positive scalar coefficients, it is a generating functional. Hence it remains
to show that L is symmetric and proper. Observe that for each o € Irrg, and n € N we have
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that LY > B, (I, — (¥ un)*). Thus it suffices for a given M > 0 to choose n € N so that
Bn > 2M and note that as F pip € ¢o(G), there exists a finite set F C Irrg such that for

a € Irrg \ F we have that [[(Fun)®| < % so also I, — (Fun)* > %Ina (recall that the

matrix (Fu,)* is self-adjoint). Hence for o € Irrg \ F, we have

1
L% 2 2M Sy,

as required. |

The following concept generalises cocycles for unitary representations of classical dis-
crete groups.

Definition 7.19. Let G be a discrete quantum group, let H be a Hilbert space and let
w:Cy (G) — B(H) be a (unital) representation. A map ¢ : Pol(@) — His called a cocycle
for i if

c(ab) = w(a)e(d) + c(@)é(b), a,b € Pol(G).

More generally a map ¢ : Pol(@) — H is said to be a cocycle on G if there exists a represen-
tation 77 : Cy,(G) — B(H) such that ¢ is a cocycle for 7.

A cocycle determines a family of matrices (¢*)aerrr,, With entries in H given by
¥ = (c(ug;))ijl € My, (H) = B(C",C" ®H), aclmg,

so that we view each ¢® as an operator between Hilbert spaces.
The following definitions are due to Vergnioux. Again, they extend classical notions for
cocycles on discrete groups.

Definition 7.20. Let G be a discrete quantum group and let ¢ : Pol(@) — Hbea
cocycle on G. Then ¢ is said to be bounded if the family of operators (¢%)qgerr,, 18 bounded; it
is said to be proper if for each M > 0 there exists a finite set F' C Irrg such that

(c*)*c* > Mly,, aclmg\F.
Finally, c is said to be real if
(7.8) (c(@)]c(h)) = (c(Sud*) [c(Su(@)*)), a,b € Pol(G).
As é = ¢ o S, it is enough to verify (7.8) for a, b € Pol(G) N Ker(é).

The next result sets out the connection between (real) cocycles on G and generating
functionals on G.

Proposition 7.21 ([53,57]). Let G be a discrete quantum group. If L is a generating
functional on G then there exists a cocycle ¢ on G such that

(7.9) (c(a)|c(b)) = —L(b*a) + é(a)L(b) + L(a)é(b), a,b € Pol(G).
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On the other hand if ¢ is a real cocycle on G, then one obtains a generating functional L on G

such that (7.9) holds, by defining

n

1 N
(7.10) L(a) = 5 ) (claqn)le(Sulag, ).

i=1
where a € Pol((@) has A(a) =37, ac,i ae,i-

Proof. The construction of ¢ follows from a GNS type construction for L|g.¢, see for
example [57, Section 6] (note that a different linearity convention for scalar products is used in
[57]). The construction of (7.10) is [53, Theorem 4.6], attributed in that paper to Vergnioux. O

Note that if a generating functional L on G and a cocycle ¢ on G are related via the
formula (7.9), then it is easily checked that c is real if and only if L is invariant under S, on
(Keré)? = {b*a : a,b € Keré}. The following proposition shows that in fact if ¢ is real, and
L is constructed according to the formula (7.10), then L = L o S‘u.

Proposition 7.22. Let ¢ be a real cocycle on G and L be the generating functional on
Pol(G) given by (7.10). Then L o S,, = L.

Proof. Note that ¢ and L satisfy (7.9). Fix a € Pol(@) and write

n
A(a) = Za(l,i) ® ag,iy-

i=1
Then, by (7.10) and (7.9),

n

2L(a) = Z(C(a(u)) | C(Su (a?z,i))))

i=1

n - -
= Z(—L(Su(aa,-))*a(u)) + €(aqn)L(Sulag, ;) + L(a(l,i))g(Su(aa,-))))-
i=1
Recalling that Sy, (b*)* = S’u_l (b) for b € Pol(G), and that ¢ = ¢ o S, this gives
(7.11)

n

2L(a) = Z(—L(ﬁu_l(a(z,i))a(u)) +é(aqin) LSy (a@.i)) + L(a(1,i))€(a(z,i)))-

i=1

As Pol(G) is a Hopf =x-algebra,

n n
(7.12) el => Sylaqnaci =Y _ Sy @enaa,
i=1 i=1
and
n n
(7.13) > aqiaey =a=Y_aqnéag,)

i=1 i=1
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Combining (7.12) and (7.13) with (7.11) gives
2L(a) = —L(E@)1) + L(S; (@) + L(a) = L($; (@) + L(a),
as L(1) = 0. Thus it follows that L o Sy = L, as claimed. |

The next result characterises the Haagerup property for a discrete quantum group G via
the existence of a proper real cocycle on G. As explained in the introduction, it should be
thought of as the counterpart of the characterisation of the Haagerup property of a discrete
group I' via the existence of the proper affine isometric action on a real Hilbert space. We
thank Roland Vergnioux for the clarifying remarks which led us to this result.

Theorem 7.23. Let G be a discrete quantum group. Then G has the Haagerup property
if and only if it admits a proper real cocycle.

Proof.  Suppose first that we are given a generating functional L on G anda cocycle ¢

on G related via the formula (7.9). Fix o € Irrs and compute the matrix (¢%)*c*
Ny
(€)*e); = D (e lewg))
k=1

= D (SL(ug"uy) + € ) LOug,) + L(ug)E(ugs)

Ny Ny
_ _L( Z ugl*ugj) + 3 (B L) + Lu)8%7)

k=1
= _L(Sl] 1) + L(“ )+ L(“U) = (L% + (L*)")ij.-

Suppose then that G has the Haagerup property. Theorem 7.18 implies that G admits
a proper symmetric generating functional L. The first part of Proposition 7.21 implies that
there exists a cocycle ¢ on G related to L via the formula (7.9). Since L is symmetric, it is
S,,-invariant so certainly S,.-invariant on (Ker €)2. Hence, as noted after Proposition 7.21, ¢ is
real. As (¢%)*c% = 2L for each «, properness of L is equivalent to properness of c.

Conversely, if G admits a proper real cocycle ¢, then by the second part of Proposi-
tion 7.21 there exists a generating functional L on G related to ¢ given by (7.10). By Propo-
sition 7.22 this generating functional satisfies L o Sy = L, and so by the remark after Defini-
tion 7.16, each L* is self-adjoint. That is, L is symmetric. Again, (¢*)*c* = 2L* for each
o, and so properness of ¢ implies properness of L, and hence G has the Haagerup property by
Theorem 7.18. ]

We finish this subsection by proving two lemmas which will be needed in the last section
of the paper.

Lemma 7.24. Let G be a discrete quantum group which has the Haagerup property.
Then there exists a sequence of states (g )ren on Pol(G) such that

(i) for each k € N the family of matrices ((¥ ux)*)aenr,, belongs to @aem(@ My, ;
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(ii) for each a € lIrrg, the sequence ((¥ ux)*)ken converges in norm to the identity matrix
in My, ;

(iii) for each k € N and a € Irrg with o # 1, we have that || u|| < exp(—%).

Proof. The proof is based on adjusting the output of Proposition 7.2 in order to ob-
tain the extra third condition. Choose a sequence (wy)ren of states on Pol(@) satisfying the
conditions in that proposition. Let & denote the Haar state of G and put L = € —h. Itis
easy to see that L is a (bounded) generating functional, and moreover for each t > 0 we
have that exp,(—tL) = e 'é + (1 — e ")h. Put ¥ = exp*(—%L). It is easy to check
that the sequence (Ur)ren, Where U = wr *x Y, k € N, satisfies the required condi-
tions (note that the norm of each matrix ;' is not greater than 1, as wy is a state, and that

(Fui)® = (F o) (F¥i)®). =

The above lemma has a natural counterpart for generating functionals on discrete quan-
tum groups with the Haagerup property.

Lemma 7.25. Let G be a discrete quantum group which has the Haagerup property.
Then G admits a symmetric proper generating functional L : Pol(@) — C such that for each
o € Irrg, we have that
L* > 1,,.

Proof. Let Ly : Pol((@) — C be a symmetric proper generating functional and let L be
defined as in the proof of Lemma 7.24. As the sum of generating functionals is a generating
functional, it suffices to consider L + L. O

8. Free product of discrete quantum groups with the Haagerup property
has the Haagerup property

In this section we apply the techniques developed earlier to generalise Jolissaint’s result
that the Haagerup property for discrete groups is preserved under taking free products (see [41]
or [19] for two different proofs, and note that in fact the Haagerup property is also preserved
under taking a free product with amalgamation over a finite subgroup). In the case of discrete
unimodular quantum groups the shortest way to this theorem is via the von Neumann algebraic
Haagerup approximation property and the fact that it is preserved under taking free products of
finite von Neumann algebras (see [42]); this method can be also used to establish the quantum
version of the result, mentioned above, for the free product with amalgamation over a finite
(quantum) subgroup (see Proposition 8.13). The proof we present in the general case is closer
in spirit to the classical proof in [19]; the techniques developed may also be of interest in other
contexts.

Recall first the definition of the free product of discrete quantum groups, originally in-
troduced by S. Wang in [76]. Given two compact quantum groups G, G, the C*-algebra
C*(G1)* C*(Gy) (the usual C *-algebraic free product of unital C *-algebras with amalgama-
tion over the scalars) has a natural structure of the algebra of functions on a compact quantum
group, with the coproduct arising from the universal properties of the free product applied to the
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maps (11 ® t1)A1 and (12 ® t2)A,, where A1, A, denote the respective (universal) coproducts
of Gy and Gy and (1 : C*(G1) = C*(Gy) *x C*(Gy), 12 : CH(Gy) — CH(Gq) * C*(Gy) are
the canonical injections. We call the resulting compact quantum group the dual free product
of G and G; and denote it by G; % Go, so that C*(Gq) x C*(Gy) = C*(Gy * Gy). The
following result of Wang is crucial for working with the dual free products.

Theorem 8.1 ([76, Theorem 3.10]). Let Gy, G, be compact quantum groups. Then
Pol(G; % Gy) = Pol(Gy) * Pol(Gy) (where on the right-hand side we have the *-algebraic
free product of unital algebras, identifying the units) and

Ittg sg, = LU (U™ @ @ U™ k€ N, i(j) € {12}, i(j) £i( + 1),
aj € Irrg, ;). U™ # 1}’

where U1 @ --- QU e M, ® - ® Mp,, ® (Pol(Gy) * Pol(G2)),

a
Ok

23] Qe —_ %1
(U @ @ U )(ll ..... Ix),(my,..., mg) — ullaml "'ulk’mk'

The Haar state of G1 % Gy is the free product of the Haar states of Gy and G.
Note that the last statement of the above theorem implies in particular that
L%(Gy * G2) = L®(Gy) * L=(G),

where this time * denotes the von Neumann algebraic free product (with respect to the Haar
states of the respective [.°°-algebras, see for example [74]).

Definition 8.2. Let G;, G, be discrete quantum groups. The free product of G and
Gy, is the discrete quantum group G * G, defined by the equality

Gl*Gzz(é\l;I;(/G;\z.

One may check that the notion above is compatible with the notion of the free product of
classical discrete groups (recall that if I'y, I, are discrete groups, then C (ﬁ) = C*(I;) and
C*(I' %) = C*(I'1)*xC™*(I',)). Itis also easy to observe that the free product of unimodular
discrete quantum groups is unimodular (as the free product of tracial states is tracial). Finally,
we record the following well-known and easy observation.

Proposition 8.3. Ler G, G, be discrete quantum groups. Then both Gy and G, are
closed quantum subgroups of G1 * Go.

Proof. Recall that LOO(@\l * ((/}\2) ~ Loo((/}\l) * Loo(@\z). It is easy to check that the
canonical injection of L°°(@\1 ) into Loo(@\l K L°°(((/}\2) is a normal unital *-homomorphism
intertwining the respective coproducts. This means that G is a closed quantum subgroup of
G1 * Gy. The case of G follows identically. O
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Remark 8.4. Note that the terminology introduced here, used earlier for example in
[2], is different from that of [76], where Wang called the free product what we call the dual
free product of compact quantum groups. The advantage of the notation and nomenclature
employed here is that it is consistent with the free product of classical discrete groups and also
with the results such as the one stated above.

Before we begin the proof of the main theorem of this section we need to introduce
another construction: that of a c-free (conditionally free) product of states, introduced in [13]
and later studied for example in [12]. Here we describe it only in the case of two algebras.
Observe first that if 47, #A» are unital *-algebras equipped respectively with states (normalised,
hermitian, positive functionals) ¥; and ¥, then the *-algebraic free product #A; * A, can be
identified (as a vector space) with the direct sum

o0
Cle@ @ 4@ A,
=1 (1) et (n)

where i (j) € {1,2} and A] = Ker 1, A3 = Ker . This ensures that the following defini-
tion makes sense.

Definition 8.5. Let A1, /A, be unital *-algebras equipped respectively with states q
and Y. Let ¢; and ¢, be two further states respectively on #4; and on +,. The conditional
free product of ¢1 and ¢, is the functional @ := @1 *(y, y) P2 On A1 * Ay defined by the
prescription w(1) = 1 and

w(ay---an) = ¢iqy(ar) -~ i) (an)
foralln € N,i(j) € {1,2},i(j) #i(j + 1) anda; € Ker;(;y for j =1,...,n.

The crucial property of the conditional free product of states is that it is again a state

(see [12, Theorem 2.2]; the result follows also from [10, Theorem 3.1]). Given two compact

quantum groups G and G, with Haar states /41 and /», and two further states ¢, ¢» on,
respectively, Pol(G1) and Pol(Gy), write ¢ © ¢ for a respective conditionally free product:

$1 0 P2 1= @1 ¥, 1) P2 (astate on Pol(Gy * G)).
Recall Theorem 8.1, where we described the representation theory of G % Go.

Lemma 8.6. Let G, Gy be compact quantum groups and let ¢y, ¢o be states on, re-
spectively, Pol(G1) and Pol(Gy). Then ¢ © ¢, satisfies (and is determined by) the formulas

(8.1) (¢1092)(1) =1,
(82) (¢1 % ¢2)((U‘¥1 ORN) Uak)(ll,...,lk),(ml,...,mk))
= diyy' ) bigo (y” )

foranyk € N, i(j) € {1,2},i(j) #i(j + 1), aj € Irrg, ;) o5 # L [j,mj €{1,...,nq;}.
Moreover if w1, wy are two further states on, respectively, Pol(G1) and Pol(Gy), then we have

(8.3) (1 © P2) x (w1 © W2) = (P1 * W1) © (P2 *x W2),

where * denotes the convolution product of functionals.
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Proof. The fact that the formulas (8.1) and (8.2) determine ¢; ¢ ¢> uniquely follows
immediately from Theorem 8.1. To show that these formulas hold it suffices to observe that for
i = 1,2, anontrivial @ € Irrg, and any /,m € {1,...,nq}, we have that hi(u‘l’im) = 0, and
then use the definition of the conditionally free product.

The second part of the proof is then an explicit check of the equality in (8.3) on the
elements of the form appearing in (8.2) (recall that they span Pol(G; * G;)), based on applying
the fact that the coproduct acts on the entries of a finite-dimensional unitary representation as
‘matrix multiplication’: A(u; ;) = Y Y ujx ® ug ;. o

Recall the definition of a convolution semigroup of states on a locally compact quantum
group, Definition 6.10. The last lemma yields the following result, which can be interpreted
as providing a method of constructing quantum Lévy processes [58] on dual free products of
compact quantum groups.

Theorem 8.7. Let G, G, be compact quantum groups equipped, respectively, with
convolution semigroups of states (¢;)r>0 and (w¢)r>0. Then (¢p; © wt)r>0 is a convolution
semigroup of states on C*(G1 % G»).

Moreover, if Ly : Pol(G1) — C and Ly : Pol(G) — C are generating functionals of,
respectively, (¢;) >0 and (w¢) >0, then the generating functional of (¢; © ¢ ) >0 is determined
by the formula

(8.4) LU @@ U)qy....00).m1 i)

k
— (™
= 2811,m1 ".(Slj—lamj—lLl(])(ul‘/,m_i)(glj—i-lamj—i-l S1ic.myc
Jj=1

foranyk e N,i(j) € {1,2},i(j) #i(j + 1), aj € Irrg; ;) af # L 1j,m; €{1,... nq,}.

Proof. Foreacht > 0, define u; := ¢; © w; and consider the family of states (it7)¢>o.
By Lemma 8.6, this family satisfies the first property in Definition 6.10. Further, as for any
finite-dimensional unitary representation U = (u,-,‘,-)?’ (J] _, of a compact quantum group we
have that €(u;, ;) = &;,;, the formulas (8.1) and (8.2) imply that we have €g, ¢ €G, = €G,2G,>
so that o = €. Finally, as each u; is a state, it suffices to check the convergence in part (iii)
of Definition 6.10 on the elements of the type appearing in (8.2), where it follows from the
formulas describing the respective counits.

Taking once again into account the equality (8.2), the formula (8.4) is obtained from the
Leibniz rule, as L is determined by the formula (7.2). O

We return now to the main point of this section.

Theorem 8.8. Let Gy, Gy be discrete quantum groups. Then their free product G % G,
has the Haagerup property if and only if both G1 and Gy have the Haagerup property.

Proof. 1If G * Gy has the Haagerup property, then both G; and G, have the Haagerup
property by Propositions 6.8 and 8.3 (note that discrete quantum groups are automatically
coamenable).
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Conversely, let (¢;§)keN and (¢13)keN be sequences of states on, respectively, Pol((/}\l)
and Pol(@\z) satisfying the conditions in Lemma 7.24. For k € N, let u = ¢,i o ¢,§, a state
on Pol(G; % G3). Note that the formula (8.2) interpreted matricially says that for any / € N,
i) € {1.2.() # i + 1.0 € g, ). 05 # 1.

I
(?Mk)al...al — ®(37¢]l€(j))aj
j=1

It is then elementary to check that the sequence (i )ren satisfies the conditions of Lemma 7.2
— the fact that the respective matrices belong to €9 et~ ~ Mng follows from the fact that

1| < exp(—L). o

Remark 8.9. We could also prove the backward implication of the above theorem us-
ing Lemma 7.25 and the equivalence of conditions (i) and (iii) in Theorem 7.18. Indeed, let
Ly : Pol(@\l ) - Cand L, : Pol(@\z) — C be proper symmetric generating functionals as
in Lemma 7.25. Denote the convolution semigroups of states associated with L and L, via
Lemma 7.14 by, respectively, (¢;)s>0 and (w;)s>0 and let L : Pol(((/}\l * @\2) — C be the
generator of the convolution semigroup of states (¢; ¢ @;);>0. Then using arguments similar
to those in the proof of Theorem 8.8 and exploiting Theorem 8.7 one can show that L is a
proper symmetric generating functional.

Remark 8.10. Note that recently A. Freslon showed in [35] that weak amenability (with
the Cowling—Haagerup constant equal 1) is preserved under taking free products of discrete
quantum groups, extending a result of E. Ricard and Q. Xu for discrete groups [66].

Example 8.11. Theorem 8.8 offers a method of constructing non-amenable, non-uni-
modular discrete quantum groups with the Haagerup property: it suffices to take the free prod-
uct of a non-amenable discrete quantum group with the Haagerup property (such as for example

U ;,r for N > 2, see [14]) and a non-unimodular amenable discrete quantum group (such as for

example bm for ¢ € (0, 1)). Another path to the construction of such examples leads via
monoidal equivalence, as observed in [36, Section 6]. Note that the notion of the Haagerup
property for quantum groups which seems to be implicitly considered in [36], formed in term
of the existence of suitable state-induced multipliers on C* (@), is equivalent to the one studied
here, as follows from Theorem 6.5. The main result of [36] has very recently been extended in
[26], by other techniques, to duals of all free orthogonal quantum groups.

For the rest of the section we return to the context of discrete unimodular quantum groups.

Remark 8.12. As mentioned in the introduction to this section, the more difficult impli-
cation of Theorem 8.8 for discrete unimodular quantum groups can be proved via Theorem 7.7.
Indeed, assume that G, G, are discrete unimodular quantum groups with the Haagerup prop-
erty. Then both finite von Neumann algebras L“(@ ) and Lw(@) have the Haagerup ap-
proximation property. By [42, Theorem 2.3] (see also [11]) so does the finite von Neumann
algebra

L®(G1) % L®(G2) = L®(C1 % Go).
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Using an extension of the method described in Remark 8.12 and the results of Boca from
[11] we can prove the following results. The first relates to the free products of unimodular dis-
crete quantum groups with amalgamation over a finite quantum subgroup [73] and the second
to HNN extensions of unimodular discrete quantum groups [32]. Note that both these construc-
tions leave the class of unimodular discrete quantum groups invariant, as can be deduced from
the explicit formulas for the Haar states of the dual quantum groups, which imply that these
Haar states remain tracial (we refer for the details to [32,73]). The corresponding results for
classical groups can be found for example in [19].

Proposition 8.13. [f G and G, are unimodular discrete quantum groups with a com-
mon finite closed quantum subgroup H, then the amalgamated free product (see [73])

G =Gy x Gy
H
has the Haagerup property if and only if both G and Gy have the Haagerup property.

Proof. By the results of [73], the dual von Neumann algebra LOO(G) is isomorphic to

Ml k) Mz,
B

where M; = Lm(@) fori =1,2and B = L°°(]I:]I). Since B is finite dimensional, it follows
from the results of [11] that
My x Mo

has the (von Neumann algebraic) Haagerup approximation property if and only if both M and
M have the Haagerup approximation property. |

Proposition 8.14. [If G is a discrete quantum group with a finite closed quantum sub-
group Hi, so that 6 : C (]I:]I) —-C (@) is an injective unital x-homomorphism which intertwines
the comultiplications, then the HNN extension HNN(G, H, 0) (see [32]) has the Haagerup
property if and only if G has the Haagerup property.

Proof. From the computation of the Haar state in [32] we know that the dual von Neu-
mann algebra of the HNN extension is equal to HNN(M, N, 0) where M = LOO(G) and
N = L°°(]I:]I) and 6 is the induced unital normal *-homomorphism at the von Neumann alge-
braic level (see [33] for the HNN construction of von Neumann algebras). By [33, Remark 4.6]
HNN(M, N, 0) is isomorphic to a von Neumann algebra of the form

PIC) @ M) % (Ma(C)® N)p

which has the Haagerup approximation property whenever M has the Haagerup approximation
property (by the results of [11] and [42, Theorem 2.3 (i)]). The other implication follows from
Proposition 6.8, since G is a closed quantum subgroup of the HNN extension in question. 0O
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