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Effects of a 4-week intervention using semi-custom insoles on perceived pain and

patellofemoral loading in targeted subgroups of recreational runners with

patellofemoral pain.

Abstract

OBJECTIVE: Explore the effects of a 4-week intervention using semi-custom insoles in
recreational runners with patellofemoral pain.

DESIGN: Mixed methods

PARTICIPANTS: Seventeen (10 males and 7 females) recreational runners.

SETTING: Laboratory

OUTCOME MEASUREMENTS: Participants were separated into specific subgroups, then
provided with a pair of semi-custom insoles, for a period of 4-weeks. Lower extremity
kinetics/kinematics during running at 4.0 m/s were obtained. In addition, knee pain was
examined using the Knee injury and Osteoarthritis Outcome Score-Patellofemoral scale
(KOOS-PF). Data were collected before and after wearing the insoles for 4-weeks.
RESULTS: Significant improvements were shown for KOOS-PF in both subgroups (strong:
(pre)=63.84 & (post)=71.49 and weak and tight: (pre)=53.03 & (post)=72.73), although only

improvements in the weak and tight group exceeded the minimum clinically important

difference (MCID). In addition, significant reductions in peak patellofemoral stress were
CONCLUSIONS: Semi-custom insoles may be a mechanism to reduce patellofemoral pain
symptoms in recreational runners from the weak and tight subgroup. I'is'proposed that this
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Introduction

Recreational running is an extremely popular physical and leisure modality, known to
provide a plethora of physiological and psychological benefits (Lee et al., 2014). Over 2-
million people in the UK utilize running as a regular mode of exercise (Sport England, 2014).
However, despite the clear physical benefits mediated by running, it is also known to be
associated with a high incidence of chronic pathologies. Over the course of one-year as many
as 80 % of runners will experience an overuse injury as a consequence of their training (Van

Gent et al., 2007).

Patellofemoral pain is the most common chronic pathology in runners (Taunton et al., 2002),
which typically manifests as retropatellar or diffuse peripatellar pain, aggravated by activities
such as running that frequently load the joint (Crossley et al., 2016). Elevated patellofemoral
joint stress, which is a reflection of the patellofemoral joint reaction force divided by the
patellofemoral contact area, is commonly accepted as a key aetiological factor in the

development of patellofemoral pain syndrome (Farrokhi et al., 2011).

The long term prognosis for those who present with patellofemoral pain is poor, with

between 71-91 % all patients experiencing ongoing symptoms up to 20 years following

diagnosis (Nimon et al., 1998). Female Fecreational  Fnners are 2-3 fimes more likely td



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

guadriceps strength (LLephart et al., 2002)! Importantly, those who experience patellofemoral

symptoms may later present with radiographic evidence of osteoarthritis at this joint (Thomas

et al., 2010). Pain symptoms force many runners to reduce or even end their participation in

As a consequence of the high incidence of patellofemoral pain, a significant range of
conservative treatment modalities have been explored in biomechanical and clinical
literature; including exercise therapy, taping, bracing, insoles, soft tissue manipulation and
acupuncture (Smith et al.,, 2017). Pain is the key clinical symptom associated with

patellofemoral syndrome, thus the attenuation of pain through conservative modalities is of

considerable interest to both clinicians and researchers alike. Insoles utilized by runners

The acute effects of foot insoles on the kinetics and kinematics of running are well
documented, but there is currently a paucity of research investigating biomechanical
adaptations over time, or the effectiveness of insoles for the treatment of patellofemoral pain
symptoms. Two studies are however of note. Collins et al., (2008) examined the efficacy of
foot orthoses, flat inserts and multimodal physiotherapy in patients with clinically diagnosed

patellofemoral pain. Their results showed that all three treatments mediated significant and
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clinically meaningful improvements in pain symptoms. Eng and Pierrynowski, (1993)
assigned a group of adolescent female patients with patellofemoral pain to either: a control
who undertook an exercise program, or a treatment group who were provided with soft
insoles in addition to participating in the exercise program. Their findings showed that both
the treatment and control groups exhibited significant reductions in pain, but that
improvements in the treatment group were significantly greater than those in the control
group. Both studies indicate that soft insoles may be beneficial in the treatment of
patellofemoral pain symptoms for patients, but whether these findings also apply to
recreational runners with patellofemoral pain symptoms is unknown.

Different factors may predispose recreational runners compared to patients to the
development and therefore treatment of patellofemoral pain symptoms, due to their
physiological differences. Selfe et al., (2016) recently identified three subgroups of patients
with patellofemoral pain (‘strong’, ‘weak and tight’ and ‘weak and pronated foot”) using six
low cost, simple clinical assessment tests that can be applied in routine practice. This initial
study suggested that developing a strategy to target specific interventions for each subgroup
may ultimately lead to improved patient outcomes. The current study aimed to explore the
effects of a 4-week intervention using semi-custom foot insoles on pain symptoms and

patellofemoral loading in subgroups of recreational runners.

Methods
Participants

Seventeen participants (10 male and 7 female), volunteered to take part. Participants were
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being caused by degenerative joint disease. \Written informed consent was provided in

accordance with the declaration of Helsinki. The procedure was approved by the Universities
Science, Technology, Engineering, Medicine and Health ethics committee, with the reference

STEMH 424.

Procedure

Participants attended the laboratory on two occasions. On the first occasion the participants
were assessed using the six clinical tests described by Selfe et al. (2016) on their affected
limb only. These assessments involved two muscle strength tests (quadriceps and hip
abductors), two muscle length tests (m. gastrocnemius and m. rectus femoris), one patellar
mobility test, and one foot posture index test (Redmond et al:, 2006). Based on this
information participants were sub-grouped in accordance with Selfe et al. (2016) which
revealed that participants belonged to either the ‘strong’ (N=11) or weak and tight (N=6)

groups (Table 1). All other tests were completed on both occasions.

@@@ TABLE 1 NEAR HERE @@@

Clinical tests
Initially participants completed the Knee injury and Osteoarthritis Outcome Score-

Patellofemoral subscale (KOOS-PF) (Crossley et al., 2017) and Coop-Wonca questionnaires

(Jensen et al., 2015), in order to assess self-reported knee pain and psychological' wellbeing.
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Biomechanical data was then collected from the participants during running trials in their

own footwear, as described below.

Intervention

Once the biomechanical and KOOS-PF data were obtained, participants were then provided
with a pair of off-the-shelf insoles (Sole Control, Sole, Milton Keynes, UK) in their size. The
insoles were made from ethylene-vinyl acetate and had a shore A 30 hardness rating. Because
the participants from both subgroups did not exhibit an everted foot posture, the insoles did
not feature any rearfoot posting. Participants were asked to wear the insoles for all of their
running training for 4-weeks (Bolgla & Boling, 2011). To mould the insoles they were placed
into a pre-heated oven (90 °C) for a duration of two minutes. The heated insoles were then
placed inside the participants shoes. Participants were asked to stand upright without moving
for two minutes to allow the process of moulding the insoles to the longitudinal arch profile
of each participant, in accordance with manufacturer instructions. Insoles were placed inside
both shoes although only the pathological side was examined. Participants were instructed to
maintain their habitual training regime. They recorded the number of completed kilometers
during the 4-week period prior to the intervention and again during the 4-week intervention
period. Following the 4-week intervention participants returned to the laboratory where the

complete protocol was repeated whilst wearing their insoles.

Biomechanical tests

Participants ran at a velocity of 4.0 m/s £5%, striking an embedded piezoelectric force
platform (Kistler, Kistler Instruments Ltd., Alton, Hampshire; length, width, height = 0.6 x
0.4 x 0 m) with their affected limb. The force platform sampled at 1000 Hz. Running velocity

was quantified using infrared timing gates, which were positioned 4 m apart. The stance
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phase of running was delineated as the duration over which > 20 N of vertical force was
applied to the force platform. A successful trial was defined as one within the specified
velocity range, where the foot made full contact with the force platform and where no

evidence of gait modifications due to the experimental conditions were evident.

Kinematics and ground reaction force (GRF) information were synchronously collected.
Kinematic data were captured at 250 Hz via an eight camera motion analysis system
(Qualisys Medical AB, Goteburg, Sweden). Dynamic calibration of the motion capture

system was performed before each data collection session.

Lower extremity segments were modelled in 6 degrees of freedom using the calibrated
anatomical systems technique (Cappozzo et al., 1995), using a marker configuration utilized
previously to quantify the effects of orthoses patellofemoral joint kinetics (Sinclair, 2018). To

define the anatomical frames of the pelvis, thigh, shank and foot retroreflective markers were
positioned onto the iliac crest, anterior superior iliac spine (ASIS), and posterior super iliac
spine (PSIS). In addition, further markers were placed unilaterally onto the medial and lateral

malleoli, greater trochanter, medial and lateral femoral epicondyles, calcaneus, first

metatarsal and fifth metatarsal heads of the affected limb. Foot markers were positioned onto
the Upper of the participants’ shoes. Carbon-fiber tracking clusters comprising of four non-

linear retroreflective markers were positioned onto the thigh and shank segments. In addition
to these the foot segments were tracked via the calcaneus, first metatarsal and fifth metatarsal,
and the pelvic segment was tracked using the PSIS and ASIS markers. Static calibration trials
were obtained with the participant in the anatomical position in order for the positions of the
anatomical markers to be referenced in relation to the tracking clusters/markers. A static trial

was conducted with the participant in the anatomical position in order for the anatomical
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positions to be referenced in relation to the tracking markers, following which those not

required for dynamic data were removed.

Processing

Dynamic trials were digitized using Qualisys Track Manager in order to identify anatomical
and tracking markers then exported as C3D files to Visual 3D (C-Motion, Germantown, MD,
USA). All data were normalized to 100 % of the stance phase. GRF and kinematic data were
smoothed using cut-off frequencies of 50 and 12 Hz with a low-pass Butterworth 4th order
zero lag filter (Sinclair, 2014). Three dimensional kinematics of the knee and ankle were
calculated using an XYZ cardan sequence of rotations (where X = sagittal plane; Y = coronal
plane and Z = transverse plane). Three dimensional angular kinematic measures from the
knee, ankle and tibia which were extracted for statistical analysis were 1) angle at footstrike,
2) peak angle and 3) angular joint range of motion (ROM) from footstrike to peak angle. In
addition the eversion/tibial internal rotation (EV/ TIR) ratio was calculated by dividing the
eversion ROM by the tibial internal rotation ROM. Knee joint kinetics were computed using
Newton-Euler inverse-dynamics and normalized to body mass. The peak knee adduction
moment, knee adduction moment load rate (the peak increase in the adduction moment
between adjacent data points) and knee adduction moment integral during the stance phase

(using a trapezoidal function) were extracted.

Patellofemoral loading during the stance phase of running was quantified using a model
adapted from van Eijden et al., (1986), in accordance with the protocol of Wilson et al.,
(2015). The hamstring force was calculated using the hip extensor moment, hamstrings and
gluteus maximus cross-sectional areas (Ward et al., 2009) and by fitting a 2nd order

polynomial curve to the data of Nemeth & Ohlsen, (1985) who provided muscle moment
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arms at the hip as a function of hip flexion angle. The gastrocnemius force was calculated
firstly by quantifying the ankle plantarflexor force, which was resolved by dividing the
plantarflexion moment by the Achilles tendon moment arm. The Achilles tendon moment
arm was calculated by fitting a 2nd order polynomial curve to the ankle plantarflexion angle
in accordance with Self & Paine (2001). Plantarflexion force accredited to the gastrocnemius
muscles was calculated via the cross-sectional area of this muscle relative to the triceps surae

(Ward et al., 2009).

The hamstring and gastrocnemius forces were multiplied by their estimated muscle moment
arms to the knee joint in relation to the knee flexion angle (Spoor & van Leeuwen, 1992), and
then added together to estimate the knee flexor moment. The derived knee flexor moment
was added to the net knee extensor moment quantified using inverse dynamics were then
summed and subsequently divided by the quadriceps muscle moment arm (van Eijden et al.,
1986), to obtain quadriceps force adjusted for co-contraction of the knee flexor musculature.
Patellofemoral force was then quantified by multiplying the adjusted quadriceps force by a

constant which was obtained by using the data of van Eijden et al., (1986).

Finally, patellofemoral joint stress was quantified by dividing the patellofemoral force by the
patellofemoral contact area. Patellofemoral contact areas were obtained by fitting a
polynomial curve to the sex specific data of Besier et al., (2005), who estimated
patellofemoral contact areas as a function of the knee flexion angle using MRI. All
patellofemoral forces were normalized by dividing the net values by bodyweight (BW). From

the above processing, peak patellofemoral force, and peak patellofemoral stress (KPa/BW)
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were extracted. Patellofemoral instantaneous load rate (BW/s) was also extracted by

obtaining the peak increase in force between adjacent data points.

The patellofemoral integral during the stance phase (quantified using a trapezoidal function)
was also calculated and the total patellofemoral force per mile (BW-mile) was obtained by
multiplying this parameter by the number of steps required to run a mile. The number of steps
required to complete one mile was quantified using the step length (m), which was
determined by taking the difference in the horizontal position of the foot centre of mass

between the right and left legs at footstrike.

Statistical analyses

Descriptive statistics of means and standard deviations were obtained for each outcome
measure. Shapiro-Wilk tests were used to screen the data for normality. Differences in
running distance prior to and during the intervention were Examined using a paired t-test.
Differences in biomechanical and knee pain parameters were examined using 2 (PRE-POST
INTERVENTION) x 2 (SUBGROUP) mixed ANOVA’s. Statistical significance was
accepted at the P<0.05 level. Effect sizes for all significant findings were calculated using
partial Eta® (pn%). Effect sizes were contextualized using the following guidelines; small =
0.01, medium = 0.06" and large = 0.14 (Cohen, 1988). All statistical actions were conducted
using SPSS v24.0 (SPSS Inc, Chicago, USA). In accordance with the recommendations of

Crossley et al., (2017), the minimal clinically important difference (MCID) for the KOOS-PF

scale was considered to be 16.4 points. Forialliof the other Variables the  MCID Was

Results
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Tables 2-5 present the knee pain, psychological wellbeing, patellofemoral loading and

kinematic parameters obtained before and after the 4-week intervention.

Running distance
No significant difference (P>0.05) in running distance was observed. Participants completed
17.26 + 8.43 km of running training prior to the intervention and 17.19 + 6.92 km during the

intervention.

Knee pain
A significant PRE-POST INTERVENTION main effect (P<0.05, pn? = 0.65) was observed
for KOOS-PF pain symptoms with participants reporting significant improvements following

the 4-week period. Importantly, the magnitude of the improvements exceeded the MCID in

only the weak and tight sub-group (Table 2). There!Was no Significant (P>0.05) maineffect
as a function of SUBGROUP (Table 2).

Psychological wellbeing
The Coop-Wonga questionnaire showed a significant PRE-POST INTERVENTION main

effect of (P<0.05, pn? = 0.48), with participants exhibiting significant improvements

following the 4-week period. Importantly. thelimprovements in'both subgroups exceeded the
MCID. There was no significant (P>0.05) main effect as a function of SUBGROUP (Table
2).

@@@ TABLE 2 NEAR HERE @@@

Patellofemoral loading and knee moments
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Significant PRE-POST INTERVENTION main effects were observed for both peak
patellofemoral force (P<0.05, pn? = 0.41) and peak patellofemoral stress (P<0.05, pn?= 0.42)
with significant reductions being present following the 4-week period. Finally, a significant
PRE-POST INTERVENTION main effect (P<0.05, pn?> = 0.37) was observed for
patellofemoral force per mile, with significant reductions being present following the 4-week
period. Importantly, in each of the aforementioned patellofemoral loading variables, the
reductions exceeded the MCID in only the weak and tight sub-group (Table 3). There were
no significant (P>0.05) main effects as a function of SUBGROUP for any of the
patellofemoral loading variables (Table 3).

Finally, for the knee adduction moment integral, a significant PRE-POST INTERVENTION

main effect (P<0.05, pn? = 0.32) was shown, with significant increases being present

following the 4-week period (Table 3). Importantly, theincrease in the knee adduction
moment integral exceeded the MCID in only the weak and tight sub-group (Table 3). There
was no significant (P>0.05) main effect as a function of SUBGROUP (Table 3).

@@@ TABLE 3 NEAR HERE @@@

Joint kinematics

For the knee sagittal angle at footstrike a significant PRE-POST INTERVENTION main
effect (P<0.05, pn? = 0.51) was shown, with the flexion angle being significantly reduced
following the 4-week intervention. In addition, a significant PRE-POST INTERVENTION

main effect (P<0.05, pn? = 0.28) was shown for the magnitude of peak knee flexion, with

peak flexion being significantly reduced following the 4-week period. Importantly, in each of
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@@@ TABLE 4 NEAR HERE @@@

@@@ TABLE 5 NEAR HERE @@@

This study explored the efficacy of semi-custom foot insoles in recreational runners with
patellofemoral pain. The runners were categorized into previously identified subgroups (Selfe
et al., 2016), which allowed the effects of the insoles to be considered by subgroup. To the
authors knowledge this represents the first intervention study to explore the efficacy of
insoles in recreational runners with patellofemoral pain using these targeted subgroups. Given
the extremely high incidence of patellofemoral pain amongst runners, analyses of this nature
may generate essential clinical information regarding conservative management of

patellofemoral pain.

The first key finding from the current investigation is that both patellofemoral pain symptoms
and psychological wellbeing parameters were significantly improved in both subgroups as a
function of the 4-week intervention using foot insoles. This observation concurs with those of
Collins et al., (2008), who showed that insoles without medial posting produced significant
and clinically meaningful improvements in pain symptoms in patients with patellofemoral
pain. However, it should be noted that although a large effect size was revealed, the
magnitude of the improvements in pain symptoms quantified via the KOOS-PF questionnaire
only exceeded the MCID in the weak and tight group (Crossley et al., 2017). Of further

importance is that participants average weekly running mileage remained consistent prior to
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and during the intervention period, indicating that improvements in pain symptoms did not
appear to be mediated through reductions in training volume. The findings indicate that
insoles have the potential to provide clinically meaningful improvements in self-reported pain
symptoms in runners with patellofemoral pain classified into the weak and tight subgroup
according to Selfe et al., (2016). However, it should be stressed that the findings from the
current study are specific to the insoles utilized in this investigation and further exploration is

needed using additional insoles before substantial claims can be fully corroborated.

The alterations in knee flexion may be caused by a
proprioceptive effect, facilitated by the shock attenuating properties of the insoles. This
notion is supported by the observations of Sinclair et al., (2015) who found that shock

absorbing insoles produced significant reductions in both knee flexion and patellofemoral
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joint loading during running. Furthermore, insoles have also been shown previously to
enhance proprioception through stimulation of cutaneous mechanoreceptors (Yalla et al.,
2014). The central nervous system uses ascending motor pathways that receive information
from the feet to control the position of the lower extremities and coordinate movement
(Christovao et al., 2013). However, because proprioception was not examined as part of this
study, further confirmatory analyses are required before this can be substantiated.
Nonetheless, a reduced knee flexion angle may lead to a reduction in the demands on the
knee extensors during the landing phase, thus the loads imposed on the patellofemoral joint

are attenuated (Thomee et al., 1999).

threshold! This observation supports those of Franz et al., (2008), who found that insoles

significantly increased the knee adduction moment during walking and running. Although'the
the knee joint centre (Franz et al., 2008)! This increases the knee adduction moment integral,
and consequently compressive loading at the medial aspect of the tibiofemoral joint (Kean et
al., (2012). As the medial tibiofemoral compartment is considerably more susceptible to
injury than the lateral aspect (Wise et al., 2012) and tibiofemoral pathologies account for up

to 16.8 % of all knee injuries (Taunton et al., 2002) an increase in knee adduction moment is

an undesirable outcome. Kean et al., (2012) also demonstrated that the integral of the knee
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adduction moment was a clinically important predictor of medial radiographic knee

osteoarthritis.

knee osteoarthritis in this group. This is a clear and essential avenue for further longitudinal

analyses to investigate the long term efficacy of insoles in runners with knee pathologies.

In conclusion, this is the first study to examine pain symptoms, psychological wellbeing and
biomechanical parameters following an intervention using insoles with recreational runners
subgrouped in accordance with Selfe et al. (2016). The findings showed significant
improvements in self-reported pain, psychological wellbeing and patellofemoral loading as a

function of the 4-week intervention. The recreational runners in the study fell into two

subgroups; strong and weak and tight. AlfoUg"improvements inpain were found in botf

throughreductionsin'patellofemoral Siress in this'Subgroup! The key implication from this

study is that using semi-custom insoles as a conservative management strategy can reduce
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pain symptoms in male and female runners associated with the weak and tight subgroup.

Further research including a control group and also runners from the weak and pronated

group is important for advancements in the treatment of patellofemoral pain.
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Mean SD Mean SD Mean SD
N 17 11
Age 34.06 | 1041 | 33.64 | 9.68 | 34.83 12.59
Body mass (kg) 72.28 |13.02 | 73.75 | 13.69 | 71.03 13.71
Stature (m) 1.74 | 0.08 1.75 | 0.09 1.72 0.07
BMI (kg/m?) 23.80 | 2.44 | 23.74 | 2.47 | 23.90 2.61
10 km time (min: seconds) 47:24 | 4:16 | 46:26 | 4:09 | 47:19 4:10
Muscle length Rectus Femoris (°) 135.83 | 9.60 | 134.23 | 10.29 | 138.78 8.17
Muscle Length Gastrocnemius (°) 66.06 | 4.19 | 65.12 | 4.52 | 67.78 3.14
Muscle strength Quadriceps (Nm/kg) 1.38 0.31 1.55 0.20 1.06 0.17
Muscle strength hip abductors (Nm/kg) | 1.41 0.41 1.61 0.35 1.04 0.20
Patellar mobility (mm) 11.18 | 1.91 | 11.73 | 2.00 | 10.17 1.33
Foot posture index 3.12 2.03 3.18 2.14 3.00 2.00

Table 1: Demographic variables overall and for each subgroup.




558  Table 2: Knee pain and psychological wellbeing parameters as a function of the foot orthoses intervention and subgroup.
Strong Weak & Tight
Pre Post Pre Post MCID
Mean SD Mean SD Mean SD Mean SD
KOOS-PT 63.84 9.88 71.49 10.92 53.03 16.86 72.73 7.74 1640 | A
COOP-WONCA 1.91 0.29 1.55 0.30 2.08 0.23 1.83 0.24 016 |A
559 Key: A =PRE-POST INTERVENTION main effect
560
561  Table 3: Musculoskeletal loading and temporal parameters as a function of the foot orthoses intervention and subgroup.
Strong Weak & Tight
Pre Post Pre Post MCID
Mean SD Mean SD Mean SD Mean SD
Peak Patellofemoral force (BW) 3.40 0.75 3.08 0.77 3.68 1.30 2.85 1.11 0.54
Patellofemoral load rate (BW/s) 83.59 18.74 88.63 22.52 103.13 30.18 95.45 35.70 14.83
Peak patellofemoral Stress (KPa/BW) 6.82 1.66 6.39 151 7.66 2.64 6.28 2.59 1.16
Step length (m) 1.31 0.13 1.33 0.10 1.36 0.19 1.38 0.23 0.09
Patellofemoral force per mile (BW-mile) 183.07 42.25 155.15 46.84 189.44 81.54 138.24 63.03 32.44
Peak knee adduction moment (Nm/kg) 0.89 0.32 1.02 0.35 1.02 0.16 1.11 0.28 0.18
Knee adduction moment integral (Nm/kg-ms) 78.57 35.96 89.97 38.16 76.67 23.50 97.73 28.11 19.69
Knee adduction moment load rate (Nm/kg/s) 54.50 16.80 65.85 25.92 67.85 19.87 76.73 24.09 12.61
562 Key: A =PRE-POST INTERVENTION main effect
563
564  Table 4: Knee joint kinematics parameters as a function of the foot orthoses intervention and subgroup.
Strong Weak & Tight MCID
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566

567

568

Pre Post Pre Post
Mean SD Mean SD Mean SD Mean SD
Sagittal plane (+ = flexion)
Angle at footstrike (°) 11.70 3.18 9.25 3.59 16.69 7.96 9.93 7.96 3.13
Peak flexion (°) 38.86 4.44 36.62 4.99 41.54 10.59 37.64 9.99 3.78
Range of motion (°) 27.15 3.14 27.37 3.39 24.85 7.00 27.71 8.46 3.04
Coronal plane (+ = adduction)
Angle at footstrike (°) -3.89 2.79 -3.27 3.12 -2.35 5.16 -2.17 2.94 1.99
Peak abduction (°) -9.69 4.94 -9.48 4.98 -7.94 4.63 -9.11 3.75 2.76
Range of motion (°) 5.80 3.43 6.21 3.49 5.59 3.58 6.94 2.13 1.92
Transverse plane (+ = internal)
Angle at footstrike (*) -5.22 10.95 -1.33 6.94 -4.79 9.29 -0.87 6.62 5.04
Peak internal rotation (°) 9.71 7.23 11.68 5.18 12.47 6.71 16.26 4.36 3.80
Range of motion (°) 14.92 8.48 13.01 451 17.26 5.82 17.13 531 3.64
Key: A = PRE-POST INTERVENTION main effect
Table 5: Ankle and tibial kinematics as a function of the foot orthoses intervention and subgroup.
Strong Weak & Tight
Pre Post Pre Post
Mean SD Mean SD Mean SD Mean SD MCID
Ankle
Sagittal plane (+ = dorsiflexion)
Angle at footstrike (*) 7.55 6.93 6.55 6.31 6.72 6.98 7.53 8.54 411
Peak dorsiflexion () 16.86 4.49 16.80 4.33 19.49 5.90 19.57 6.32 2.94
Range of motion (°) 11.29 5.57 11.88 5.31 13.45 4.17 12.74 3.72 2.91
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573

574

575

576

577

Coronal plane (+ = inversion)

Angle at footstrike () -2.55 5.99 -2.14 5.32 -2.88 9.66 1.14 10.88 4.39
Peak eversion () -11.79 6.65 -11.21 7.30 -15.55 10.49 -12.49 9.28 4.71
Range of motion (°) 9.24 2.08 9.06 3.35 12.67 4.18 13.62 4.35 1.95
Transverse plane (+ = external)
Angle at footstrike (*) -13.96 | 393 | -1360 | 337 | -1697 | 586 | -1346 | 516 | B854
Peak external rotation () -4.84 4.80 -5.03 5.37 -6.38 4.83 -1.12 6.24 5.13
Range of motion (°) 9.12 2.59 8.57 2.74 10.59 3.42 12.34 3.20 1.79
Tibial internal rotation (+ = internal)

Transverse plane
Angle at footstrike (°) 6.50 5.86 6.33 4.86 7.96 8.79 3.46 9.98 4.08
Peak tibial internal rotation () 13.11 7.11 12.55 7.18 17.20 11.04 12.89 9.54 4.86
Range of motion (°) 6.61 2.34 6.22 3.81 9.24 4.74 9.42 3.94 2.10
EVI/TIR ratio 1.49 0.43 1.74 0.59 1.48 0.28 1.52 0.34 0.27
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