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Abstract 

Objective. Considering the potential role of lymphocytes in the pathophysiology 

of autism spectrum disorders we aimed to evaluate possible alterations of T-cell 

pools in lymphoid organs of an animal model of autism induced by valproic acid 

(VPA). Pregnant Swiss mice received a single intraperitoneal injection of 600 

mg/kg of VPA (VPA group) or saline (control group) on day 11 of gestation. Male 

animals of the offspring were euthanized on postnatal day 60 for removal of 

thymuses, spleens, and a pool of inguinal, axillary and brachial lymph nodes. 

Cellularity was evaluated, and flow cytometry analysis was performed on cell 

suspensions incubated with mouse antibodies anti-CD3-FITC, anti-CD4-PE and 

anti-CD8-PE-Cy7. We observed that the prenatal exposure to VPA induced a 

reduction in the numbers of CD3+CD4+ T cells in their lymph nodes when 

compared to the control animals. This was rather specific, since it was not seen 

in the thymus or spleen. The consistent decrease in the number of CD4+ T-cells 

in subcutaneous lymph nodes of mice from the animal model of autism may be 

related to the allergic symptoms frequently observed in ASD. Yet, further 

research is necessary to characterize the immunological patterns in ASD and its 

connection with the pathophysiology of this disorder.  
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Autism spectrum disorder (ASD) is a complex developmental condition 

characterized by impairments in social communication and interaction and 

repetitive patterns of behavior and interests [1]. Although its etiology is still 

unknown, both genetic and environmental factors are known to play key roles in 

ASD pathophysiology [2]. Recently, the involvement of the immune system [3] 

and neuroimmune interactions have been proposed as important etiological 

components of ASD [2]. In fact, many immunological alterations are common in 

ASD such as abnormal microglial growth and activation [4], family history of 

autoimmune diseases [5] and abnormal levels of inflammatory cytokines [6]. Also, 

food allergy is frequently present in ASD patients, with early- and late-phase 

reactions, promoting gastrointestinal and skin diseases and asthma [7].  

More specifically, lymphocytic abnormalities were reported in ASD [8], including 

deficiency in CD4+ T-cells. A case-control study including 30 Egyptian children 

(22 boys and 8 girls) with classic-onset autism, revealed that CD4+CD25high 

regulatory T cells are deficient in children with ASD [9]. The authors found the 

frequency of autoimmune diseases among families of the ASD group was 53.3% 

higher than the control group, pointing a familiar autoimmune background. These 

data corroborate with previous studies [5,10,11] and indicate a significant 

association between the reduced number of CD4+CD25high regulatory T cells and 

both allergic manifestations and family history of autoimmunity.  

 Several studies reported abnormalities in T-lymphocytes in about 35% of ASD 

patients with decreased numbers of CD4+ T-cells and increased numbers of 

CD8+ T-cells [12]. Interestingly, in a double-blind study, autistic symptoms were 

diminished in 56% of the patients that were treated with naltrexone, an opiate 

antagonist [13]. This drug increased the number of T-helper inducers and 
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reduced the number of T-cytotoxic suppressors, resulting in a normalization of 

the CD4/CD8 ratio. 

Furthermore, T cells appear to play a key role in many behavioral and cognitive 

processes [14,15], especially in social behavior modulation [16]. For instance, 

immune deficient mice exhibit an impairment in cognition and emotional 

behaviors, which has been attributed specifically to CD4+ T cells [17] Impaired 

learning and memory was reported in severe combined immunodeficiency 

(SCID), Rag1−/−, and Rag2−/− mice (which lack T cells and B cells)[18]. 

Prenatal exposure to valproic acid (VPA) in rodents triggers autistic-like 

morphological and behavioral outcomes [19]. This model has been developed 

based on the fact that maternal use of VPA during pregnancy is associated with 

increased risk of ASD by the children [20].  

Immunological alterations such as thymic atrophy [21] and increased mRNA 

levels of proinflammatory cytokines in the spleen (after LPS challenge) were 

already described in this model [22], but data on the T-cells pools in the thymus 

and secondary lymphoid organs are absent. Here we investigated the status of T 

cell subsets in primary and secondary lymphoid organs, namely thymus, spleen 

and subcutaneous lymph nodes. 

To this purpose, female Swiss mice (obtained from Federal University of Pelotas, 

Pelotas, Brazil) were housed in a 12-h light-dark cycle, with controlled 

temperature (22 ± 1 °C), water and food ad libitum. Pregnancy was determined 

by the presence of vaginal plug, and that was considered the day 0 of gestation. 

On day 11 of gestation pregnant mice received a single intraperitoneal injection 

of 600 mg/kg of VPA (Across Organics, New Jersey, USA) (VPA group) or saline 

(control group). Male animals of the offspring were anesthetized with isoflurane 
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gas and exsanguinated on postnatal day 60. The experimental groups consisted 

of 9 animals per group. The study was approved by the Research Ethics 

Committee of the Clinical Hospital of Porto Alegre (Porto Alegre, Brazil).  

For the cytofluorometric studies, cells from the thymus, spleen and subcutaneous 

lymph nodes (inguinal, axillary and brachial chains) were obtained after 

homogenizing the tissues with a tissue grinder and counted in Neubauer 

chambers. Suspensions containing 106 cells were prepared, and incubated with 

fluorochrome-labeled rat anti-mouse antibodies anti-CD3-FITC (1:50), anti-CD4-

PE (1:50) and anti-CD8-PE-Cy7 (1:100) (BD Biosciences, San Jose, USA) for 20 

min with 2% fetal bovine serum-PBS solution for 20 min at 4°C. Cells were then 

washed and analyzed by flow cytometry using the Attune® Acoustic Focusing 

Cytometer (Applied Biosystems, CA, USA), equipped with the Attune® 

Cytometric Software version 1.2.5. 

Data were statistically analyzed using SPSS for Windows (SPSS Inc., Chicago, 

Ill., USA) and graphs were plotted with GraphPad Prism software. Results were 

expressed as means ± standard error (SE) and statistical comparisons were 

performed using   multiple t-tests followed by Bonferroni correction. Samples 

were considered statistically different when p value was ≤0.05. 

Prenatal exposure to valproic acid decreases CD4+ T lymphocytes in 

subcutaneous lymph nodes of offspring  

We first noticed that no differences between groups were found in terms lymphoid 

organ weight (Table 1). Moreover, no differences were observed in both immature 

(CD4-CD8- and CD4+CD8+), as well as mature (CD3+CD4+ CD8- or CD3+CD4-

CD8+ T-cell subsets in the thymus (Table 1). Similarly, no differences were found 

in spleen-derived T cell subsets (Table 1). Interestingly however, in 
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subcutaneous lymph nodes, the numbers of CD3+CD4+ T cell subset were 

significantly reduced in VPA group (Figure 1B), whereas the corresponding 

percentage was increased (Figure 1C). The membrane density of CD3, CD4 and 

CD8, as ascertained by median fluorescent intensity (MFI) on T lymphocytes did 

not significantly differ between VPA and control groups (Supplementary Figure 

S1) 

Considering that the etiology of ASD remains unknown, the association between 

this disorder and immunological disturbances is becoming more evident [3]. 

However, to date, it has not been elucidated whether immune disorders are 

causative of ASD or if ASD leads to immune alterations. Recently, more attention 

has been given to the postnatal immune imbalance of specific immune cell 

subsets, including CD4+ and CD8+ T cells. Reduced number of T cells in 

individuals with ASD, as well as an altered CD4+/CD8+ T-cell ratio was reported 

in 1986 [23] and in the following years abnormalities such as increased TNFα and 

decreased IL-10 production by T-cells, increased production of IL-17 [6,24], 

reduction of peripheral CD4+ [8] and dysregulation of Th1/Th2/Th17 T-cell pools 

[25] were all described in children with ASD. 

Reports of allergic manifestations among individuals with ASD are common. For 

instance, experience of atopic diseases in early childhood was associated with a 

3.40-fold increased risk of ASD [26]. In addition, higher frequency of atopic 

dermatitis, asthma, rhinitis and serum IgE have been demonstrated in children 

with Asperger compared to age-matched controls (87% vs. 7%) [27].  

Exposure to VPA may lead to impairments in the proliferative process of 

lymphocytes in vitro [28], as well as to a drastic reduction in the number of these 
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cells in lymph nodes, spleen and peripheral blood [29].  Furthermore, rats 

exposed prenatally to VPA display thymic atrophy [21].  

An important aspect to be considered is the crosstalk between the mother and 

the embryo. In light of the neuroimmune influence on ASD pathophysiology and 

the in vitro effect of VPA on lymphocytes, we conceive that the maternal blood 

cells might be influenced by VPA, even upon a single injection protocol. 

Accordingly, the mother immune response could influence the neuroimmune 

system in the embryo, like a fingerprint, interfering in the neurodevelopment later 

on. This hypothesis, associated to epigenetic changes could explain how a single 

injection of VPA i.p. during pregnancy is capable to trigger behavioral-like autism 

in the offspring, with anatomic and molecular alterations in the nervous and 

immune systems through life. In the present work, no difference was found 

between thymuses weight and cellularity in mice from VPA and control groups. 

The discrepancy between those results can be ascribed to differences in the 

animal species studied and to the use of animals twice old as those reported by 

Schneider et al. [21].   

Given the large amount of data supporting the role of immune responses in ASD, 

advances in deciphering the functional interplay between immune cells and ASD 

symptoms will likely provide vital insights into the mechanisms and potential 

therapy of neurodevelopmental disorders.  
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Figure legend 

 

Figure 1. Mice from the VPA model of autism present reduced numbers of 

CD3+CD4+ T-cells in subcutaneous lymph nodes. A) Representative FACS 

plots. B) Absolute number of T lymphocytes (x106). C) Percentage of T 

lymphocytes. Data are presented as means ± standard error, with nine animals 

being analyzed per group.  

 

Figure S1. The membrane density of CD3, CD4 and CD8, as shown through 

the corresponding median fluorescent intensity (MFI) on T lymphocytes, is 

not significantly altered in mouse subcutaneous lymph nodes, in the VPA 

model of autism. Data are presented as means ± standard error, with four 

animals being analyzed per group. 


