N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title The PTP Model: A Predictor for Computer Programming Success
Type Article

URL https://clok.uclan.ac.uk/id/eprint/24239/

DOI

Date 2018

Citation | Kerr, Oliver and Danino, Nicky (2018) The PTP Model: A Predictor for
Computer Programming Success. International Journal for Infonomics, 11
(1). pp. 1738-1748.

Creators | Kerr, Oliver and Danino, Nicky

It is advisable to refer to the publisher’s version if you intend to cite from the work.

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

The PTP Model: a predictor for computer programming success

Oliver Kerr and Nicky Danino
University of Central Lancashire, Preston, Lancashire, United Kingdom

OAPKerr@uclan.ac.uk

Abstract

The fundamental concepts of programming are
essential to any Computer Science course yet, these
concepts can appear significantly more abstract than
students have encountered in the past.
These abstract concepts can become so daunting to
students, that they experience ‘programming shock’
during their first encounter with programming, as
they attempt to decipher a number of concepts, error
messages and unfamiliar syntax all at once. Once a
student encounters programming shock, it can be
extremely disheartening and if not overcome, can
sometimes result in a student dropping out from a
course. Through the use of specifically designed
aptitude tests conducted with first year Computing
students, this investigation has provided sufficient
evidence to prove a link between mental model usage
and student performance in an introductory
programming module, as well as enabling the
development of the Programming Thought Process
(PTP) model, which can be used to identify students
most in need of support.

1. Introduction

Essential to any Computer Science course are the
fundamental concepts of programming, yet, despite
the importance and popularity of Computer Science as
a subject, it suffers some of the highest dropout rates
of any university course [7]. Research shows that
issues with retention in Computer Science courses
could potentially be due to the difficulties that
students face when learning to program [17].

The aim for this research is to build on previous
research [9] and to improve understanding of the
programming learning process. This involves
developing the ability to deduce potential predictors
of success or failure within introductory programming
modules, which in turn allows for students who are
most likely to struggle with programming concepts to
be identified, and given the support they need to
succeed in their degree.

NDanino@uclan.ac.uk

2. Background and related work

2.1. Computer Science in education

Before expanding on the theoretical foundation of
this study, it makes sense to understand where
Computer Science is situated in education learning.

Despite the prevalence of IT and technology in our
modern society, the UK is currently suffering a
significant digital skills gap due to a lack of interest in
ICT [3]. In an introduction to the Royal Society report
entitled, “Shut Down or Restart? The way Forward for
Computing in UK Schools” Professor Steve Furber
[6] notes that Computer Science has been included in
the National Curriculum under the heading ‘ICT —
Information and Communications Technology’ since
the turn of the century, which was introduced by the
government in order to improve digital literacy in
order to meet business needs. ICT has remained
largely the same since its introduction, covering topics
aimed at providing students with basic computer
skills. However, current generations of students; who
can be considered ‘Digital Natives’, have grown up
surrounded by computers, video games, smartphones
etc. and as such, are constantly exposed to technology.
This constant exposure to technology has begun to
change the way students think and process
information [16] and has led to a common opinion
amongst students that ‘ICT is boring’ due to the lack
of challenges and stimulation is provide [3]

The lack of interest in ICT by students is
contributing to a digital skills gap that is costing the
UK an estimated £63 billion a year in lost GDP [3]. In
order to address the skills gap, the government
introduced a new Computing curriculum as well as a
Computer Science GCSE in 2014 [4].

It is generally accepted that an outcome of any
Computer Science course is that a student develops
the ability to program. However, the stark differences
between Computer Science and ICT has resulted in a
shortage of specialist teachers who are capable of
teaching the subject, with only a third of ICT
teachings holding relevant qualifications and only
25% feeling confident enough to teach the curriculum
[3].

Whilst learning to program, students encounter a
variety of abstract concepts [17] that may require
significant explanation from a teacher in order to
effectively communicate them to a student. However,
if the teacher themselves is struggling to understand

these concepts, then it is unlikely that they will be able
to communicate them correctly to students.

The issues relating to the programming learning
process are discussed in the subsequent sections.

2.2 Psychology of programming

In order to fully appreciate and understand the
programming learning process it is important to
explore the psychological factors that can affect a
student as they attempt to learn to program.

Lahtinen et al. [10] identify the act of learning to
program as one of the biggest challenges of studying
Computer Science. Du Boulay [5] provides an
overview of overlapping domains and potential
difficulties encountered when a student is learning to
program. They are as follows:

1. General Orientation — what programs are
used for and what can be done with them.

2. Notional Machine —a model of the computer
as it relates to executing programs.

3. Notation — the syntax and semantics of a
specific programming language.

4. Structures — applications and adaptation of
known schemas and plans to suit the
requirements of the program.

5. Pragmatics — the skills of planning,
developing, testing, debugging, etc.

Du Boulay [5] goes on to determine that none of
these issues can be fully separated from the others,
resulting in students experiencing ‘shock’ during their
first encounters with programming as they attempt to
try to deal with all the issues at once.

Rogalski and Samurcay [17] also acknowledge
that learning to program is an extremely
complex process, involving a variety of cognitive
processes, and mental representations in order to
develop conceptual knowledge and structuring of
basic operations (such as loops, conditional
statements, etc.) into schemas and plans. Winslow
[20] states that it takes approximately ten years to turn
a novice programmer into an expert, meaning that a
three-year undergraduate course can only provide the
foundations that a student needs to develop into an
expert on their own. By introducing the fundamentals
of programming at a much earlier age; as was
suggested by Blackwood [3], the majority of students
would already have a basic understanding of
programming — allowing for more detailed study at
university level and employability.

In order for a programmer to understand what the
code is doing they must develop a ‘Mental Model’,
based on their ‘Domain Knowledge’ [1] — their
knowledge of related topics; i.e. Mathematics,
Physics or previous programming experience.
Experienced programmers will have encountered a
wide range of scenarios before, allowing them to
develop reliable mental models. However, a novice
programmer does not have the same amount of

experiences to draw on; meaning they must rely on
adapted knowledge from other subjects, often
resulting in inconsistent and incorrect mental models
being produced [20].

Johnson-Laird is considered to be one of the
pioneers of the Mental Model theory, which is viewed
as one of the most influential theories in cognitive
psychology [18]. Johnson-Laird [8] states that many
humans claim to have the ability to form mental
representations in the absence of corresponding visual
stimuli. It is unlikely that these are simple pictures or
descriptions that can be defined by true or false.
Johnson-Laird [8] claims that humans see the world
through established mental models and develop an
understanding of a proposition that is true or false to a
respective model.

At the beginning of a programming course
students will likely have a number of pre-established
mental models. Rogalski and Samurcay [17] note that
when a student begins to program, they commonly
refer to everyday objects to allow them to visualize
what the program is doing and that students who have
studied subjects such as Mathematics or Physics often
find it easier to form mental representations, and to
develop an understanding of abstract concepts. It is
likely that students have already developed
appropriate mental models from the related subjects,
which are then applied to the programming scenario.

Mental Models are crucial to building
understanding, if a teacher neglects to omit them
students will make up their own models of dubious
quality [20].

Norman [15] goes on to identify a number of
characteristics of mental models:

1. Mental models are incomplete and
simplified, due to limited knowledge and
expertise a complete model can be
difficult to construct.

2. People’s abilities to ‘run’ their models
are severely limited.

3. Mental models are unstable.

4. Mental models do not have firm
boundaries; similar operations can
become confused.

5. Mental models are ‘unscientific’, people
follow their set behavior patterns.

These characteristics highlight how mental models
are often unique to individuals due to their past
experiences (domain knowledge) and how their
models can be adapted over time as more experience
is gained.

In the context of this research investigation,
mental models are used to represent how students
approach variable swapping questions as part of a
programming aptitude test.

3. Research design

This research takes a mixed method
(methodological triangulation) approach and uses
multiple data collection techniques. This allows for
the ‘true results’ to be established through
triangulation.

Purposive sampling is used to collect data for this
investigation, as it allows a specific group of
participants to be selected to take part in the research,
which in the context of this research experiment, is
first year Computer Science students studying in
either Preston or Cyprus. By including all first year
Computer Science students in the investigation, it
allows for an exploration of the effects of domain
knowledge on mental model usage, as the uniqueness
of every student and their experiences makes
establishing a representative sample group difficult.

First year Computer Science students at the
University of Central Lancashire (UCLan) come from
all manner of academic backgrounds. Many have
studied either Computer Science or IT at school or
college, whilst others have not undertaken any formal
qualifications in the subject. Computer Science
demands entry requirements of up to 280 UCAS tariff
points at A2 or BTEC National Diploma MMM-
DMM AND 5 GCSEs at grade C or above including
Maths and English. However, there are not specific
requirements to have previously studied a computing-
based subject. Students study the first year to gain a
grounding foundation in Computer Science; including
an introductory programming course, and then
progress to year 2 where they choose a specialism.
Specialisms range from Computer Games
Development, Computer Network Technology,
Information Systems, Forensic Computing, Software
Engineering, and Computer Science, which is a
student self-select course that offers a flexible
programme of study.

The entire premise of this research study is based
around understanding the programming learning
process. Naturally, this draws on the authors’
epistemological standpoint as students who have
completed a number of programming and Computer
Science related courses in the past. We believe that,
like the theory of Constructivism [2], programming
ability is obtained through practice and cannot be
effectively transferred through a traditional lecture.
Whilst a lecture is a useful medium for teaching
complex concepts such a polymorphism, when it
comes to the fundamental concepts of programming,
the best way to develop a concrete understanding is
for students to spend less time getting confused in
lectures and spend more time putting the concepts into
practice.

4. Method

4.1. Survey

A preliminary survey was carried out to establish
the domain knowledge of the students taking part by
developing an understanding of their past
experiences. The survey was made available online
and begins by asking students to list any previous
courses they have studied (post GCSE level). This
allows for links between mental model usage and
subjects to be established, for example, a student who
has studied Physics may have a different model to
someone who studied English literature, hence
developing a different domain knowledge that affects
how they approach a given scenario.

To allow for easy analysis students were asked if
they have studied Computer Science at any level, (can
only answer yes or no) as the sample size is so large it
would be easy to miss a subject if they were being
categorised manually. The final section asks students
if they have had any prior programming experience
and if so to list the languages they are familiar with.
This is an extremely important question as past
programming experience could impact on mental
model usage and some students may have studied
programming in their own time, which would not have
been highlighted in the first question. By conducting
the survey online, it allows participant’s data to be
easily anonymised as well as allowing for easier
analysis, as all the data can be downloaded and
imported into an Excel document, rather than
inputting it manually, reducing the risk for human
error in the data.

4.2. Aptitude test

The aptitude test forms the main focus of the data
collection process. The test is an online application
and was delivered within timetabled classes. Students
were informed about the purpose of the research, what
activities they would be taking part in, as well as what
data would be collected and how it would be used. It
was made clear to all participants that they could opt
out and remove their data at any time during the
experiment. They were also given the opportunity to
ask any questions and discuss the investigation at the
end of the sessions, and they also had the opportunity
to check any of the data they had provided.

The aptitude tests were conducted twice, once at
the start of the main teaching block, (week 6 in the
first semester due to introductory activities) and once
in the final week before Christmas (week 14). The
preliminary survey; which collects information
regarding the students’ background and past
experiences (domain knowledge), was conducted at
the same time as the first aptitude test. All tests were
carried out in controlled conditions during timetabled
sessions. A pilot study was also conducted with five

students in order to fine-tune the questions and the
aptitude test application.

Students participating in the study are all at the
same level in their course, testing at these two
intervals allows us to track their development
throughout the first semester — which for many of
them, will be their first semester programming.

As well as mental model usage, the variable
swapping questions in the aptitude test allowed us to
investigate two other factors — juxtapositions, and the
consistency of use. Several of variable swapping
questions involved multiple variable assignments and
re-assignments, in order to produce a correct answer,
students must understand the concept that a variable
is held within computer memory and can be modified.

The consistency of a student’s mental model and
juxtaposition usage is an important factor in this
research, as it allows for a student’s understanding of
programming concepts to be evaluated. As Johnson-
Laird [8] states, there can be multiple valid mental
models for a given scenario however, only a single
model would be appropriate in the context of
programming as the compiler will only execute a
statement in one particular way, regardless of how a
student interoperates it. For example, even a simple
assignment operation such as ‘A = B’ would have
multiple valid mental models.

If the way the compiler processes a particular
statement does match with a student’s mental model
the result will be logical errors within the code. It is
therefore important to examine the consistency of
mental model and juxtaposition usage in order to
identify students who have successful understood a
particular concept, those who are beginning to
understand it but still require support and those who
are struggling to get to grips with a particular concept.

A full breakdown of the identifiers used to
represent the mental model, juxtaposition and
consistency levels can be found in Table 1.
Combinations of the three factors will be referred to
using the identifiers listed in Table 1, for example,
m2s1c0 refers to the use of the m2 model (the model
which appropriate in a programming context), s/
juxtaposition (variable changes are carried through to
subsequent statements — appropriate for
programming) and c0 (use of a single mental model
and juxtaposition (where appropriate) for at least 80%
of the questions).

The naming convention for the identifiers has been
adapted from a similar experiment by Dehnadi [4] to
allow for easier comparison of results.

Table 1. Identifiers used to analyse students’
aptitude test results

Mental Models

Identifier Description
ml Value extracted from right to left,
right value becomes 0. (a<-b;
b<—0)
m2 Value copied from right to left.
(a<—b; b unchanged)
m3 Value extracted from left to right.
(a—b; a<-0)
m4 Value copied from left to right.
(a—b; a unchanged)
mS5 Right-hand value added to left.
(a<—atb; b unchanged)
mo6 Right-hand value extracted and
added to left. (a<—a+b; b<—0)
m7 Left-hand value added to right.
(atb—b; a<-0)
m8§ Left-hand value extracted and
added to right. (a+tb—b; a<-0)
m9 Nothing happens.
(a,b unchanged)
ml0 A test of equality.
mll Variables swap values.
NA No valid mental model used —
Erroneous answer / Blank answer
Juxtaposition
S1 - The first assignment operation is
Sequence implemented with the initial
value, the second operation uses
the modified value — appropriate
for programming.
S3 - Each assignment operation uses
Simultaneous | the initial values of the variables.
NA No valid juxtaposition used -
Erroneous Answer / Blank answer

Consistency Level

Co Used a single mental model for at
least 80% of the questions.

Cl1 Used a combination of two
related mental models i.e. m1 and
m2.

C2 Used a combination of up to four
related models.

C3 Used a combination of up to
eight related mental models or
any of the remaining unrelated
models.

4.3. Module grades

To aid in the development of predictors of success
or failure of students studying introductory
programming courses, student performance must be
examined. All students who took part in the
investigation were enrolled on the ‘Introduction to
Programming’ module, which aims to teach students
the fundamentals of programming in the C# language.
The module is assessed through a piece of compulsory
coursework and an examination, each of which is
weighted at 50%.

For their assignments, students were tasked with
creating a simple file management program which
allowed students to display files in a given location,
as well as being able to filter files and output folder
statistics.

The examination covered programming
fundamentals, including questions on data types,
recursion, iteration, if-statements and functions. A
mixture of multiple choice and open-ended questions
where students were asked to write code to perform a
simple operation were used in the exam.

4.4. Contrasting data collection

In order to develop a detailed understanding of
how domain knowledge can affect a student’s mental
model usage it is important that this investigation also
looks outside the Computer Science subject area to
help identify influencing factors.

Students who come from mathematical
background (subjects including Mathematics,
Engineering, Physics, etc.) often find it easier to
understand the abstract concepts of programming [17]
therefore, we felt it appropriate to examine the
characteristics of a group of students studying a
completely unrelated course — in this case a focus
group consisting of students studying Business
Management related courses.

The focus group was made up of 28 students in
total, 23 Business Studies students (16 foundation
year, 7 first year) and 5 Accounting students (4
foundation year, 1 first year). The students were given
the same variable swapping questions as the

Computer Science students during their first aptitude
test, by doing so it presents the opportunity to examine
how differences in domain knowledge affects mental
model utilisation.

5. Results and discussion

5.1. Student participation

All first year Computer Science students were
given the option to take part in this study, 123 students
completed both the survey and the first aptitude test.
73 students stated they have previous programming
experience, however, only 57 students stated that they
had been formally taught Computer Science in the
past, creating additional variability into the results, as
Ben-Ari [2] noted that self-taught programmers do not
necessarily succeed in Computer Science studies as
they may have constructed non-viable models by
misunderstanding concepts.

Only 67 of the original 123 students took part in
the second aptitude test, this is likely due to the test
being conducted in the final week before the
Christmas holidays, as attendance to the classes was
noticeably low. Despite this reduction in sample size
there are still enough students to perform a reliable
investigation with and therefore, these students will
form the primary focus of the data analysis. Any
trends that are found in students who completed both
tests can in fact be supported by analysing the original
group of students.

5.2. First aptitude test

The first aptitude test was carried out during the
first week of the main teaching block, allowing us to
establish the characteristics of students’ mental model
usage before any significant amount of teaching has
taken place.

By analysing the answers students provided to the
variable swapping questions, we determined that 79%
of students used m2 as their dominant (most
frequently used) model. 53 students in total used the
m2 model however, 25 students used s3 as their
dominant juxtaposition. The wuse of the s3
juxtaposition is significant as it means students were
referring to the initial values of variables when
attempting to answer questions with multiple
assignment operations, instead of carrying the
changes from one statement to another. This suggests
to us that understanding the way variables work
within a computer could be a potential threshold
concept for students. A threshold concept is defined
by Meyer and Land [14] as a concept that are
necessary in order to progress in a subject and often
transform the way a student looks at a subject
however, they are also the topics where students are
can get stuck.

Figure 1 displays the distribution of mental model
and juxtaposition usage from the first aptitude test.

60
50
40

30

No. Students

20

1 53 2 1 3

ml m2 m4 m9 mll na

Dominant Mental Model

Figure 1. Mental Model / Juxtaposition usage of
students during the first aptitude test

Overall students were relatively consistent in their
mental model usage, with 73% of students
consistently using a single model (c0). 40% of
students used an appropriate mental model and
juxtaposition consistently (m2s/c0) during the first
aptitude test.

The results discussed above are representative of
the entire sample group who participated in both tests,
meaning that includes both students who have
previous programming experience and those who do
not. It is therefore important to further analyse the data
by separating the two groups of students in order to
understand how their mental model usage differs, as
Soloway [19] suggested, a student’s mental model is
based off their past experiences, potentially making
the two groups drastically different.

Of the 67 students to complete both tests, 36 stated
they had prior programming experience. The most
common dominant mental model was m2 which was
used by 34 students, suggesting that their pre-
established domain knowledge 1is potentially
influencing the mental model usage.

11 students who used the m2 model also used the
s3 juxtaposition, with an additional student being
classed as using an invalid juxtaposition (NA). This
suggests that despite previous experience,
understanding how variables are handled within a
computer is still a potential threshold concept.

74% of students with previous programming
experience consistently used a single mental model
(c0), with all 22 students who used the m2sl/
combination doing so consistently. With 26% of
students being inconsistent in their mental model
usage it would suggest that even though they have
prior programming experience, some students are still
adapting to using an appropriate model.

When analysing the results of the 31 students who
stated that they did not have any prior programming

HNA

10 s3

o — B - B _ -
8

experience it was discovered that the students were
relatively consistent with their mental model usage
with 71% consistently using a single (not necessarily
correct) model however, only 5 consistently used
m2sl. There was also a greater variety of dominant
models used by students with no prior programming
experience as opposed to those with experience, with
5 different models as opposed to 3 being used
respectively.

5.3. Second aptitude test

By conducting a second aptitude test at the end of
the first semester, it allows the development of
students’ mental model usage to be investigated. We
expected that students who have already adopted their
dominant combination would continue to use it with
increased consistency. We predicted that students
who previously wused other mental model
combinations will begin to gravitate towards a new
model because their domain knowledge begins to
adapt as they progress through the course.
Constructivism theory positions that students accrue
their knowledge recursively by taking an active part
in the learning process [2], i.e. completing practical
lab sessions, aimed at teaching students the
fundamental concepts of programming by putting
them into practice.

This could potentially mean a decrease in overall
consistency as students may experience cognitive
conflict; when a student experiences a discrepancy
between their own cognitive structure and an external
environment [11], i.e. conflict between a student’s
original incompatible mental model and the
appropriate model used in programming which they
are attempting to learn.

60

50

N
o

No. Students
w
o

m NA
20
s3
10
msl
0 =
1 58 2 4 2
ml m2 m4 m9 na

Dominant Mental Model

Figure 2. Mental Model / Juxtaposition usage of
students during the second aptitude test

In total, 21 students improved their model usage
between the two tests, either by switching from an

inappropriate model to m2 (any juxtaposition), or by
switching from an invalid model (NA4) to a known
valid (although potentially inappropriate) model. 49
students remained consistent in their usage between
the two tests and 6 students became less consistent but
continued to use the same dominant model, perhaps
due to them beginning to adapt to a more appropriate
model.

As Figure 2 shows, the variety of models used by
all students in the test group has decreased when
compared to the results of the first test (Figure 1).
There has also been a clear uptake in the number of
students using the m2 model. In total, 58 students
(86%) are now using m2, with over half (56%) the
sample group using m2s/, a rise of 14% from the first
test. The number of students consistently using a
single model has slightly decreased from 73% in the
first test to 70% in the second.

48% of students consistently used m2s/ whilst the
number of students using m2s3 (of any consistency)
has dropped slightly to 33%, supporting the idea that
understanding variables is a potential threshold
concept due to the large portion of students not
applying an appropriate juxtaposition to the variable
swapping operations.

Interestingly, there has been very little variation in
the mental model/juxtaposition usage of students with
past programming experience between the two tests.
The number of students using the m2 model has
remained constant, however, four students who
previously used the s3 juxtaposition have now begun
to use s/. Consistent use of a single model has also
increased amongst students with previous experience
from 74% to 77%. The number of students
consistently using an appropriate mental
model/juxtaposition combination (m2slc0) has also
increased from 22 to 24. This adds support for out
theory that as the domain knowledge develops, a
student will begin to gravitate towards m2sic0 due to
the knowledge they have acquired, which in turn
reduces cognitive conflict.

Whilst the variations between the two tests were
relatively small for students with past programming
experience, there are a number of significant changes
amongst those with no previous experience.

The most notable difference is the variety of
dominant models used by students has decreased with
only 4 out of 28 students having a dominant model
other than m2. However, only 32% of students are
using m2s/ compared to 69% of students with
programming experience. The number of students
consistently using a single model fell 10% between
the two tests, which we believe to be a sign of
cognitive conflict. Maier [12] states that before a
student can fully understand a concept, a student’s
understanding must be challenged before they can
adapt. Many of the students who had not previously
had any programming experience held incompatible
models, which must be first actively challenged by

allowing a student to gain programming experience,
thus allowing a student to discover for themselves
what works, and what doesn’t, in a programming
context.

We believe the reduction in consistency is
attributed to students” mental models being
challenged, whilst in some cases they may still be
using their previously established models, students
should be beginning to gravitate towards the
appropriate mental model/juxtaposition combination.

5.4. Module grade comparison

The final key element of this investigation is the
comparison of students’ mental model/juxtaposition
usage and their overall grades for the Introduction to
Programming module, thus allowing for predictors of
success to be established. While grades are available
for all students enrolled on the module, the results
discussed below refer to the group of students who
completed both aptitude tests. Although this limits the
sample size significantly, it allows for a better
understanding of a student’s development through the
module, i.e. a student may have originally started
using an incompatible model such as m9 but by the
end of the semester they may have begun to use m2.
For this reason, the discussed results focus on the
dominant models identified during the second test.

55% of students who completed both tests
obtained a 1% (70% or above), 73% of which used
m2slc0 as their dominant combination. 9 students
achieved a 2.i (60% - 69%) overall, 33% of which
used m2sic0 and 33% used m2s3c0. 12 students a 2.ii
(50% - 59%) in the module with m2sic0 and m2s3c0
were only used by a single person each, 33% used
m2s3incon (either cl,c2 or ¢3) whilst 25% used an
inappropriate model inconsistently (other incon).
Only 6 students obtained a 3™ (40% -49%), primarily
students who achieved this grade used m2s3incon
(33%) or an inappropriate model inconsistently (other
incon —33%).

40
35
»n 30 other incon
g 25 B other con
i iCS) E m2s3incon
Z 10 m2s3 con
5 : . E m2slincon
0 e ! Em2slcon

Ist 2. 2.ii 3rd Fail
Module Grade

Figure 3. Comparison Mental Model/
Juxtaposition / Consistency and module grades

Three students also failed the module, two of
whom used m2s3c0 and one used an inappropriate
model inconsistently. Figure 3 highlights the
relationship between mental model/juxtaposition
usage, consistency and module grades.

One trend that is immediately identifiable from
reviewing Figure 3 is the relationship between the use
of m2sicO (m2sl con) and students achieving higher
grades. Also, as grades decreased, so did the use of
m2slc0. This suggests that the use of m2sic0 could
potentially be used as predictor of success within the
course

A Mann Whitney U test [13] was also carried out
to evaluate the significance of the relationship
between appropriate mental models and module
result, producing a result of p < 0.05 and confirming
the significance of the data.

5.5. Original participants

Whilst the results discussed previously provide an
insight into the development of students throughout
the first semester, the sample size is extremely limited
due to not all students completing the second test. 123
students took part in the first aptitude test meaning
there is a lot of reliable data available, which can be
used to support the findings of the primary
investigation.

100

90

80

70

60

50

40 mNA
30

20

18 _ _ B l - mSsi

2 9 3 1 1 11 2 5

No. students

S3

ml m2 md m5 m7 m9 mll NA
Dominant Mental Model

Figure 4. Mental Model / Juxtaposition usage of
all students who completed the first aptitude test

Figure 4 shows the distribution of the dominant
mental model/juxtaposition combinations for all
students who took part in Test 1. The range of
combinations used by students is significantly more
varied than that observed in Figure 1, however, a
commonality between the two is that m2 is by far the
most commonly used mental model as 80% of all
students utilized m2 as their dominant model. There is
also an almost equal split between the number of
students using the s/ and s3 juxtapositions, similar to
that observed in the test group. Despite the varied
combination uses, 68% of students consistently used

a single model with 42% using m2sic0. Of the 123
students who originally took part in the first aptitude
test,

73 of the 123 students who took part in the first
test stated that they had previous programming
experience. 88% of students used m2 as their
dominant model of which 58% used the s/
juxtaposition. Other than a relatively small percentage
of students using other miscellaneous inappropriate
models, students who did not use m2sl used m2s3
instead (29%). The high percentage of students using
the s3 juxtaposition; despite their previous
programming experience, leads us to believe that the
assumption that understanding how variables are
handled within a computer is a potential threshold
concept for students. 70% of student who had
previous programming experience consistently used a
single mental model, with over half of students using
m2sicO0.

50 students who stated that they had no previous
programming experience and like the primary test
group used a large variety of mental
model/juxtaposition combinations. m2s3 was the
most common dominant combination, being used by
44% of student. 68% of students consistently used a
single mental model/juxtaposition, however, less than
a quarter used m2s1c0.

As only 54% of students completed both tests it
would not be appropriate to use the results from the
second test when comparing the mental model and
juxtaposition usage to module grades for the group as
a whole. However, by comparing all 123 students’
mental model usage from the first test to their module
grades, it allows for trends between students’ initial
mental model usage at the beginning of the course,
and the grades they achieve to be established. This not
only supports trends discovered with the test group,
but also forms a solid foundation for a future
implementation of the testing method, which would
likely be conducted at the beginning of a course.

54 students (44%) obtained a 1+ overall in the
module, 18 (15%) achieved a 2.1, 18 (15%) achieved
a 2.ii, 16 (19%) achieved a 3« and 8 (7%) students
failed. 8 students also had no corresponding grades,
potentially due to incorrect ID numbers being entered
at the start of the test.

Out of the 73 students with programming
experience, 50% obtained a 1% in the module, the
majority of which used m2s1, it was also determined
that 75% of students using m2s/ used it consistently
(m2sic0). A Mann-Whitney U test [13] produced a
significance of p < 0.05, further supporting claims of
a link between appropriate Mental Model usage and
success in the module.

The remaining 50 students who took part in the
first test and did not state that they had any pervious
programming experience and as a result, their lack of
experience has translated into a much greater variety
of mental models being used, as well as a smaller

proportion of students achieving higher grades than
students who had programmed in the past.

Only 34% of students who had no previous
programming experience obtained a 1* in the module.
However, this was the most commonly achieved
grade with 22% achieving a 2.1, 14% achieving a 2.ii,
14% achieving a 3™ and 6% failing the module.

Despite the more varied results; when compared to

students with previous programming experience,
m2slcO0 was still the most prevalent model
combination amongst students achieving higher
grades, with it being used by 47% of students
achieving a 1* in the module.
The number of student using m2s/c0 falls drastically
as grades drop, with it being used by 27% of students
who obtained a 2.i and then not at all by students
achieving subsequent grades. The most prominent
model combination used by students who achieved a
2.1 and 2.ii is m2s3c0; 55% and 57% respectively,
whereas students who achieved a 3rd or failed the
module primarily used an inappropriate model
inconsistently (other incon) or m2s3c0. A Mann-
Whitney U test [13] confirmed the significance in the
relationship between module grades and Mental
Model/Juxtaposition combination usage by students
with a significance of p < 0.05.

5.6. Business students

To further investigate the impact domain
knowledge has on mental model usage, we ran the test
with a group made up of 23 Business Studies students
(16 foundation year, 7 first year) and 5 Accounting
students (4 foundation year and 1 first year). Whilst
both these subjects involve mathematics, we believed
them to sufficiently different from Computer Science
and other subjects that require an understanding of
abstract concepts, i.e. Physics [17], to provide a basis
for comparisons of students’ mental model usage.

12

10

No. Students
[e)]

4 mNA

0 msl
2 9 5 2 10

m1l m2 m9 mll NA
Dominant Mental Model

Figure 5. Mental Model / Juxtaposition usage
of business students

A relatively large variety of mental models were
used by students as shown by Figure 5. However, two
mental models in particular attracted the most
students — N4 and m2. 32% of students utilised the m2
model, 88% of which used the s3 juxtaposition. The
large portion of student using s3 combined with the
fact that no students wused s/ suggests a
misunderstanding of how variables are handled,
supporting the idea that variables are a potential
threshold concept for students however, the use of m2
demonstrates that some students; regardless of
background, can process compatible mental models
which are appropriate for programming.

36% of students were categorized as N4 meaning
that they failed to use a known mental model or
entered erroneous data. Interestingly, instead of
inputting the value of the variables 4 students
submitted code; such as variable names, as their
answers. Only 21% of students consistently used a
single mental model. However, due to high proportion
of students using NA it is difficult to draw any
statistically significant conclusions.

5.7. Predicting success of failure

At the beginning of a module teachers may not be
fully aware of each student’s programming ability.
Whilst most introductory programming courses start
from a basic level, some students, especially students
who have attempted to teach themselves to program,
may have already developed misconceptions
about some of the fundamental concepts of
programming, which staff would likely be initially
unaware of. If these misconceptions are not identified
and rectified by staff, students will construct new
models of dubious quality based on their
misconceptions [20], making the process of learning
to program more difficult for the student, therefore
increasing the possibility for failure within the
module.

It is therefore important to identify students at the
beginning of the module who are most at risk of
failure, allowing staff to give them the support they
need to overcome their misconceptions and any
threshold concepts they may be facing.

The data collected during this research
investigation has highlighted a number of factors that
may impact on a student’s performance within an
introductory programming module, making it
possible to split students into three distinct categories
based on their mental model/juxtaposition usage:

On Track — Consistent use of m2sl (m2sl con)
indicates an appropriate mental model has been
established, giving a student the best chance of
success within the course.

At Risk — Students use m2s/ as their dominant
model, yet use it inconsistently (m2s/ incon) as
students may be transitioning between mental
models and may be experiencing cognitive conflict.

Students who use m2s3 (either consistently or
inconsistently) as their dominant model can also be
categorised as ‘At Risk’, indicating students may be
encountering a threshold concept that is blocking
their progression within the module.

Students have the potential to succeed, however,
they are at risk of being held back by threshold
concepts and/or cognitive conflict. A student
identified as ‘At Risk’ should be given specific help
to ensure they overcome these issues by being
encouraged to confront their misconceptions directly
[12].

Falling Behind — Students use models other than m2
either consistently or inconsistently (including N4),
indicating they have not grasped the concept of how
variables are handled and may potentially be
experiencing cognitive conflict or being held back by
threshold concepts.

These students are at the most risk of failure
within the module, steps should be taken by staff to
address their misconceptions directly [12], as well to
help acquire appropriate domain knowledge in order
for them to succeed in the module.

Appropriate
Mental Model

Programming Domain
Scenario Knowledge

A4
I(ey Encounters
Threshold Concept /
Cognitive Conflict

On Track

At Risk

Falling Behind

By splitting students into three separate
categories teaching strategies can be adapted to
provide material that is appropriate to each level, for
example, students who are classed as ‘At Risk’ or
‘Falling Behind’ can be given material aimed at
helping them overcome their misconceptions and any
threshold concepts they may be encountering. If the
same material was given to students who are classed
as ‘On Track’ is possible they may become bored
with the module, potentially leading to them
underperforming.

The thought processes a student goes through
when faced with a programming scenario is
represented in the Programming Thought Process
(PTP) Model. This model is an original contribution
of this research and highlights how a student consults
their domain knowledge before attempting to
approach a programming scenario, which in turn
influences the mental model and juxtaposition used by
the student.

By also taking consistency into account, the PTP
Model (Figure 6) provides a visual representation of
how the thought process of a student relates to the
previously described categories, thus allowing staff to
identify where a student is encountering problems and
provide appropriate support.

Appropriate

es Juxtaposition

AL, Consistent Usage

’f

Encounters
Threshold Concept /
Cognitive Conflict

No

v

b S"m

Consistent Usage

No

Consistent Usage

Figure 6. Programming Thought Process (PTP) Model

6. Conclusions and future work

We believe the following conclusions can be
drawn from the data collected during this
investigation:

e Consistent use of m2s/ is a predictor of
success within introductory programming
courses.

e Variable swapping is a potential threshold
concept for students; highlighted by the
number of students using the s3 Juxtaposition.

e As domain knowledge develops, students
begin to gravitate towards appropriate mental
models, however, they may encounter
cognitive conflict or threshold concepts that
can block their progress.

Despite being relatively successful, there is still
future work required to validate the findings of this
experiment and to further expand the understanding of
the programming learning process.

By only collecting data over a single semester, the
reliability and validity of this research are severely
constrained. In order to gain a comprehensive
understanding of the programming learning process
that is valid and highly reliable, the same experiment
should be run throughout the course of an entire year,
over the course of multiple years and at various
institutions.

Students studying a wider range of subjects; such
as Media, Music, English Literature, and so on, should
also be observed to determine how their mental model
usage differs to Computer Science students, and
investigate any potential related subjects in order to
allow for a better understanding of students’ domain
knowledge.

Despite the limitations, we believe this research
has highlighted the link between appropriate mental
model usage and success within an introductory
programming module. The data collected during this
research has also revealed a potential link between
related domain knowledge (from studying subjects
such as Mathematics or Physics) and appropriate
mental model usage, although further research is
needed to validate these results.

7. References

[1] B. Adelson and E. Soloway, The role of domain
experience in software design. [EEE Transactions on
Software Engineering, (11), 1985, pp.1351-1360.

[2] M. Ben-Ari, Constructivism in computer science
education, Acm sigese bulletin 1998, ACM, 1998, pp. 257-
261.

[3] N. Blackwood, Digital skills crisis: second report of
Session 2016-17: report, together with formal minutes

relating to the report: ordered by the House of Commons to
be printed 7 Jun 2016.

[4] S. Dehnadi, Testing programming aptitude, Proceedings
of the 18" Annual Workshop of the Psychology of
Programming Interest Group, 2006, pp. 22-37.

[5] B. Du Boulay, Some difficulties of learning to
program. Journal of Educational Computing
Research, 2(1), 1986, pp. 57-73.

[6] S. Furber, Shut Down or Restart: Report of the Royal
Society into Computing in Schools, The Royal Society,
London, 2012.

[7] Higher Education Funding Council For England and The
Complete University Guide, Dropout Rates at English
Universities.

Available: http://www.thecompleteuniversityguide.co.uk/n
ews/dropout-rates-fall-at-english-universities/ (Access
Date: July 30, 2016.

[8] P.N. Johnson-Laird, Mental models in cognitive
science. Cognitive science, 4(1), 1980, pp. 71-115.

[9] O. Kerr and N. Danino, Programming Patterns as
Potential Predictors of Student Success. Proc. World
Congress on Education (WCE-2017), 2017.

[10] E. Lahtinen, K. Ala-Mutka, and H. Jarvinen, A study
of the difficulties of novice programmers, ACM SIGCSE
Bulletin 2005, ACM, 2005, pp. 14-18.

[11] G. Lee, and J. Kwon, What Do We Know about
Students' Cognitive Conflict in Science Classroom: A
Theoretical Model of Cognitive Conflict Process, 2001.

[12] S. Maier, Misconception research and Piagetian models
of intelligence, Proc. 2004 Oklahoma Higher Education
Teaching and Learning Conf, 2004.

[13]1H.B. Mann and D.R. Whitney, On a test of whether one
of two random variables is stochastically larger than the
other. The annals of mathematical statistics, 1947, pp. 50-
60.

[14] J. Meyer, and R. Land, Threshold concepts and
troublesome knowledge: Linkages to ways of thinking and
practising within the disciplines, University of Edinburgh,
2003.

[15] D.A. Norman, Some observations on mental models,
Mental models, 7(112), 1983, pp. 7-14.

[16] M. Prensky, Digital natives, Digital immigrants part 1,
On the horizon, 9(5), 2001, pp. 1-6.

[17] J. Rogalski, and R. Samurcay, Acquisition of
programming knowledge and skills. Psychology of
programming, 18(1990), 1990, pp. 157-174.

[18] M.A. Sasse, Eliciting and describing users' models of
computer systems, 1997.

[19] Soloway, E. 1986 Learning to program = learning to
construct mechanisms and explanations. Communications
of the ACM, 29(9), 1986, pp.850-858.

[20] L.E. Winslow, Programming pedagogy—a
psychological overview. ACM SIGCSE Bulletin, 28(3),
1996, pp. 17-22.

