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Abstract

Background: Human embryonic stem cells (HESC) readily differentiate into an apparently haphazard array of cell types,
corresponding to all three germ layers, when their culture conditions are altered, for example by growth in suspension as
aggregates known as embryoid bodies (EBs). However, this diversity of differentiation means that the efficiency of
producing any one particular cell type is inevitably low. Although pancreatic differentiation has been reported from HESC,
practicable applications for the use of f-cells derived from HESC to treat diabetes will only be possible once techniques are
developed to promote efficient differentiation along the pancreatic lineages.

Methods and Findings: Here, we have tested whether the transcription factor, Pax4 can be used to drive the differentiation
of HESC to a f-cell fate in vitro. We constitutively over-expressed Pax4 in HESCs by stable transfection, and used Q-PCR
analysis, immunocytochemistry, ELISA, Ca®>" microfluorimetry and cell imaging to assess the role of Pax4 in the
differentiation and intracellular Ca** homeostasis of f-cells developing in embryoid bodies produced from such HESC. Cells
expressing key f(-cell markers were isolated by fluorescence-activated cell sorting after staining for high zinc content using
the vital dye, Newport Green.

Conclusion: Constitutive expression of Pax4 in HESC substantially enhances their propensity to form putative S-cells. Our

findings provide a novel foundation to study the mechanism of pancreatic f-cells differentiation during early human
development and to help evaluate strategies for the generation of purified S-cells for future clinical applications.
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Introduction

Pancreatic f-cells are the primary source of physiologically-
relevant insulin and defects in their function cause diabetes and
hyperinsulinism. Several groups have reported evidence for the
presence of cells resembling f-cells among the differentiated
derivatives formed in EBs of HESC [1,2]. Others have also found
enhanced differentiation of such cells from HESC and mouse
embryonic stem cells (MESC) after culturing EBs in media that
selectively promote the growth of neuroectodermal cells [3,4,5,6].
As some of these techniques have proved unreliable and difficult to
replicate [7,8], attention has switched to testing whether specific
signalling pathways that guide the appearance of f-cells during
embryonic development can be applied to MESC or HESC i witro.

During embryonic development, the pancreatic primordium
arises from the posterior foregut region of the definitive endoderm,
in a step that is dependent upon the transcription factor Pdx1.
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Thus, homozygous knock-out mice lacking Pdxl develop the
pancreatic buds but fail to form a pancreas [9,10]. Subsequently,
Pdx1 expression down-regulates and fate restriction of various cells
in the pancreatic primordium results in the formation of distinct
exocrine and endocrine cells [11]. Building on these observations,
D’Amour et al [12] found that after inducing definitive endoderm
differentiation from HESC, the subsequent exposure to retinoic
acid and an inhibitor of hedgehog signalling could lead to the
formation of cells expressing insulin. On the other hand, although
Lavon et al [13] found that over-expression of Pdx1 in HESC
enhanced pancreatic endocrine cell differentiation in EBs, they
failed to find evidence of f-cell formation i vitro. We speculated
that signals induced downstream of definitive endoderm might be,
at least in part, more potent to trigger subsequent signal cascades
that culminate with the pancreatic f-cell formation.

The precise developmental relationship of the cell lineages in
the human pancreas remains uncertain, but in mice the generation
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of f-cells is specifically dependent upon the transcription factor
Pax4. Inactivation of Pax4 by homologous recombination resulted
in the absence of mature insulin-producing f-cells in the pancreas
of Pax4 homozygous mutant mice [14]. This suggests a role for
Pax4 in committing early pancreatic endocrine cells to a f-cell
fate, although it has also been demonstrated that Pax4 expression
can generate other islet endocrine cells [15]. Based on its onset of
activation prior to f-cell specification in developing pancreas,
Blyszczuk et al. (2003) showed that over-expression of Pax4 in
MESC enhanced the expression of f-cell genes and insulin [16].
However, since significant differences have been documented
between the behaviour of MESC and HESC [17], and as several
studies also revealed differences between mouse and human
embryogenesis [18,19], we sought to determine whether Pax4
expression can be harnessed  vitro to enhance differentiation of

HESC into f-cells.

Materials and Methods

Cell Culture and Transfection

A subline of H7 HESC (WiCell Rescarch Institute, Madison,
WI), H7.56 was used throughout the study. This subline was
adapted to culture, which allowed efficient passaging and cloning
to facilitate transfection, while retaining the capacity for extensive
differentiation [20]. Briefly, cells were cultured in HESC medium
(knockout-DMEM supplemented with 20% Serum Replacement,
1% non-essential amino acids, 1 mM L-glutamine, 0.1 mM f-
mercaptoethanol [Sigma-Aldrich, Poole, UK] and 4 ng/ml basic
FGF) under a humidified atmosphere of 5% COy in air at 37°C.
For sub-cultivation, the cells were harvested by treatment with
1 mg/ml collagenase type IV in DMEM:F12 per T25 flask for 8 to
10 minutes at 37°C, dispersed by scraping with 3mm glass bead,
centrifuged at 68xg for 3 minutes and then seeded onto
mactivated mouse embryonic fibroblast (MEF) feeders that had
been washed once with phosphate-buffered saline (PBS) immedi-
ately prior to use.

The construct used to generate pCAG-PAX4 expression vector
was made with pCAGeGFP vector [21]-by replacing eGFP with
the human Pax4 gene coding sequence (CDS) (located at 207-1238
base pairs (bp) on Homo sapiens Pax4 mRNA, Gene Bank Accession
Number NM_006193) amplified from H7 EB ¢cDNA. The Pax4-
CDS PCR product was purified from 1% agarose gel with Qiagen
gel purification kit (Qiagen, Crawley, UK), subcloned into pGEM-
T easy vector (Promega, Southampton, UK) and released by Not 1
and Xho I restriction digestions. To remove eGFP, the parental
PCAGeGFP vector was linearised by MNot I and partially digested
with Sal 1. Pax4 CDS was ligated into the 6.44kb fragment of
pCAG vector with T4 ligase (Promega), generating pCAGPax4
vector (See Supplementary Information Fig. S1 for vector map).

H7 HESC were transfected using ExGen500 transfection
reagent (MBI Fermentas, Germany) as previously described [21].
Briefly, cells were seeded one day prior to transfection with the
initial seeding density of 3x10° cells in a single well on 6-well
plates. 0.05% trypsin/EDTA was used to harvest HESC; the cells
were then seeded on matrigel-coated 6 well-plates and in MEF-
conditioned medium prior to transfection (Matrigel from BD
Biosciences, Oxford, UK). Cells were approximately 70%
confluent on the day of transfection. Transfection was carried
out with 9.5 ug plasmid DNA using ExGen500. For derivation of
stable clones, transfected cells were subjected to antibiotic selection
with 1 pg/ml puromycin (Sigma) 24 hours after transfection.
Distinct, puromycin-resistant, individual colonies appeared after
2-3 weeks and were hand-picked by micropipette, dissociated into
small clumps of cells, and transferred into one well of a 12-well
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culture dish. The cells (H7.Px4) were then expanded in 6-well
plate and subsequently passaged into 25 cm? tissue culture dishes.

Embryoid Body Differentiation

In witro differentiation of H7 and H7.Px4 cells was induced by
aggregation of HESC in suspension culture. Briefly, undifferenti-
ated HESC were harvested with 1 mg/ml collagenase IV as above,
pelleted by centrifugation and resuspended in HESC medium
containing all supplements as described above, and transferred to
sterile 10 cm bacteriological Petri dishes (Sterilin, UK). The cells
were incubated at 37°C in 5% COs. The medium was replaced
every other day and the resulting EBs were differentiated for
different time points and collected for subsequent analysis.

RT-PCR

Total RNA was isolated from HESCs and EBs using RNeasy
mini kits (Qiagen, Crawley, UK). Samples were DNase treated
(Ambion, Huntingdon, UK) and quantified using a NanoDrop
spectrophotometer (NanoDrop, Labtech International, Ringmer,
UK). RNA integrity was verified using an Agilent 2100
Bioanalyser (Agilent Technologies, Wokingham, UK). c¢cDNA
was synthesized from 1 pg RNA with Superscipt II reverse
transcriptase and oligo (dT);9 15 primers. PCR was performed
with gene-specific primers (500 nM) designed in-house (See
Supplementary Information, Table S1), with Taq polymerase
and associated reagents. For all reactions, controls included no-
template, RT-positive and RT-negative samples to detect any
gDNA contamination. PCR products were identified using
standard ethidium bromide agarose gel electrophoresis and their
identity was confirmed by sequencing gene products. All electronic
gel images were cropped to show the single product band, related
controls and molecular weight markers, and no further image
manipulation was used.

Real-time Quantitative PCR (Q-PCR)

Total RNA was isolated from HESCs and EBs as described
above. cDNA was synthesized from 1 pg RNA with Superscript II
reverse transcriptase and random hexamers or a 1:3 mixture of
random hexamers and oligo (d1);9 15 primers (Gibco, Paisley,
UK). PCR was performed with gene-specific primers (150 or
300 nM) with Platinum SYBR Green qPCR Supermix , Power
SYBR Green PCR Mastermix (Applied Biosystems, Warrington,
UK) or Assay-on-Demand technology (Applied Biosystems,
Warrington, UK). Human brain RNA (Clontech, Saint-Ger-
main-en-Laye, France) was converted to ¢cDNA and used to
generate standard curves for subsequent voltage-gated Ca**
channel gene expression studies. Q-PCR was performed in an
ABI 7500 thermal cycler (Applied Biosystems, Warrington, UK) or
iCycler 1Q (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK).
A dissociation step was performed at the end of every experiment
to confirm the presence of a single PCR product. ABI 7500
software and Excel spreadsheets (Microsoft UK, Reading, UK)
were used to analyse the data. The baseline was manually set to 2
cycles below the start of any amplification and the threshold
manually adjusted by choosing the value that gave the most
precision between replicate samples. For the voltage-gated Ca®*
channel gene expression studies, samples were normalized to total
RNA input with PCR product concentration determined from the
standard curve and expressed relative to the calibrator sample (day
7 untransfected H7 EBs). For other gene expression studies,
samples were normalized to 18SRNA and 244" analysis applied.
Data were calibrated relative to the day 7 untransfected H7 EBs as
before. For comparison of transcript levels in unsorted and FACS-
sorted cells, the difference in cycle times, 4C,, was determined as
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the difference between the tested gene and the reference
housekeeping gene, ACTB. PCR reactions for each sample were
repeated in triplicates.

Western Blotting

Cells were harvested into 50 pl 1x lysis buffer (50 mM Tris,
pH 8.0, 150 mM NaCl, 1% (w/v) Triton X-100 (Sigma), 0.1%
(w/v) SDS supplemented with a cocktail of protease inihibitor
(Roche, UK). Each lane was loaded with 20 g of total protein.
Gels were blotted onto a nitrocellulose membrane (Bio-Rad) and
incubated with an antibodies against human PAX4 (1:500; Aviva,
San Diego, CA) or an anti-f actin antibody (1:1,000; Abcam)
overnight at 4°C, followed by incubation for 1-h with secondary
anti-rabbit antibody conjugated to HRP (Santa Cruz, Autogen-
Bioclear, Calne, UK). Membranes were developed using ECL
Western blotting detection system (Amersham Biosciences,
Cardiff, UK) according to manufacturer’s protocol.

Immunocytochemistry

Cells were washed twice with PBS and fixed in 4%
paraformaldehyde in PBS for 20 min. Cells were then washed
three times in PBS and incubated for 10 min in PBS with 0.1%
Triton-X. After blocking with PBS with 0.1% Triton-X and 1%
sheep serum (blocking solution) for 30 min, cells were incubated
with primary antibodies-either anti-PAX4 (1:200; Aviva, San
Diego, CA), anti-Proinsulin (1:100; Autogen Bioclear), MC631
(anti-SSEA3, 1:100), TRA-1-60 (1:100) for overnight at 4°C.
MC631 and TRA-1-60 antibodies were prepared as supernatants
of the hybridomas grown in our laboratory as previously described
[22,23]. Cells were then washed in blocking solution and
incubated with Cy3 goat anti-mouse IgG (1:300; Sigma, Dorset,
UK) or FITC-conjugated goat anti-rabbit IgG (1:200; Stratech,
Newmarket, UK) for one hour at room temperature, followed by
three washes with blocking solution. Immunofluorescence with the
specific antibodies was compared with that from negative control
antibodies obtained from parent myeloma cell line P3x63Ag8
[22] and rabbit IgG FITC secondary antibody (1:100; Abcam,
Cambridge, MA, USA) to indicate specificity. Cells were mounted
with DAPI mounting reagent (Vectashield, Vector Labs, Peter-
borough, UK) that will also counterstain nuclei. Images were
captured with an Olympus CKX41 microscope and Nikon
Coolscope DS-5M digital camera at 5MP resolution.

Fluorescence Labeling with Newport Green

16-21 day old EBs were allowed to attach on Matrigel and were
further differentiated for 7-10 days as monolayer in 1:1 DMEM
(no glucose)-F12 medium supplemented with 1% FCS and 10 mM
nicotinamide (Sigma). Newport Green diacetate, NG-Ac (Molec-
ular Probes Europe, Leiden, The Netherlands) was used for
fluorescent studies on living cells. Cells were washed twice with
PBS and then incubated for 3 min at 37°C with PBS containing
1 uM NG-Ac containing 1 pl/ml Pluronic F127 (Molecular
Probes) to aid penetration of the probe. After washing in PBS
with 5% FCS, the cells were dissociated and the single cell
suspension was subjected to confocal microscopy (Nikon Eclipse
TE300) and FACS analysis.

FACS Analysis and Sorting

Cells were harvested with 0.25% trypsin/EDTA and resus-
pended at 2x10° cells per ml in wash buffer (5% FCS) and 0.1%
sodium azide (Sigma) in PBS and analyzed on a MoFlow FACS
sorter (Dako Cytomation, Ely, UK). NG-labeled cells were analyzed
by FACS according their fluorescence emission (excitation 438 nm).

@ PLoS ONE | www.plosone.org
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The negative control was undifferentiated cells and was used to set
the background level of fluorescence. Cell samples were sorted for
the collection of 2x10"-1x10° cells in 10 ml conical tubes.
Following sorting, cells were either collected for RNA analysis, or
were further grown in 1:1 DMEM (no glucose)-F12 medium
containing 1% FCS and 10 mM nicotinamide. Sorted cells were
replated at the density of $x10° cells per cm?® on 0.1 mg/ml human
placental collagen IV-coated tissue culture dishes.

C-Peptide Content and Secretion

Following the designated differentiation periods of 7, 14 and
21 days, 100 EBs were selected for measurement of C-peptide
content at each time point. EBs of a regular size and morphology
were transferred to a glass tube, washed in Krebs Ringer buffer
supplemented with 1 mg/ml bovine serum albumin (Insulin RIA
grade, Sigma) and cell lysis performed as described previously
[24]. Samples were stored at —20°C: prior to analysis. C-peptide
content was assessed using a Human C-peptide ELISA kit
according to the manufacturer’s Instructions (Mercodia Ultrasen-
sitive, Diagenics, Milton-Keynes, UK). The effect of tolbutamide
and glucose on C-peptide release was studied in parallel with NG-
positive or NG-negative cells. An initial one hour incubation was
carried out in Krebs Ringer buffer containing 2.2 mM D-glucose
(Roche), and then with 100 uM tolbutamide (Sigma) or 27 mM
glucose for 15 min. The fold stimulation was calculated for each
condition by dividing the C-peptide concentration released in
response to stimulatory conditions by the C-peptide concentration
in the basal medium.

Functional Changes in Cytosolic Ca®* Signaling

Prior to experimentation, EBs were resuspended in hES
medium supplemented with penicillin/streptomycin (100 U/
0.1 mg). Following overnight culture on poly-D-ornithine-coated
coverslips (Sigma, 10 pg/ml) in 24-well plates, the cytosolic Ca®*
concentration ([Ca?'];) was measured by digital imaging micro-
fluorimetry (Roper Scientific, Marlow, Bucks, UK). The EBs were
loaded with Fura 2-AM to a final concentration of 6 UM for up to
90 minutes at 37°C where the coverslip formed the base of a
perifusion chamber (Warner Instruments, Harvard Apparatus,
Edenbridge, Kent, UK). Excitation of the sample EBs at 340 and
380nm was achieved by a monochromator (T.I.L.L. Photonics,
Planegg, Germany) with a cycle time of 1.32 seconds. Image
capture was performed by a Quantix photometrics CCD camera
(Roper Scientific). During experimental procedures the control
solution consisted in mM: NaCl 137, KCI 5.36, MgSO, 0.81,
Na,HPO, 0.34, KH,PO, 0.44, CaCl, 1.26, NaHCO; 4.17,
HEPES 10 and glucose 2.02. The pH was set to 7.4 using NaOH.
In solutions containing a high concentration of K*, NaCl was
replaced by equimolar KCI. An i vitro calibration procedure was
performed to determine an estimation of changes in [Ca®]; [25].
For the purposes of quantification, the functional capacity of EBs
has been defined as the product of the percentage of responding
EBs and the average change in [Ca®']; under a specific condition.
These values have been normalized to the early time-point
control. Ca*" responses were calculated as the peak rise in [Ca?'];
from its level immediately prior to stimulation. The average
percentage response for each EB was determined by combining
the sizes of the areas which showed a [Ca®"]; rise of over 10 nM
and expressing them as a percentage of the area of the entire EB.
All measurements are recorded as means®=SEM.

Chemicals and Reagents

Chemicals were from Invitrogen, Paisley, UK unless otherwise
stated. For imaging studies, stocks of ATP were made as 100 mM
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Figure 1. Human embryonic stem cells (HESC) stably transfected with human Pax4 coding sequence. (A) Expression levels of Pax4 gene
during HESC differentiation measured by semi-quantitative RT-PCR in undifferentiated embryonic stem cells (ES) and embryoid bodies (EBs) of
untransfected H7 and H7.Px4 cells stably transfected with human Pax4 coding sequence (CDS). The RT-PCR for the untranslated region of Pax4 (PAX4
UTR) only detects endogenous expression whereas the RT-PCR for CDS picks up both endogenous and transgene expression. Genomic DNA (GDNA)
was used as positive control and PCR without cDNA was used as negative control (Neg). ACTB (f-actin) was used as loading control in all samples. All
five clones of H7.Px4 cells behaved similarly. (B) Western blot analysis in undifferentiated and late stage differentiated (21 days) EBs of H7 and Pax4-
expressing H7 cells. $-actin was used as loading control in all samples. (C) Undifferentiated H7.Px4 cells expressed high level of Oct4 indistinguishable
from that in untransfected H7 cells. (D, E) Undifferentiated H7.Px4 cells also displayed a morphology characteristic of undifferentiated HESC. (F-K) As
shown by immunocytochemistry, H7.Px4 HESC express human Pax4 protein (green), stage specific embryonic antigen-4 (SSEA4) (red) and TRA-1-60
(J). Nuclei were stained with DAPI (blue). Note the turquoise colour of the nuclei resulting from the overlay of Pax4 and DAPI staining. Scale bars,
50 um. Human Pax4 protein is not expressed by untransfected H7 HESC (K). All data are typical of at least 2 experiments on control and from at least

3 independent H7.Px4 clones.
doi:10.1371/journal.pone.0001783.g001

in distilled H,O and were maintained at —20°C. Tolbutamide was
made as 100 mM in DMSO and used 1:1,000 in Krebs Ringer
buffer for secretion experiments.

Statistical analysis

All averaged data are expressed*standard error of the mean
unless otherwise stated. Statistical analysis was performed on the
data using SigmaStat (Systat, Hounslow, UK). For comparisons of
more than 3 pairs of data, one-way analysis of variance was
performed prior to pairwise comparisons using Bonferonni’s test or
Holm-Sidak test. For comparisons of discrete data sets, unpaired
Student’s t-tests were used. Significance levels or p values are
stated in figure legends.

Results

Stable Transfection of HESC with Pax4

We first examined the expression of Pax4 in HESC and their
differentiated derivatives. Neither mRNA nor protein were
detected for Pax4 in undifferentiated H7 HESC, by RT-PCR or

@ PLoS ONE | www.plosone.org

Western blotting respectively. To induce @ vitro differentiation of
HESC, we applied the suspension method used for EB formation,
which resulted in an increased, but low level expression of Pax4
mRNA and protein (Figure 1A and 1B). We isolated the coding
sequence (CDS) for human Pax4 by PCR from differentiated H7
EBs and inserted it into the pCAG vector upstream of an IRES
linking it to the puromycin resistance gene (see Supplementary
Information, Figure S1). Previously, we found that this vector can
be used to derive stable transfectants of HESC without subsequent
gene silencing [21]. Following transfection and selection with
puromycin we isolated several independent clones of H7 HESC,
three of which were used in subsequent studies (H7.Px4).

All the undifferentiated H7.Px4 transfectants expressed the Pax4
transgene, detected by RT-PCR for the CDS region, but not the
endogenous gene detected by RT-PCR for the 5'UTR, which was
absent from the transgene (Figure 1A). During differentiation, the
expression of the endogenous Pax4 mRNA was substantially
increased in the H7.Px4 EBs, and its induction occurred earlier
than in the EBs of untransfected cells (Figure 1A; data not shown).
Most likely, this reflects a positive transcriptional feedback loop
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Figure 2. The effect of Pax4 expression upon EB differentiation of HESC. (A) RT-PCR analysis of gene expression in EBs produced from
untransfected H7 cells and from two independent clones transfected with Pax4 during a 16 day in vitro differentiation. (B) Q-PCR analysis of Ins and
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enzyme prohormone convertase 1/3 (PC1/3).
doi:10.1371/journal.pone.0001783.g002

since the Pax4 promoter contains several binding sites for Pax4 itself
[26]. Pax4 protein was also strongly expressed in the transfected
cells compared to the untransfected cells (Figure 1B, 1G, 1K).
Before induction of differentiation, the transfected cells retained an
undifferentiated phenotype despite their expression of Pax4. They
expressed Oct4 similarly to the untransfected cells (Figure 1C) and
retained the morphology (Figure 1D and 1E) and surface antigen
expression markers (e.g. stage specific embryonic antigen-3 (SSEA3)
and TRA-1-60) of undifferentiated HESC [27] (Figure 1F-1]J).

Upregulation of f-cell Transcripts in H7.Px4 EBs during
Differentiation

To determine the behaviour of H7.Px4 cells during their growth
as EBs, we next examined the expression of a panel of cell-specific
genes and proteins during EB differentiation (Figure 2A). In
untransfected and H7.Px4 cells, the expression of Oct4 was down-
regulated during EB growth over a 16 day period, though

@ PLoS ONE | www.plosone.org

w

significant expression of Oc¢t4 was retained, and indeed increased
at later time points in the untransfected cells. This retention of Oct4
in EBs has been noted in other studies [28] and may reflect the
persistence of undifferentiated cells and/or the appearance of cells
that also express Oct4, such as those of the germ line [29]. In the
H7.Px4 cells, there was a greater down-regulation of Oct4, and
delay in disappearance of Sox2, which is expressed by cells of the
neural lineage [30]. In addition, we observed strong expression of
the endodermal transcription factor forkhead box A2 (Foxa?2) in the
EBs, indicating HESC could efficiently contribute to definitive
endoderm germ layer during spontaneous differentiation [12],
Supplementary Information, Figure S2.

The differential expression of f-cell and neural-specific
transcription factors makes it possible to distinguish HESC-
derived f-like cells from neural derivatives. No significant
differences were observed between H7 and H7.Px4 EBs for
expression of SLC241, which encodes a constitutive glucose
transporter expressed in most human tissue types [31], or the
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channels in H7 cells transfected with Pax4. (A) Selective enhancement and

to untransfected H7 cells (n=31-50 EBs). Note that the actions of ATP are

associated with a declining functional capacity in H7.Px4 (n=18-29 EBs), but not untransfected H7 cells (n =44-52 EBs). (B) Typical VGCC-mediated
responses in [Ca®']; in H7 and H7.Px4 cells, respectively. (C) A summary of CACNATA, CACNATC and CACNATD gene expression analyzed by Q-PCR in
H7 and H7.Px4 cells. Data were obtained from n=3 experiments on H7 controls and n=3 experiments on H7.Px4 EBs from 1 H7.Px4 clone; similar
trends were observed in another H7.Px4 clone (data not illustrated). (D) Production of C-peptide in early and late stage differentiating EBs from H7
and H7.Px4 cells. With the exception of Panel (C) all data were obtained from 3 independent experiments using untransfected H7 EBs and 3
independent H7.Px4 clones. Asterisk indicates p<<0.05, double asterisk indicates p<<0.01 and triple asterisk indicates p<<0.001.

doi:10.1371/journal.pone.0001783.g003

Karp channel genes, ACNjII and ABCC8 (Supplementary
Information, Figure S2). However, there were marked differences
in the expression of several genes associated with the f-cell lineage
[32,33]. Pdx1, Islet-1 (Isl1), Ins, SLC2A2, Gcek and PC1/3 (Figure 2A,
2C) were all expressed more strongly, with an earlier onset in the
EBs from the H7.Px4 cells compared to the EBs from the
untransfected cells. By itself, induction of Ins expression is
suggestive but limited as a marker of ‘true’ f-cell differentiation
[19]. However, the expression of additional markers characteristic
of functionally competent cells such as SLC242, Gek, Pdxl and
PC1/3 [19,34], provides further support for the appearance of f-
cells in H7.Px4 EBs. To confirm these results we also used
quantitative PCR (Q-PCR) to examine the expression of Ins and
Pdx1 in EBs from H7.Px4 clones (Figure 2B). In each case, the EBs
from the H7.Px4 clones showed enhanced expression of both Ins
and Pdx] compared to the untransfected cells, consistent with the
expression of Pax4 promoting differentiation towards the f-cell
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lineage. Similar results were also obtained for Gek, Isl] and SLC242
(data not shown). We also noted a significant influence of Pax4
expression on somatostatin and glucagon gene transcripts
(Supplementary Information, Figure S2, S3). Taken together,
these gene expression patterns are consistent with enhanced
pancreatic endocrine and f-cell differentiation in the EBs from
H7.Px4 cells.

Physiological Assessment of Voltage-gated Ca**Channels
in EBs

To explore further the nature of the cells induced in the EBs
from the Pax4-transfected cells, we examined the dynamics of
intracellular Ca®" signals of H7 and H7.Px4 EBs to depolarization
of the cell membrane and voltage-gated Ca®* channel (VGCC)
gene expression (Figure 3). Pancreatic f-cells are electrically active
and regulate Ca®* in response to a membrane depolarization via
VGCCs. While glucose results in depolarization and subsequent
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Ca?" influx into f-cells, various secretagogues, such as potassium
choride (KCIl), ATP and tolbutamide also trigger a similar
response in the absence of glucose. We took advantage of a
fluorescent indicator molecule Fura-2 AM, that enabled us to
study the changes in intracellular free Ca®" concentration ([Ca*'];)
using dual-wavelength excitation microfluorimetry in Fura-2-
loaded EBs. In untransfected H7 cells, most EBs—71% to 78%,
failed to respond to depolarizing concentrations of KCl (40 mM)
between 7 and 21 days (at 7-9 days of differentiation positive
responses were seen in 11/50 EBs, 11/44 EBs responded at 14—
16 days and 9/31 EBs at 21-23 days). Over the same time points
the average rises in the [Ca®']; were 162 nM (n = 11) at the carly
time point, 205 nM (n=11) in the mid-stage of EB differenti-
ation and 39%=15 nM (n=9) in the oldest EBs. The functional
responsiveness of the undirected differentiation pathway in H7
cells was therefore associated with a 3-fold increase in VGCC-
dependent Ca®" signalling (Figure 3A). In comparison, EBs from
H7.Px4 cells were already approximately 5-fold more responsive
at day 7 when compared to controls (48% of EBs responding with
an average increase [Ca*']; of 36=4 nM) and 13 fold more
responsive at day 14 (30/30 EBs responded with an average
increase [Ca®']; of 486 nM) and day 21 (34/34 EBs responded
with an average increase [Ca*"]; of 474 nM) (Figure 3A and 3B).

Whilst Pax4 led to the induction of marked increases in voltage-
gated Ca®* channel operation, ATP-induced changes in [Ca®"];
which are mediated via purinergic receptors, independently of a
change in the cell membrane potential, were decreased at all time-
points in H7.Px4 cells. To understand the induction of voltage-
gated Ca®" signals we examined the expression of VGCC genes
associated with the endocrine pancreas [35]. By RT-PCR we
found CACNAIS (Cayl.l), CACNAIC (Cayl.2), CAGNAID
(Cay1.3), CACNAIA (Cay2.1), CACNAIB (Cay2.2) and CAGNAIE
(Cay2.3), and CACGNBI to 4, (Cayfl to 4) mRNAs were all
expressed in EBs from H7 and H7.Px4, and also in the human
fetal pancreas (data not shown). Q-PCR was used to examine
CACNAIC, CACNAID and CACGNAIA over time in H7 and H7.Px4
(Figure 3C). Pax4 was found to potentiate the expression of
CACNAIA, induce a transient increase in CACGNAI1D and enhanced
CACNAIC mRNA at all time points. Finally, to confirm that
indeed these changes in gene expression are related to the
appearance of a putative fi-cell phenotype, we found that the EBs
from the H7.Px4 clones produced C-peptide, the fragment cleaved
from the Proinsulin peptide during its processing in f-cells
(Figure 3D).

HESC-Derived Cells are Enriched in Ins and Pdx1
Transcripts and Showed Regulated C-Peptide Release to
Tolbutamide

Although the over-expression of Pax4 appears to enhance the
formation of cells within the EBs that express features of f-cells,
these co-exist with other differentiated derivatives of the HESC, as
indicated by the expression of additional genes unrelated to the f-
cell lineage (see Supplementary Information, Figure S4). We
therefore used fluorescence activated cell sorting (FACS) to isolate
the putative f-cells from the H7.Px4 EBs, based upon their
distinctive high content of zinc, characteristic of f-cells, which can
be detected by staining with the fluorescent vital dye, Newport
Green [36]. The EBs were allowed to develop in suspension for
16-21 days, and then plated on Matrigel-coated tissue culture
dishes, in low-glucose medium supplemented with nicotinamide
for an additional 7-10 days. These cells could then be easily
dispersed with trypsin:EDTA and stained with Newport Green,
which revealed a heterogencous intensity of fluorescence with
cytoplasmic staining (Figure 4A). Significantly more Newport
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Green-positive cells were detected by FACS in EBs from the
H7.Px4 HESC than from the untransfected H7 cells. When
isolated (Figure 4B) and analyzed by Q-PCR these cells were
enriched in fns and Pdxl mRNA expression and depleted in
expression of Oct4 relative to presorted and Newport Green-
negative population (Figure 4C).

After sorting, the Newport Green-positive cells were further
cultivated on collagen-IV-coated plates for an additional 57 days.
More than 90% of these cells could be stained with an antibody to
proinsulin, indicating de novo insulin synthesis (Figure 5A and 5B)
and contained significantly more C-peptide than Newport Green-
negative cells (Figure 5C). The difference in C-peptide content and
the levels of Ins transcripts between the Newport Green-positive
and negative cells (36-fold difference) is consistent with the
putative f-cells producing equimolar concentrations of insulin
and C-peptide [37]. When stimulated with 27.7 mM glucose
Newport Green-positive cells failed to respond with C-peptide
release (data not shown), but were responsive to tolbutamide, an
msulin secretagogue that acts as a Kypp-channel inhibitor [38]. In
this case, exposure to tolbutamide resulted in C-peptide release by
approximately two- to three-fold over non-stimulatory basal levels
in three separate experiments (Figure 5D).

Discussion

The mechanisms that drive the differentiation of HESC when
grown in suspension as EBs still remain largely unknown, but
typically under these conditions the cells spontaneously generate
derivatives of all three primary germ layers [28]. These include a
proportion of definitive endoderm and endocrine cells as
evidenced by the expression of Foxa2, NeuroDI and Isll as
described in our study. The appearance of low levels of Ins
transcripts also suggests that these endoderm derivatives may
include a few cells resembling f-cells. Previous studies have
identified growth factors that promote differentiation of HESC
into insulin-producing cells, but few have identified transcription
factors that enhance this process in HESC [12]. However, Pax4
has been shown to play a role in pancreatic endocrine and f-cell
specification from the early definitive endoderm in mouse embryos
and to enhance f-cell differentiation from mouse ES cells
[14,15,16]. Our data now show that Pax4 also strongly enhances
the appearance of putative f-cells in the EBs produced from
HESC.

We found no evidence that constitutive expression of Pax4
affects the undifferentiated state of HESC. It is known that HESC
do express low baseline levels of lineage-specific markers [28] so
when differentiation is triggered by EB formation, the presence of
Pax4 or other lineage-specific markers may distort the process of
initial lineage selection. However, it seems more likely that the
effect of Pax4 expression on f-cell production is due to action later
in the differentiation process. The specification of f-cell fate
during embryonic development in vivo relies on a tightly balanced
process of four sequential steps: (1) pancreas precursor specifica-
tion and proliferation from a definitive endoderm cell pool, (2)
pancreas endocrine lineage commitment, (3) formation and
differentiation of f-cells, and (4) further maturation into functional
glucose-responsive f-cells. We envisaged that the introduction of
constitutively expressed Pax4 might bestow a selective advantage
on the definitive endoderm cells that form spontaneously in EBs
derived from cells and enhance their differentiation towards
pancreatic f-cell lineage. For example, since Pax4 over-expression
has recently been shown to enhance cell survival [39], constitutive
expression of Pax4 may enhance immature endocrine cell survival
in addition to promoting endocrine lineage differentiation from
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Figure 4. Isolation of putative f-cells based on high zinc content using a vital dye, Newport Green (NG). (A) Confocal microscopic
examination of NG staining in H7 and H7.Px4 EB-derived cells. Note the quasi-homogeneous fluorescence of NG-labeled zinc-positive cells with
cytoplasmic dots. (B) Isolation of NG+ve (top 10%) and NG-ve (bottom 10%) H7.Px4 cells by FACS. The selected cells were collected and analyzed by
Q-PCR for the expression of Ins, Pdx1 and Oct4. (C) Gene expression levels in the sorted NG+ve, NG-ve and the unsorted cells are represented as ACt
values (= standard deviation) relative to ACTB for all samples. Note that an increase in ACt of 1.0 represents 2-fold decrease in mRNA level. The ACt
value was determined by subtracting the average housekeeping (ACTB) Ct value from the average target genes (Pdx1, Ins and Oct4) Ct values. Error
bars represent the standard deviation of the difference, as calculated from the standard deviation of the target and ACTB values.

doi:10.1371/journal.pone.0001783.g004

endodermal precursors. By this hypothesis, the starting point of
Pax4 activation for f-cell differentiation is downstream of
endodermal pancreatic induction itself, so that Pax4 activation
affects pancreatic endocrine cells that spontaneously differentiated
from endoderm in EBs, while other ‘Tlineage-precommitted’ stem
cells are not responsive. Further enhancement of f-cell differen-
tiation may therefore be achieved by regulation of signals that
promote or inhibit the initial differentiation of definitive endoderm
specification from hES cells, and subsequent specification of the
pancreatic lineages. For example, D’Amour et al (2006) have
reported that the earliest stages of definitive endoderm differen-
tiation can be modulated by activin A, although Mfopou et al
(2007) reported the generation of inhibitory Shh signaling during
production of definitive endoderm using activin A [40].

@ PLoS ONE | www.plosone.org

Cells produced in the H7.Px4 EBs exhibited functional
properties (C-peptide release and intracellular Ca-signalling
responses) typical of human f-cells. We found that Pax4 positively
influenced capacity of HESC to respond to depolarizing
concentration of KCI in a manner consistent with an action on
voltage-gated Ca?" channel gene expression. This was associated
with a five fold increase in the proportion of responding cells, such
that 14 days after the induction all EBs were functionally
responsive to KCl-induced depolarization of the membrane. This
was most likely due to the upregulated expression of voltage-
dependent Ca*" channel genes including those encoding Cavl.2
and Cavl.3 a-subunits. These genes produce high voltage
activated L-type voltage-gated Ca®" channels which are the
specific pore-forming subunits of importance in mature pancreatic
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Figure 5. Insulin and C-peptide expression in FACS sorted H7.Px4 cells. H7.Px4 cells sorted for Newport green staining (Figure 4) were
replated on human placental collagen VI-treated chambers and cultured for 5 days before immunocytochemistry and C-peptide analysis. (A) shows
immunocytochemistry for anti-human Proinsulin antibody (red) with nuclei counterstained with DAPI. Proinsulin-positive reaction is seen scattered in
cytoplasm shown in (A) and in a higher magnification in (B) (arrows). Also shown is a Proinsulin-negative cell (arrowhead). Scale bars, 50 pm. (C) and
(D) summarize C-peptide content and release in response to 100 uM tolbutamide; the fraction released was 79.92+10.8% from three independent

experiments using two H7.Px4 clones. Triple asterisk indicates p<<0.001.

doi:10.1371/journal.pone.0001783.9005

o- and f-cells and during development [41]. The transcriptional
control of VGCC gene expression is not particulary well
characterised but it is well known that Ca®" entry via VGCC
will influence subsequent gene expression via transcription factors
such as CREB, MEF and NFAT which are phosphorylated by
Ca?"-dependent kinases such as CaMKIV [42]. In addition it has
been reported that a C-terminal fragment of Cavl.2 that is
produced in developing and adult neurons can regulate the
expression of many endogenous genes including ion channels and
other proteins of importance for electrically-active cells [42].
Therefore, the early expression of VGCC subunits may be
required for normal pancreatic ff-cell development and in
combination with other signals may trigger the further differen-
tiation of endocrine and f-cell lineages. This hypothesis is
supported by studies in the Cavl.3™/~ knock-out mouse where
loss of pancreatic expression of CAGNAID led to low numbers of f-
cells in adult mice [43]. Intriguingly, the actions of Pax4 on
voltage-gated Ca®" channel function are distinct from the Ca®'-
signals induced by purinergic receptor agonists,, which appear to
be negatively regulated by Pax4 (Figure 3).

In our studies, differentiation of putatitive -cell progenitors was
achieved by outgrowth of late stage EBs on Matrigel and
treatment with low glucose and nicotinamide. Similar conditions
have previously been demonstrated to enhance human f-cell
progenitor differentiation n vitro [44]. H7.Px4 EBs produced a
higher proportion of Newport Green-positive cells than H7 EBs,
and these could be isolated by FACS. Newport Green-positive
cells were enriched in fns and Pdx] gene expression and had a high
content of C-peptide which could be released in a regulated
manner, suggesting an increase in the numbers and competency of

@ PLoS ONE | www.plosone.org

cells directed towards a f-cell lineage in H7.Px EBs. Most notably,
our study demonstrated a strong correlation between the amount
of Ins transcripts and C-peptide content, which is consistent with
the expectation that insulin and C-peptide are produced in
equimolar amounts [37]. However, our observations also indicate
that Pax4-derived HESC do not respond to glucose stimulation
through C-peptide release, but that they are responsive to the
insulin  secretagogue tolbutamide. Sulphonylurea-mediated re-
sponses suggest that these cells have the capacity to express
functional ATP-sensitive K-channels and that closure of these
channels by tolbutamide facilitates a depolarization of the cell
membrane, leading to Ca®*-dependent exocytosis of insulin-
containing granules. Since glucose failed to replicate this response,
it suggests that-as in fetal islets, a key component of the glucose-
sensing apparatus of HESC-derived f-cells is functionally absent.
The data we present here suggests that this is not at the level of
glucose transporter or glucokinase genes, nor the ionic basis of
insulin release. In future it will be important to determine whether
such cells would develop to a “mature” f-cell phenotype i situ
following transplantation or whether they will require additional
manipulation  vitro in order to promote maturation.

In summary, we have described for the first time using HESC
how over-expression of Pax4, in combination with simple changes
to the cell culture environment, led to the enhanced generation of
cells resembling pancreatic ff-cells. Further, we were able to purify
these cells using FACS and perform functional assays i vitro to
determine their physiological characteristics. This provides a
proof-of-concept that genetic manipulation of HESC can provide
a useful tool in the generation of insulin-secreting cells from
HESC.
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Supporting Information

Table S1 Oligonucleotide primer sequences used for standard
and quantitative PCR in this study. All primers were designed and
tested by the authors unless otherwise indicated in Table SI.
Primers produced PCR products migrating as single bands of the
expected molecular size on agarose gel electrophoresis. PCR
products were purified and sequenced to confirm product identity.
Found at: doi:10.1371/journal.pone.0001783.s001 (0.09 MB
DOC)

Figure S1 Plasmid map of the vector used to transfect HESC.
pPCAG-PAX4 contains an internal ribosomal entry site (IRES),
conferring bicistronic expression of PAX4 coding sequence (CDS;
located at 207-1238 base pairs [bp] on Homo sapiens PAX4
mRNA, Gene Bank Accession Number NM_006193) and
puromycin-resistance genes, under the control of the CAGG
promoter coupled to a PyFF101 mutant enhancer.

Found at: doi:10.1371/journal.pone.0001783.s002 (0.04 MB
DOC)

Figure S2 Differentiation of H7 control and H7.Px4 EBs over a
period of 21 days was associated with the expression of Foxa2, a
marker of definitive endoderm which persists during pancreatic
development. NeuroD1 was expressed earlier in the H7.Px4 EBs
relative to controls. Genes encoding subunits of the ATP-sensitive
K+ channel (ABCC8 and KCNJ11) which are critical for
depolarization-response coupling in f-cells were expressed at all
time points in both H7.Px4 and controls. Gecg encoding glucagon
gene was upregulated in 2/3 H7.Px4 clones during differentiation
but was never detected in H7 control EBs. All data are typical of
n=4 experiments on control H7 cells and EBs, and from n=1
experiment from each of 3 independent H7.Px4 clones. M,
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markers; gDNA, genomic DNA; N'T| no template control; dO, day
0; +, RT step performed in presence of reverse transcriptase; -, RT
step performed in absence of reverse transcriptase.
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Figure 83 Somatostatin (SST) transcripts were detected in as
early as 7-day differentiation in H7 EBs, however, there were
increased levels of SST transcripts in H7.Px4 EBs. This is
consistent with the observation that PAX4 commits the early
endocrine cells to become somatostatin-producing delta-cells, as in
the mouse pancreas (St-Onge et al., 1997).

Found at: doi:10.1371/journal.pone.0001783.s004 (0.03 MB
DOC)

Figure S4 Spontaneous differentiation of H7.Px4 EBs also gave
rise to cells characteristics of all three germ cell layers. RT-PCR
analysis of gene expression in EBs produced from untransfected
H7 cells and from two independent H7.Px4 clones after 16-21-day
in vitro differentiation. Genes characteristic of other lineages such
as endoderm (AFP), mesoderm (Coll2) and ectoderm (MAP2)
continued to appear in H7.Px4 EBs but was similar to those in
untransfected H7 EBs. M, markers.

Found at: doi:10.1371/journal.pone.0001783.s005 (0.08 MB
DOC)
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