N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title STWSN: A novel secure distributed transport protocol for wireless sensor
networks

Type Article

URL https://clok.uclan.ac.uk/id/eprint/24688/

DOI https://doi.org/10.1002/dac.3827

Date 2018

Citation Dvir, Amit, Ta, Vinh Thong, Erlich, Sefi and Buttyan, Levente (2018) STWSN:
A novel secure distributed transport protocol for wireless sensor networks.
International Journal of Communication Systems, 31 (18). e3827. ISSN
1074-5351

Creators | Dvir, Amit, Ta, Vinh Thong, Erlich, Sefi and Buttyan, Levente

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1002/dac.3827

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Received 7777, Revised ?7777?; Accepted 77727

DOI: xxx/XXXX

ARTICLE TYPE

STWSN: A Novel Secure Distributed Transport Protocol for
Wireless Sensor Networks

Amit Dvir*! | Vinh-Thong Ta? | Joseph (Sefi) Erlich! | Levente Buttyan®*

! Ariel Cyber Innovation Center, Department
of Computer Science, Ariel University, Summary
Israel .

2School of Physical Sciences and Several transport protocols for Wireless Sensor Networks (WSNs) have been
Computing, University of Central designed to fulfill efficiency requirements such as energy and reliability. Unfortu-
Lancashire , Preston, UK nately, most of these transport protocols do not include sufficient security mech-

3Laboratory of Cryptography and System
Security, BME, Budapest, Hungary

4MTA-BME Information Systems Research address these vulnerabilities, this paper propose a novel secure transport protocol,
Group, BME, Budapest, Hungary

anisms and hence, are vulnerable to numerous reliability and energy attacks. To

named as Secure Transport Protocol for Wireless Sensor Networks (STWSN). Based

Correspondence on Distributed Transport for Sensor Networks (DTSN) protocol, our protocol add a
*Amit Dvir, Ariel University. Email:

new security extension in order to provide secure transport protocol. We provide both
amitdv @ariel.ac.il

informal and formal security analyses of STWSN, and show that it resists attacks on
energy efficiency and reliability requirements. Last but not least, a performance anal-
ysis based on the building blocks of STWSN, as well as some simulation results are
also presented.

KEYWORDS:
Wireless sensor networks, Transport protocols, Hash-chain, Merkle-tree

1 | INTRODUCTION

Wireless Sensor Networks (WSN)s rely on low-cost devices with strong limitations such as energy and communications. One
of the aims of WSN is to collect measurements over a given space and to transfer it to an external network via special nodes
designated sink nodes. Due to the limitations of the devices, power saving techniques and low power communications for
multihop data transmission are commonly implemented.

Some WSN applications demand a reliable transport layer protocol to ensure high end-to-end reliability. Some may require
packet-driven reliability where the destination node have to receive all the packets which sent by the source node, while in order
applications may require event-driven reliability, where the event must be detected.

Transport protocols for WSN require reliable delivery and congestion control. Unfortunately, although may transport protocols
exist, they are focus on reliability and not on security. Hence, WSN transport protocols can be exposed to attacks which can
be classified as attacks on reliability and energy depleting attacks. When attacker aim to drop a data packet in a way that the
dropping remains undetected is reliability attack. In energy depleting attacks, the attacker triggers energy-intensive operations
to deplete the nodes’ batteries [I].

The STDP protocol [], which is based on the DTSN protocol [B, &], was the first transport protocol that focus on security
for WSNs; however, in this paper we show that the STDP is still vulnerable because the security methods are not sufficient
(see Section B2). To address these vulnerabilities, we propose a novel Secure Transport Protocol for Wireless Sensor Networks
(STWSN), a secure extension for DTSN [@] (DTSN only provides reliability and energy efficiency in a benign environment).

2| Amit Dvir ET AL

1.1 | Our Contribution

To secure the WSN transport protocol, we apply hash-chains [8] and Merkle-trees [6] in a new context. Based on formal proofs,
we show that the STWSN protocol is secure against attacks on DTSN and SDTP protocols. The STWSN protocol also integrates
the following mechanisms to mitigate other attacks (a detailed explanation on these attacks can be found in Section B):

o Aggregate timer - To mitigate and prevent energy attacks

o Status timer - To mitigate EAR replay or forging attacks

Sending pre-deleted packets - To mitigate NACK bitmaps attacks

Retransmission timers - To mitigate the impact of replay attacks

Forwarding ACK packets after duplications - To mitigate NACK bitmaps attacks
e Limiting the retransmission number - To mitigate NACK replay attacks

e Limiting E AR responding - To mitigate EAR replay or forging attacks

We present a formal security analyses to demonstrate that STWSN resists attacks on energy efficiency and reliability require-
ments. Finally, an overhead analysis of the Merkle tree and hash chain is presented with performance analysis of our new protocol
when compared to DTSN and STDP. In both our new protocol is much more secure and the overhead is not dramatic. A pre-
liminary version of this work can be found in [[2, 8]; however, here we added a substantial number of new contributions, such as
the extension of the formal analysis, as well as more detailed protocol description details, overhead analysis and performance
analysis sections.

The rest of the paper is organized as follows: Section @ provides an overview of the most recent related works in this field. In
Section B we provide a description of an attacker model, and discuss the main security vulnerabilities in the SDTP protocol. Our
proposed STWSN protocol is detailed in Section B, and an informal security analysis and formal security verification are found
in Section B, respectively. The STWSN performance analysis appears in Section B and concluding remarks and some possible
future directions are presented in Section [. Finally, the Appendixes presented in Sections B - [T.

2 | RELATED WORKS

The DTSN [B, 8] protocol is an efficient transport protocol designed for WSNs in which intermediate nodes cache data packets
with some probability p, so that they can retransmit packets to the destination if needed. Hence, DTSN is more effective than
transport protocols that apply end-to-end retransmission. Unfortunately, DTSN does not provide any protection for data and
control packets, which makes it vulnerable to data and control packet modification/forging attacks. An attacker can arbitrarily
change the content of the messages, causing permanent packet loss or session closing. More details on DTSN can be found in
Section B.

Ye et al. [9] proposed a mechanism that using automatic repeat request in order to improve reliability. The authors reported
that the new mechanism exhibits good performance in several parameters such as reliable data transmission and end-to-end
delay. Kordlar et al. [I0] proposed a flexible recovery mechanism for a multipath forwarding mechanism designed to increase
the network reliability and throughput. More information on reliability in wireless sensor networks can be found in [T, T2].

In WSN, attacks on transport protocols may be attacks on reliability and energy depleting attacks. Therefore, Buttyédn and
Grilo [?] proposed the SDTP protocol, which is a security extension of DTSN, based on the application of symmetric key
cryptographic primitives. More details on SDTP can be found in Section B

Hash chains were used in the secure routing protocol Ariadne [13] and TESLA [I4], and an example of securing protocols
using Merkle-trees can be found in [T3]. One of the first applications of a hash chain was proposed by Lamport [T6], in which he
suggested using hash chains as a password protection scheme in an insecure environment. This method was used in the S/Key
one-time password system [['/] developed for authentication in Unix-like operating systems. Other applications and hash chain
optimization works can be found in [T, 19]. More details on hash chains can be found in Section BT

Merkle-trees were originally proposed to efficiently handle many Lamport one-time signatures [20], where each packet can
be signed by one Lamport key. An example of a practical application of Merkle-trees is the Google Wave protocol [21]. Below
we detail the key features of DTSN, SDTP protocols, hash chains and Merkle-trees. More details on Merkle-trees can be found
in Section BT

Amit Dvir ET AL 3

3 | ATTACKER MODEL AND SECURITY ISSUES

3.1 | Attacker Model

We assume a class of stealthy and internal attackers [22], whose purpose is to avoid detection of their activity. Our attacker
has two main goals: to deceive the honest nodes that data packets have already been delivered while in reality they have been
lost (which we refer to as a reliability attack), or to force the nodes to expend more energy than the amount actually needed
(which we refer to as energy attack). In particular, we are interested in attacks where compromised nodes misbehave in more
sophisticated ways, such that while causing huge damage, it is difficult to be discovered. “Brute force” type Denial-of-Service
(DoS) attacks are not considered in this paper. In addition, we assume that the source and the destination of traffic flow (i.e.,
a path) are not compromised. The rationale is that one cannot do much against a misbehaving destination that acknowledges
packets that it did not receive, or a source that deletes sent data packets before receiving any acknowledgments for them. We
do assume, however, that any intermediate node may be compromised, and we want to eliminate its potential malicious effect
on the system. Therefore, from this point on, our attacker is always stealthy and is part of the routing between the source and
destination.

3.2 | Security issues in the SDTP protocol

The SDTP [] protocol preserves the characteristics (and advantages) of DTSN, but extends it with the following cryptographic
mechanisms. Each data packet with sequence number 7 is extended with two MAC (Message Authentication Code [23]) fields,
an ACK MAC and a NACK MAC. These two MACs are computed with two different keys, an ACK key (denoted by K,
and a NACK key (K}, ,), over the whole data packet (see Eq.). K} ., and K},
sequence number n; hence, they are referred to as per-packet keys [2].

Each K| ., and K} , ., are computed by the source and the destination based on a one-way function over the sequence
number n, the ACK or NACK session master key, and the constant ACK or NACK, respectively. The ACK and NACK

session master keys are only known to the source and the destination, and are never revealed or sent out during the protocol.

cx)
are specific to the data packet with

ACK MAC = M AC(Packet", K’

NACK MAC = M AC(Packet", K}, ,)

Upon receiving a data packet, by verifying the two MAC values, the destination node check the integrity and authenticity of
data packet that the node received. In case the destination node receives E AR packet, it sends an ACK or a N ACK packet to
the source according to the gaps in his received data buffer. Regarding the EAR, in the case where the destination concludes
that there are no gaps, the destination reveals its ACK key (K} -, all the data packets with sequence number equal or less than
n has been received), and sends it as part of the ACK packet.

In the case where the destination node decides that one data packet is missing (e.g, data packet with sequence number #), the
destination node reveals its N ACK key (K}, , ;) for each missing data packet and sends it as part of the N ACK packet with a
bit map (indicates which data packets are missing). Any intermediate node checks the N ACK control packet and in the case of
storing the corresponding packets, the intermediate node can verify the authentication of the control packet (ACK or N ACK)
with the included key. For each verification of the N ACK key, the intermediate node does the following: retransmits (if stored)
the missing data packet, in the bit map it unsets the bit, from the N ACK keys it removes the corresponding key.

After each sending, the intermediate node check if the bitmap becomes clear. In case it is clear, the intermediate node sends
an EAR message to the destination node and the N ACK packet is deleted and the intermediate node sends an ACK packet
with the same ACK value as was in the N ACK packet. Moreover, both intermediate nodes and the source node maintain the
largest verifiable acknowledged sequence number so far for each session, named as M ax.S N, the aim of this value is to avoid
replaying control packets.

Based on the fact that the session master keys are never leaked, and hence only the source node and the destination node
can produce the right per-packet keys (ACK and N ACK), the SDTP protocol is assumed to be secure [P]. As claimed by the
authors in [], the intermediate node can be sure that upon receiving ACK and N ACK packets are coming from the destination,
since only the destination is able to reveal the correct keys. Moreover, due to the fact that the per-packet keys are computed by a
one-way function, when the ACK and N ACK keys are revealed, an attacker can not reveal the master keys from them; hence,
the yet unrevealed ACK and N ACK keys cannot be derived using the current keys. In the following, we discuss each of these
attack modes.

cx) n

CK>

4 Amit Dvir ET AL

S CN1 1 CN2 D

O @ O ® O

1. CN1sends dummy msg

— 2. 1 stores in the cache

1 ’ 1
1| MAC-CN1 | | MAC-CNT

Buffer of I
3. CN2 sends corresp. ACK and key

_

4.1 deletes the entire buffer

FIGURE 1 Creating a fake packet attack, where the sequence number of the fake (dummy) packet is 15.

Creating fake packets attack

This is an attack data packets can be eliminated from the intermediate nodes’ caches by colluding attackers. Let us consider
the following scenario, depicted in Fig. [: Let define .S, I, D be the source node, intermediate node, and destination node,
respectively, and let CN'1 and C N2 be the two cooperative compromised nodes between the source and the destination. We
assume symmetrical links between (S,CN1), (CN1,I), (I,CN2), and (CN2, D) pairs as can be seen in Fig. . First, node
C N1 creates a data packet m containing a MAC value computed with fake NACK and ACK keys and sends the packet; then
the intermediate node I stores the packet without being able to verify the MAC values. Later, the attacker C N2 generates fake
ACK, NACK packets with the corresponding keys (fake), those keys will match the MAC values of the stored m at node
I generated by C1. Hence, node I considers these fake acknowledgment packets to be valid due to the verification success.
Consequently, I eliminates the stored packets with a sequence number that is less than m (including m itself) from its cache,
although some of the real packets have not been received by the destination, and updates its M ax.S N to be m. Intermediate nodes
can be easily misled to believe that data packets have been delivered, although the destination has not received those packets.
The worst scenario is when node C N1 is next to the source and C N2 is next to the destination and using the attack described
above the entire chain between source and destination may delete packets although the destination did not receive them. Another
basic reliability attack is when an attacker or attackers modify the data packets. Modifying the data leads to closing the session.

Forging N ACK packets attacks

These attacks, as depicted in Fig [, give an attacker the ability to increase the overhead of the control packets and force multiple
retransmissions. In general, this is not a regular attack that decreases the performance of the protocol/network. An attacker can
use the bitmap and N ACK authentication values from one N ACK packet to generate a large number of valid N ACK packets
with overlapping information. The attack is based on the following scenario: a source node sends a packet to a destination, and
some of the intermediate nodes store this packet. Let us assume that for some reason (not a security reason) the packet does
not reach the destination. After the source sends a data packet with the EAR flag set, the destination answers with a NACK
packet which includes a set of N ACK authentication values. An attacker can intercept the N ACK packet and generate other
Yion (Z) = 2" real and useful N ACK packets from this NACK packet with overlapping information along with one ACK
packet (without any N ACK authentication value), where n is the number of N ACK authentication values in the NACK
packet. The injection of the generated overlapping control packets will increase the control packet overhead, and as a result of
the overlapping information the number of retransmissions of both data and control packets will increase. The control packet
overhead can reach an upper bound of 24%~! real and useful packets (where AW is Acknowledgment Window [3]).

Note that some N AC Ks are useful and even the overlapping information in some cases (loss of some N AC Ks) can be advan-
tageous. Therefore, instead of entirely preventing this attack, our purpose is to mitigate this attack by giving the intermediate
node the ability to aggregate both new and overlapping information into one control packet.

Same authentication modification value in a N ACK packet attack

Here, an attacker can indirectly close a session using the bitmap included in the N ACK packet. The attack is based on the fol-
lowing scenario: a source node sends a packet to a destination, which is stored by some of the intermediate nodes. Unfortunately,
for some reason (not a security reason) the packet does not reach destination. After the source sends a data packet with the EAR

Amit Dvir ET AL 5

S A D

ACK(6) <:| NACK (6, 8,10,12)
NACK(6,8)
NACK(6,10)

<K NACK(6,12)

NACK(6,8,10)
NACK(6,8,12)
NACK(6,10,12)
NACK(6,8,10,12)

FIGURE 2 Injecting Y, _,_, (Z) N ACK Packets from a Single N ACK Packet. An example where a N ACK message can be
transformed into AC K message.

flag set, the destination answers with a N ACK packet that includes a set of N ACK authentication values. The attacker always
unsets the same bit in the bitmap, and erases the relevant N ACK authentication value from the forged N ACK packet. The
N ACK packet propagates in the network with a lack of information about the missing packet until the N ACK packet becomes
an ACK packet and reaches the source (an intermediate node cleared the entire bitmap). The lack of information about the
missing packet will trigger the EAR timer in the source and after a while the E AR counter will reach the MAX value, which
eventually leads to closing the session between the source and the destination [3].

In fact, to conceal malicious behavior and make the attack more difficult to detect, the attacker can modify the same N ACK
authentication value as presented above, but only for short periods of time; this will not close the session but will increase the
network delay.

Faking the session number attack

The attacker causes packet deletions from the intermediate node buffer by injecting packets with a new session number. In
DTSN [B], by receiving a packet with a new session number the intermediate node deletes cache entries with the same source
ID, destination ID, and application ID (for more information about the DTSN intermediate node algorithm see Fig. 3 in [B]).
Therefore, by injecting a packet with the same source ID, destination ID, and application ID but with a different session number,
an attacker can force an intermediate node to delete all the packets of the old (but real) session number.

Replaying or forging £ AR flags attack

Here, by setting the E AR flag to a value 0, the attacker prevents the destination from sending control packets (ACK or N ACK),
whereas setting the EAR flag to 1 makes the destination send control packets unnecessarily. The attacker always sets the EAR
bit to 0, with the result that the destination never receives a packet with EAR= 1, and hence, never sends an ACK or NACK
packet. On the other hand, the attacker can always set the E A R flag of packets to 1, making the destination send control pa‘ckets
unnecessarily. Recall that the attacker can modify the E AR bit because it is not protected cryptographically.

Replaying N ACK packet attack

Here, the attacker replays old N ACK packets to force futile retransmissions of data packets.

Preventing retransmission attack

Here, the attacker attempts to prevent intermediate nodes from retransmitting packets by changing bitmap values in NACK
packets.

4 | THE STWSN PROTOCOL

STWSN is based on an efficient application of authentication values and asymmetric key crypto while enhancing the authenti-
cation and integrity protection of control packets. STWSN is tailored to the problem of authenticating and verifying the ACK
and N ACK packets [0]. Our STWSN protocol is based on two main building blocks, hash chains and Merkle-trees and the
general idea of STWSN is the following: two types of “per-packet" authentication values are used, ACK and NACK. Any
intermediate node and the source node can verify the received ACK and N ACK packets by using the corresponding ACK
and N ACK authentication values, respectively. Each ACK authentication value is an element of a hash chain [5], whereas a

6 | Amit Dvir ET AL

N ACK authentication value is composed of a leaf and its corresponding sibling nodes along the path from the leaf to the root
in a Merkle-tree [B]. The computation of the per-packet keys KX'C), x and KSLC x is based on the application of hash chains and
Merkle-trees. We adopt the notation and notion master secrets K 4-x; Ky 4cx from SDTP [?]; i.e., they are computed in the
same way as in the case of SDTP, based on a pre-shared secret.

In the following, we described the ACK and N ACK authentication values in detail and then explain for each possible node
(source, destination and intermediate) the main algorithm based on the security mechanisms to mitigate and prevent energy and

reliability attacks.

4.1 | Preliminary
4.1.1 | The ACK Authentication Values

In order to produce many one-time keys from a single key we can use a hash-chain [8,24]. Lets define x as the initial value, the
hash function as 4, and the hash chain initial value as v,, = h(x). Then, according to the above definitions the i-th element of
the hash chain v; will be computed as v; = h(v;,;) = h™(v,,). The important property of the hash chain, one-way property,
is that the elements can be computed in one direction easily, however, not in the reverse direction. In other words, if an attacker
knows v;, might compute any v; = hU=)(v,) for any j < i, but the attacker can not compute any v, for k > i. Therefore, in a cost
of a single digital signature and at the cost of the computation and storage of the hash chain we can use hash chain for repeated
authentications [24]].

Therefore, anyone that wants to authenticate itself should compute a hash chain v,,, v,,_;, ..., U, of length m + 1, and digitally
sign the last element v, (termed the root of the hash). The digital signature can be verified by anyone using the public signature
verification key of the entity. Later on, by revealing in reverse order the elements of the hash chain the entity can authenticate
itself repeatedly (at most m times). More precisely, at the i-th authentication, the entity reveals v;. In order to verify, the verifier
can use one of the following ways: remember the last used hash chain element v;_,, and verify v; with a single hash computation
or hash this value i times and check whether the result matches v, that has been signed by the entity.

As explain above, we used hash chain elements and accept them only once. Therefore, in case an element v, is accepted,
the other elements in the hash chain v;_;, ..., v, can no longer be used. As we explain above about hash chain (the one-way
property), the elements in the hash chain v, , ..., v,, that can still be used for authentication cannot be computed by anybody
except the entity that knows v,,,.

In any case the verifier sees hash chain elements v, 4, ..., v,,, it can be sure that those elements have been revealed by the
entity with its signature [?4]. Therefore, the i-th element of a hash chain is the authentication value associated with the ACK
packet referring to the i-th data packet. The source node, at the beginning of each session, generates the AC K master secret
K, and uses the initial value Ki"g « = h(K,ck) to calculate a hash chain of size m+ 1, where m is the number of data packets
that the source node needs to send in the session to the destination node. Each element of the calculated hash chain represents
a per packet ACK authentication value as follows: K™ K™=V kO g©

‘ o ACK® "MACK * 17 M ACK? TN ACK?
where KX)C K= h(KX c K)) and A is a one-way hash function vx;here K A’ ck represents the ACK authentication value corresponding
to the data packet with sequence number i and the value Kgé x 18 the root of the hash chain. Finally, in order to stored the hash

chain efficiently a some storage complexity that is logarithmic in the length m we can use some of the techniques from [5,1R,IT9].

4.1.2 | The N ACK Authentication Values

As explained above, hash chains can produce many one-time keys from a single key. However, a hash-chain has several limita-
tions, one of which is that the elements can only be revealed sequentially (one after the other). Using a hash chain to authenticate
and verify the N ACK messages has a major drawback. By revealing element v; any attacker can reveal v;_,, ..., v, elements and
use each of them to request a retransmission of a message that has already been received by the destination. One of the ways
to overcome this problem is to use Merkle-trees [, 24]. The operation of a Merkle-tree can be defined as follows: Let define
Uy, Uy, ..., Uy as the set of values that we want to authenticate. First, each value v; we hash into U: using a one-way hash func-
tion. Second, the hashed values become the leaves of a binary tree. Next, to each internal vertex in the binary tree u, we assign
a value that is computed as the hash of the values assigned to the two children of u [24]]. Finally, we take the root of the tree and
digitally sign its value.

Later, by revealing v; and all the relevant values assigned to the siblings of the vertices on the path in the Merkle tree from
v; to the root we can authenticate the value v;. By hashing these values and compare the result to the value assigned to the root,

Amit Dvir ET AL 7

H(h,,S,)
Root hash Value emmmfie-

FIGURE 3 The STWSN Merkle-tree structure [[Z].

the verifier can check if the two values match. If so, the value v; is accepted by the verifier as authentic. Note, we cannot use the
revealed value v; and the values assigned to the siblings to compute an as yet unrevealed value v;. This ensures that the values
can be revealed in any order.

In case of both hash-chains and Merkle-trees, when a digital signature is used, the public signature verification key has to be
known by every node. Since sensor node digital signing and verify procedures are costly, it is useful to implement the signing
procedure for bootstrapping alone. The signing procedure is only important for secure distribution of the root of the hash chain
and the Merkle-tree root.

In our protocl (STWSN), the hash chain is not applicable due to the fact that several N AC K authentication values are revealed
at a time in any order. Therefore, we need to search for another security building block. Based on section ?? we use the binary
Merkle-tree to authenticate the N ACK packets.

In the first step, we need to compute the so-called NACK secret values based on a Pseudo-Random Function (PRF) as follows:

Kxixcx = PRF(Ky sck- “per packet NACK secret” , n),

where 7 is a sequence number of a data packet.

In the second step, we hash each NACK secret value. In the third step, we assign the hashed values to the leaves of the Merkle-
tree: K;\(,'X cK = h(Kch K). We refer to these leaf values as NACK leaf values. Based on N ACK leaf values, the internal nodes
of the Merkle-tree are computed. The STWSN Merkle-tree structure can be found in Fig. B.

4.2 | STWSN - Source Mechanism

When the source wants to open a session, it first computes the following: (1) the session master secret K; (2) the ACK master
secret K 4o (3) the NACK master secret Ky 4cx- Then, the source calculates the NACK authentication values and ACK
authentication values using the knowledge about the number of data packets in the session and the master secrets. Thereafter, a
Merkle-tree and a hash chain are generated for the session, based on the calculated parameters.

After the calculations, the source sends an open session packet (see Fig. B) with the following: the root of the hash chain
(Kffé) the hash chain length (m + 1), the number of Merkle-tree roots (¢) in the case where we used several tress (see Section
M for more on the advantages and disadvantages of using several Merkle-trees), the Session identifier Sessionl D, the source
node ID, the destination node ID, and the root values of the + Merkle-trees (for simplicity we chose ¢t = 1). Finally, the source
digitally signs the whole packet (e.g., ECC [25]).

Since the open session packet may not reach the destination, the source node may need to retransmit the packet again (open-
session packet). Therefore, after sending a new open session packet, the source node initiates an open-session timer, and upon
timeout (the time has elapsed) without any feedback (AC K message) from the destination as to the successful receipt of the
open session packet, the source node retransmits the open session packet again. The source node also limits the number of
retransmissions of the open session packet.

When the source node receives an ACK packet from the destination node, the source verifies the ACK packet and starts
sending data packets to the destination node. Each data packet is extended with a MAC, computed over the whole data packet
except for the flags in the header of the data packet using the shared secret with the destination. The MAC over the flags (e.g.

8 Amit Dvir ET AL

Hash Chain Hash # Merkle Session
Root Length roots Identifier

Source, Destination

Merkle Tree Roots

Authentication Data

FIGURE 4 Open Session packet

Source " Destination

—_SDTP Dat,

Authenticated the Message x —nl
entire packet include 9e#1™™__SoTp Data
the flags, S Message 1lm
EARRTX=0 | ineerr Data #
9e #27_SDTp
me la
—SDTp pgy, °Ssage #m X
Message s3]
—_SDTP Daty
\msDTP Data Message 43~
ess
E:if #, -y SDTP Data
[message P
EAR

| —NACK (127

| SDTP gy, Failed to verify
ge#o | packet 2 because
RTX, Eag the EAR and RTX

| —ACK (]

flags,
EAR=RTX=1

FIGURE 5 SDTP scenario where the MAC value is computed over the packet and the flags; for simplicity we reproduce the
scenario in [3] (Fig. 4 in [3]).

EAR and RT X) in the header is not computed because the EAR and RT X flags may be modified by the intermediate nodes
during the protocol. An example of a case where the flags are legitimately modified by the intermediate nodes can be seen in
Fig. B. It shows that EAR and RT X flags should not be included in the MAC since this may lead to verification failure.

In this scenario, packet #2, in which EAR = RT X = 0, is lost. When the destination node receives packet #4 which piggy-
backed an E AR packet, it sends a N ACK packet requiring the retransmission of packet #2. However, when node 1 (I1) receives
the N ACK packet it retransmits packet #2 and sets the EAR and RT X flags without recalculating the MAC value. At the end,
verification at the destination node of the MAC corresponding to packet #2 fails since the MAC was originally computed over
the zero flag values. Unfortunately, due to the fact that we not authenticating the flags, an attacker can modify the flags. This
will increase the overhead caused by the operations that nodes perform due to the fake values. In Section B3 we discuss the
solution to this problem.

Upon receiving an ACK packet (which includes the ACK authentication value, KX)C) corresponding to the data packet of
sequence number i, it iteratively hashes the ACK authentication value i times. If it is equal to the Kioé « (root hash value),
the ACK packet is accepted and the source node eliminates packets with sequence numbers smaller than or equal to i from its
cache. Then, the source node updates its value of M axS N i; otherwise, it ignores and drops the ACK packet. When receiving

KU+D

a N ACK packet that includes the ACK authentication value KX)C K N ACK authentication values (secret values NACK®**

K;\;ng > and their corresponding sibling values), the source node first checks the ACK authentication value and performs the
same steps as explained above for ACK authentication. Then, the source node continues verifying the N ACK authentication
values. For each set bit in the bitmap, the source node verifies the N ACK authentication values and upon success, retransmits

the required packets. Algorithm [in Section BT depicts the source node algorithm.

Amit Dvir ET AL 9

4.3 | STWSN - Destination Mechanism

Upon receiving an open-session packet from the source, it verifies the signature computed on the packet by comparing the
MAC value from the open session packet to the output of the MAC function over the receiving packet. Upon success, the
destination node does the following: (1) generate the session master secret; (2) generate the AC K master secret; (3) generate the
N ACK master secret; (4) generate the hash chain (5) generate the Merkle-tree (in case ¢ = 1). Finally, the destination reveals
the ACK key corresponding to the open-session packet; namely, the ACK key for the packet with sequence number zero (the
open session has sequence number zero). Then the destination node sends the ACK packet with the parameter related to the
open session packet to the source node. As explained in [], the easiest way to generate the session master key is to derive it
from a pre-established shared secret value; otherwise, in a more general setting, use an authenticated Diffie-Hellman protocol
variant [26].

When the destination node receives a data packet with sequence number i, it does the following: (1) the destination using the
secret shared between the source node and the destination node to check the authentication data field; (2) Upon success, received
packet delivered to the upper layer; otherwise, the data packet is ignored and dropped.

If the data packet has a set E AR flag, the destination sends an ACK ora N ACK packet depending on the gaps in the received
data packet stream. The structure of the AC K packets is extended with an AC K authentication value field. Similarly, the NACK
packet is extended with the AC K authentication value (with base sequence number i, KX)C K), because the semantics of the base
sequence number in the N ACK packets is the same as that of the sequence number in the ACK packets. In addition, if the j-th
bit is set in the bitmap, the N ACK packet is also extended with K](G:’g (the NACK secret value) and its sibling authentication
values. Therefore, N ACK packets is extended with an ACK authentication value field and a variable number of N ACK secret
and sibling value fields.

In the DTSN [B3] and SDTP [2] protocol, the destination sends an ACK or N ACK packet upon receipt of an EAR. However,
this may lead to EAR replay or EAR forging attacks where the EAR flag is set/unset by an attacker(s). Therefore, to mitigate
the effect of these attacks, STWSN uses two new mechanisms: (1) limiting the number of responses to EARs; (2) a status timer
(dynamic or static). In a finite period of time (destination EAR timer) each destination node should not send more than X
control packets (ACK, N ACK), where the X value can be dynamic or static. In the case where we choose a high X value, it
will increase the overhead of the control packet, whereas if we choose a low X value it may be considered under the condition
that the duration between two status (triggered or created®) packets is less than the source node EAR timer.

The status timer is set at the destination node. Upon time out, the destination node will automatically send an updated ACK
or NACK packet. The status timer duration can be a function of the source EAR timer. Moreover, the destination node limits
the number of responses upon receiving a set EAR flag. Algorithm [in Section B2 depicts the destination node algorithm.

4.4 | STWSN - Intermediate Node Mechanism

Upon receiving an open session packet, the intermediate node verifies the signatures computed on the packet. Upon success,
the intermediate node stores the following regarding this session: (1) the hash chain root value; (2) the tree root values; (3) the
Sessionl D included in the open session packet. Then, the intermediate node forwards towards the destination the open session
packet. In case the verification failed, the intermediate node will not store packets in the current session (changes its probability
to store packets to zero). Upon receipt of the corresponding ACK packet related to the open session parameters stored in the
intermediate node, it uses the hash chain root stored value to verify the corresponding ACK key and in case of success will start
forwarding data and control packets for this session.

Upon receipt of a data packet of an already opened session, an intermediate node stores the data packet with probability p and
(always) forwards the data packet towards the destination node.

Note that the intermediate node follows the same steps in the case of receiving ACK or NACK control packets as the
source node. When an ACK packet that refers to the packet with sequence number i is received by an intermediate node, the
intermediate node hashes the ACK authentication value i times, and compares the result to the stored root hash chain value
to verify the correctness of the ACK authentication value. If the two values are equal (i.e., Kioé Kk = h"(KXé K)), all the stored
packets with a sequence number less than i are deleted, and the intermediate node updates its M ax.S N value to i. Afterward,
the intermediate node transmits the ACK packet to the next intermediate node towards the source node. In case the verification
fails, the ACK packet is ignored and dropped. If i < MaxS N the ACK packet is also ignored and dropped.

I Triggered refers to control packets sent after receiving the E AR packet; created refers to control packets sent after the status timer has expired.

0| Amit Dvir ET AL

In the case of receiving a N ACK packet with base sequence number i, the intermediate node compares the base sequence
number with its Max SN value. If i is smaller than or equal to MaxSN, the NACK packet may still contain useful infor-
mation in the bitmap. Regarding the bitmap, if the j-th bit is set and i + j > MaxS N, the intermediate node first verifies
the corresponding N ACK authentication value and upon success retransmits the corresponding data packet stored in its cache
which needs to be resent. However, if the j-th bit is set and i + j < M ax.S N, the intermediate node clears the bit and removes
the corresponding N ACK authentication value from the N ACK packet. Afterward, the N ACK packet or the ACK packet (if
the bit map is no longer set) transmits to the next intermediate node.

Moreover, if any of the data packets that correspond to the set bits in the bitmap of the N ACK packet are stored in the cache
of the intermediate node, for each data packet, it verifies the N ACK authentication value corresponding to the data packet. In
particular, the intermediate node calculates the root and compares it to the Merkle-tree root cached by the intermediate node
based on the N ACK authentication value. If the two values are equal, the intermediate node does the following: (1) the data
packet is scheduled for retransmission; (2) the corresponding bit in the N ACK packet is cleared; (3) the N ACK authentication
value is removed from the N ACK packet.

In the case where the bitmap is cleared, the intermediate node sends an ACK packet with n (the ACK value of the NACK
message, see Fig. @ for example) the same sequence number as the N ACK packet, and sets the E AR flag in the last retransmitted
data packet. If the bitmap is not cleared, the N ACK packet is transmitted to the next intermediate node towards the source. In
the case where the intermediate node does not have any of these data packets, it passes on the N AC K without modification.

Because we want to mitigate several attacks, the intermediate node adds the following mechanisms to the actions above: an
intermediate node does not immediately forward control packets, after successfully verifying the ACK/N ACK packets (except
the ACK/N ACK of an open session message) but rather only after a certain length of time. Specifically, intermediate nodes
set an aggregate-timer, which can be either static or dynamic. If within this period of time more than a certain number of control
packets (ACK, N ACK) are received by the intermediate node, it tries to merge the verification information into one control
packet (i.e., a form of aggregation) from the received control packets; otherwise, the intermediate node will send the original
ACK/N ACK packets without any changes. The intermediate node should correlate is sum of the aggregate timers to the source
E AR timer. Hence, the timer value may be a function of several parmeters such as the source EAR timer and the maximum
number of nodes in the path.

The intermediate node is also using a timer called the retransmission-timer (denoted by Re_timer;), in order to limit the trans-
mission rate of a retransmitted data packet with sequence number i. Further, the number of retransmissions (Retransmission;)
per stored data packet with sequence number i is limited as well. After a certain number of retransmissions of the same data
packet, although the intermediate node it stored the data packet it only forwards the N ACK packet without retransmission.
However, in the worst case, an intermediate node still can be made to retransmit unnecessarily up to the limit.

When receiving a certain number T of ACK packets with the same acknowledge value equal to M axS N, the intermediate
node automatically retransmits the first packet in its buffer that has a sequence number greater than M axS N and resets the
count. In addition, these "multiple” ACK control packets are forwarded towards the source. An illustration of this scenario can
be found in Fig. B. In this scenario, .S and D are the source and destination, node 1 is an intermediate honest node, and node A is
the attacker node. The destination sends a N ACK packet with the ACK value 7 and the bitmap in which the bits corresponding
to packets 8 and 9 are set. The attacker intercepts this N ACK packet and deletes both the bit referring to packet 9 and the
corresponding N ACK authentication value (getting bit map N ACK(7, 8)). Assume that packet 8 has been retransmitted and
arrived at destination. After a while, the destination acknowledges the reception of packet 8 and requires the retransmission
of packet 9. However, the attacker intercepts this N ACK, deletes the bit referring to packet 9 and the corresponding N ACK
authentication value, thus getting bit map AC K (8), and then forwards it towards the source. Moreover, the attacker repeats these
steps whenever the N ACK(8,9) is sent by the destination. Node 1, after receiving the ACK with the same ACK value that
equals the MaxS N three times (T = 3), automatically retransmits its first stored packet that has a sequence number greater
than 8 (which is packet 9). Thus, our proposed mechanism ensures that although the attacker tries to prevent this by always
deleting the corresponding bit, packet 9 will be retransmitted. Note that the source has a timer for packet 9 so in the case where
the attacker eliminates the retransmission, after a while the source may recognize that there is an attacker (several timeouts for
the same packet). Unfortunately, we can only mitigate the impact of the above attack; however, the period of time for this kind
of attack is relatively short, because each node has an aggregate timer and the source will filter the irrelevant control packets (as

Amit Dvir ET AL 11

(=]

‘ Sending NACK(7; 8,9)

Capture&Modify to

NACK(7;8) ... getting #8 with EAR

« Sending NACK(8; 9)

Capture&Modify to .. getting EAR

ACK(®) ‘ Sending NACK(8; 9)
Capture&Modify to getting EAR
ACK(8) « Sending NACK(8; 9)

Capture&Modify to

ACK(8)
Store

and Send

Message #9 .

FIGURE 6 Special case of the modification of the same N ACK Packet, T = 3.

explained in Section B). Moreover, setting a low T" value will increase the number of unnecessary AC K packets received by
the source but decrease the reaction time of the network to deal with the above attack®.

In the case where an intermediate node has no room in his buffer and needs to delete a packet, before deleting the first packet
in the buffer it will send with probability g the first packet in its buffer that has a sequence number greater than the intermediate
node MaxS N. Note that, ¢ may be a different probability from the caching probability. Only then does the intermediate node
delete this packet. However, the probability of g needs to be set close to 0 in case the attacker is able to inject fake packets with a
high sequence number, which can cause a retransmission of a fake packet. Since injecting fake packets has limited effectiveness
on the network (as explained in Section B7), g can be larger than 0.5.

For detailed processing of the intermediate node algorithm see Fig. 4 in Section B3.

S | SECURITY ANALYSIS

In what follows, we analyze the security of STWSN based on a formal language called cryptﬁf;’f calculus [[2, 8]. We formally
prove that STWSN prevents all the discussed reliability attacks and mitigates the impact of energy depletion attacks to which
both DTSN and SDTP are vulnerable. We note that this paper provide much more proofs for more security properties compared

to [Z,R].

5.1 | The crypt”” calculus

time

We only provide a very brief overview of cryptfi’,;’: calculus for the reader to understand the proofs; interested readers are referred
to our report [R] for further details. cryptfi::l”e’ is a probabilistic timed calculus, for reasoning about cryptographic protocols that
include timers and probabilistic operation.

Syntax: The formal syntax of cryptfl.r,::f

is composed of terms, probabilistic timed processes, and equations.
e Terms (denoted by T) involve secret keys, encryption, hash and MAC functions, digital signatures computed over cer-
tain messages, as well as their composition. Terms also includes communication channels defined between nodes, which

facilitates message exchange among communication partners.

o The set of probabilistic timed processes defines the internal operation (sequence of defined actions) of the nodes. Processes
are denoted by procName, where Name can be the name of the process (e.g., procSrc is a process that defines the operation
of the source). A transport protocol can be defined by the (parallel) composition of processes in which each process
specifies the behavior of each node.

e Equations express the equality of two terms (7’1 = T'2), and are used to model the verification of cryptographic functions.

Semantics: The semantics of cryptf;;’f is based on a probabilistic timed labelled transition system (PTTS), which consists of

a’ d . . .
a set of labelled transition relations of the form st; — st,, where st, is the current state of a given process, and st, is the state

2Intuitively, this solution is similar to the TCP Fast Retransmission mechanism.

2z | Amit Dvir ET AL

after an action « has been executed, consuming d time units. Each state st is composed of the process and the clock valuation
that holds at that state, namely, st = (procName, v).

The weak probabilistic timed bisimilarity (prob-timed bisimilarity) relation is defined to prove or refute the similarity
(equivalence) between the ideal and the real operations of a WSN transport protocol.

Definition 1. (Weak prob-timed labeled bisimilarity)
We say that two states st; = (procNamel, v,) and st, = (procName2, v,) are weak prob-timed labeled bisimilar, denoted by
(st, RY st,) iff

1. Static equivalence: An external attacker who can listen to and intercept the communication on the entire network cannot
distinguish the packet output or input in the states st; and st,;

2. if state st] can be reached from st, after a silent (invisible) action after a d; time unit, then there exists a state s/, that be
reached via a corresponding silent action trace/transition after a d, time unit from st,, such that st'l Ry st’2 holds again.
Silent actions are action invisible to the external observer (e.g., signature/MAC verification, decryption, etc.).

3. If state sti can be reached from st after a non-silent (visible) labeled transition (i.e., data sending or receiving) after d,
time units, then there exists a state st; that be reached via a corresponding non-silent action trace/transition after a d, time
unit from st,, such that s7| R’ st holds again.

and vice versa.

The attacker model: We assume that an attacker can eavesdrop on and catch the messages output by the honest nodes, and
can modify the elements of any captured packets, including control packets, the EAR and RT X bits, as well as the sequence
numbers in data packets. The attacker can also compose whole data or control packets containing the elements it has, as well as
send and forward packets.

5.2 | Security proof technique based on the PTTS

For each attack scenario, we define a process that captures an ideal operation of the protocol that is not vulnerable to that
attack. For example, the ideal operation requires that the honest communication partners are always aware of the correct packet
they should receive from other nodes, regardless of what the attackers do, or the ideal version always limits the number of
control/acknowledgement packets. If the ideal and real protocol processes are weak prob-timed bisimilar (with the same attacker
model), then the real protocol is not vulnerable to that attack.

Definition 2. Let the crypt””®” processes procProto and procProtoi4*®!

time specify the real and ideal versions of some protocol Proto,
respectively.

o Security Proof: We say that Proto is secure (up to the ideal specification) if (procProto, v'™") and (procProto'®e® | vi"it)

> “ideal
are weak prob-timed bisimilar:
(procProto, v'™") m,, (procProto'®!, vi"!),
o Refute: Let procProto"®S° be a process that models a protocol Proto without a security mechanism Sec, and procProto
is the counterpart with Sec implemented in it. Assume that procProto"*5¢ is vulnerable to an attack Azt modelled by a

sequence of labelled transition LT,,,. We say that Proto is more secure against Att than Proto"*5¢ if (procProto, v'"") and
(procProto™5¢, v are not weak prob-timed bisimilar; namely

(procProto, v'™") Ry (procProto"®Se¢, pi"it)

init

iroql AT€ the initial values of the clocks.

does not hold due to LT ,,, where v and v

Intuitively, Definition @ means that Proto is secure if by observing the packets sent and received by nodes, the attacker is not
be able to differentiate between the operation of the two protocol instances.

Amit Dvir ET AL 13

5.3 | Formal security analysis of STWSN

As mentioned above, terms (") can be used to model packets elements, including cryptographic primitives, starting from secret
and public keys, to hash and MAC functions. Equations are defined for modelling cryptographic verifications:

T=n|Kui| Kuer | Ky | SK,. | ACK | NACK | K(n, ACK) | K(n, NACK) | sign(T, SK ,,.)
| H(T) | mac(T, K(n, ACK)) | mac(T, K(n, NACK)) | ok | (T}, ..., T,);

Equations:
checkmac(mac(T, K(n, ACK)), K(n, ACK))= ok;
checkmac(mac(T', K(n, NACK)), K(n, NACK))= ok,
H(T))=H,),iffT, =T,.

K,.i» K,per» and K, are the ACK and N ACK master keys, as well as the shared key of the source and the destination for
a session. n represent any constant data including sequence numbers, AC K authentication values, and EAR/RTX bits, etc. The
functions sign(T, SK,.), mac(T, K(n, ACK)), and H(T') define a digital signature computed on packet T using the secret key
SK,,.. aMAC and an one-way hash computed on 7', respectively. The equation H(T;) = H(T5) if and only if 7} and T, are the
same. The equation checkmac(mac(t, K(n, ACK)), K(n, ACK))= ok defines MAC verification, using the corresponding public

key ACK key K(n, ACK)).

5.3.1 | Analyzing the resistance to reliability attacks

As explained in Section B, the two basic attacks on reliability take the form of forging ACK and N ACK packets. Assuming
that an attacker has intercepted an ACK or N ACK packet in which the ACK value is n. By changing the correct ACK value
n to a larger m, the attacker attempts to delete packets from the buffers although they have not yet been acknowledged by the
destination.

Proposition 1. The STWSN protocol is secure to attempts to forge ACK and N ACK packets.

To perform a successful attack by increasing the ack value n; to some greater n, in ACK packets, the attacker has to include
a correct ACK authentication value K;"é)K, which is difficult. This is because up to this point, only K;Oé o KX’C‘)K have been
revealed by the destination. However, computing K" from K. ... K" is hard because of the one-way property of the

ACK ACK’"" "™ ACK
hash function.

Proof. Formally, this is proven by the fact that there is no equation defined for H(T") (since hash functions are one-way), there
is no way for the attacker to violate the bisimilarity

(procSTWSN, v™"") ~,, (procSTWSN el pinit)

We defined the ideal and real versions of STWSN as cryptf;;’f processes, and we showed that every labeled transition performed
by the ideal version can be simulated by a corresponding transition trace in the real version, and vice versa. O

Consider now the case of a NACK packet forgery where valid N ACK packets is created by the attacker, either a whole
N ACK packet or forging some bits of the bitmap of valid packers. To carry out an attack, a valid N ACK authentication value
needs to be added into a N ACK packet. Hence, the attacker must be able to compute the secret values based solely on the upper-
level hash values (or the siblings). However, this is hard due to the one-way property of the hash function used in the Merkle
trees.

Proof. Similarly, the formal proof relies on the one-way property of the hash function, and hence, the infeasibility of computing

the required nodes of the Merkle tree. Again, formally, this is proven by showing that every labeled transition performed by

the ideal version of the system can be simulated by a corresponding transition trace in the real version, and vice versa. This

is because there is not any equation defined for function H(T'), and hence neither the ideal nor the real systems can perform a

labelled transition trace that extracts T' from H(T'). Therefore, there is no way for the attacker to violate the bisimilarity
(procSTWSN, v'"'") =, (procSTWSNideal | pinit 1y

> Zideal

4| Amit Dvir ET AL

Another basic attack on reliability is when an attacker (attackers) modifies the data packets, which results in closing the
session.

Proposition 2. The STWSN protocol is secure to attempts to modifying data packets.

Data packets are secured with MAC [23]; thus, a modification to the data part will be detected at the destination. However,
attackers can cooperate to bypass the protection provided by MAC.

Proof. Again, this is proven by showing that every labeled transition performed by the ideal version of the system can be
simulated by a corresponding transition trace in the real version, and vice versa. This is due to the fact that this time either there is

1. no labelled transition for computing the MACs mac(T', K(n, ACK)) and mac(T, K(n, NACK)) or

2. no labelled transition for MAC verifications checkmac(mac(T, K(n, ACK)), K(n, ACK))= ok, checkmac(mac(T, K(n,
NACK)), K(n, NACK))= ok (for any T) can be launched in either the ideal or real systems, because the attackers do not
possess the keys K(n, ACK) and K(n, NACK).

Consequently, in this manner, the attackers cannot violate the bisimilarity

(pVOCSTWSN, Uinit) zpt (prOCSTWSNideaI Uinit)

> Zideal

Proposition 3. The STWSN protocol is secure to attempts to create fake packet attacks.

Recalling the creating fake packets attack presented in Section B2, which is one critical vulnerability of SDTP, that can enable
the attackers to force intermediate nodes to delete undelivered packets in their buffers. The feasibility of this attack relies on
the fact that the authenticity of the keys used for checking the authenticity of ACK/N ACK packets are not verified; making it
possible to fake MACs with self-created keys.

The attack cannot be carried out in STWSN as the authentication values are parts of the Merkle tree and hash chains, and
due to the one-way property of hash functions, computing an undisclosed ACK authentication value of packet n, (Ki"é)K) from

the already revealed Ki:’é)K (n, > n;) is difficult. Computation of the undisclosed NACK authentication values from the already
revealed ones is hard for the same reason. Further, the attacker(s) will not be able to send to the honest nodes any fake self-created

Merkle trees or hash chain since they cannot forge the digital signature of the source.

Proof. The formal proof of this proposition is similar to the case of Proposition . O

5.3.2 | Formal analysis of the resistance to energy depleting attacks

In what follows, we formally analyze how STWSN mitigates the impact of energy depleting attacks. Since the EAR flags are
not appropriated secured in the STWSN packets, its modification cannot be detected. This may serve as a starting point for a
possible attack, called the E A R modification attack, in which the attacker can set or unset the E AR flag in any captured packet.

Proposition 4. The STWSN protocol mitigates the effect of an EA R modification attack.

Mitigating the impact of the attack prevents attackers from critically depleting the energy of the nodes. First, by setting the
E AR flag (E AR flag=1), the attacker increases the control packet overhead by forcing the destination to send more, unnecessary
ACK/N ACK packets. As described in subsection B3, the impact of this attack is alleviated because once the destination
receives a set EAR flag it only considers a limited number of responses. In a finite time period (set by the destination EAR
timer) the number of control packets sent by the destination will not exceed a certain number X®. By unsetting the EAR flag
(E AR flag=0), the attacker could achieve that no control packets will arrive at the source. However, this cannot happen for a
long time as an E AR timer is launced by the source. Once the E AR timer expires, a new E AR packet will be retransmit by the
source. In addition, as described in Section B4, in STWSN, with the status timer and the constraint set on the number of control
packets sent by the destination in a given time, we can mitigate the overhead posed by the attack.

3The value of X can be either dynamic or static

Amit Dvir ET AL | 15

Proof. We assume that X is the number for which no error will be sent by the destination node due to energy depletion caused
by futile sending of control packets. We let the constant LOWBATTERY represent the signal that destination D will send out on
channel ¢, once a low battery (under a certain threshold) is detected. Further, let STWSN™ be the STWSN protocol without
the limitX. Then, we prove that the bisimilarity

(procSTWSN"™X , vty &2 (procSTWSN, vi"™").

does not hold, because in procSTWSN"X there exists a Dst_EAR_Timer value and a corresponding labelled trace ends with
 Tupal(\LOWBATTERY).d) o))
the transition — , while this is not the case in procSTWSN; hence, process procSTWSN cannot simulate

procSTWSN"™X .

O

Proposition 5. The STWSN protocol mitigates the effect of forging a N ACK packet attack.

Note that N ACK's with overlapping information may occur in some normal cases; hence, instead of entirely preventing this
attack, our purpose is to mitigate this attack by giving the intermediate node the ability to aggregate both new and overlapping
information into one control packet. Doing this will reduce the overhead of intermediate/source nodes needed to handle each
overlapping N ACKs separately.

Upon receiving a control packet, an intermediate node waits for a short time; assume that during this period of time a new
control packet arrives. If the information is new (i.e., ACK with a higher value or N ACK with a new bitmap) it is useful to
aggregate the information into one control packet; if there is some overlap then it is also useful to aggregate the information. Note
that control packets can be aggregated only after a successful verification. This is the same technique as delayed ACK in TCP.

Moreover, the use of a retransmission-timer at an intermediate node also helps mitigate the impact of replay attacks in which
the attacker uses the same N ACK packets (with the same bitmap) or forging N ACK packets (with the bitmap that was created
in previous N ACK packets); see Section B4 for a detailed discussion regarding the overhead. Therefore, these solutions are
successful in mitigating the effect of forging N ACK packets.

Proof. Again, we let the constant LOWBATTERY representing the signal that an intermediate node I will send out on channel
Csignar ONCE @ low battery is detected. Further, let STWSN noAse be the STWSN protocol without an aggregation procedure. We
prove that the bisimilarity

(procSTWSN™4s¢, i) . (procSTWSN, v/™™").

does not hold, because in procSTWSN"°488 there exists a Agg_Timer value and a corresponding labelled trace that ends with
Ceral(LOW BATTERY).d) o])
— , while this is not the case in procSTWSN; hence, process procSTWSN cannot simulate procSTWSN"°48

O

Proposition 6. The STWSN protocol mitigates the effect of modification of the same authentication value in a N ACK packet
attack.

As described in Section B4, by automatically sending and forwarding a data packet after receiving T pieces of the same
ACK packets, the probability that a data packet will be received by the destination is increased. Moreover, this can increase
the effectiveness of the network where an intermediate node sends a packet, right before deleting it, whose sequence number is
greater than its M ax.S N (which means that the node did not receive any ACK for this packet). Both methods can increase the
probability that a packet will be received by the destination and mitigate the modification of the same authentication value in a
N ACK packet attack.

Proof. We let STWSN™T be the STWSN protocol without the limit T for the same ACK packet. We prove that the bisimilarity
(procSTWSN™T, v'"") &, (procSTWSN, v™™'").

. cy(Pck)d .
does not hold, because in procSTWSN there exists a labelled trace that ends with the transition ‘ —C> after the source receives
the same ACK T times on channel cg;, while this is not the case in procSTWSN"T ; hence, process procSTWSN"T cannot
simulate procSTWSN. O

Proposition 7. The STWSN protocol is secure to attempts to fake the number of sessions.

16| Amit Dvir ET AL

As described in Section B4, in STWSN we allow packets to stay in the buffer until the end of the current session even if a
new session (with the same source, destination, and application) is opened, which eliminates the faking session attack.

Proof. Let the constant BUFFEREMPTY represent the signal that an intermediate node I will send out on channel c;,,,,, once
its buffer has been emptied. Let STWSN“¢ be the STWSN protocol that deletes the buffer because of new session packets. Then,
we prove that the bisimilarity

(procSTWSNel, o'y ., (procSTWSN,).

Cuenat(BUFFEREM PTY).d

does not hold, because in procSTWSN?¢' there exists a a labelled trace that ends with the labelled transition —
after a packet of a new session has been received, while this is not the case in procSTWSN; hence, process procSTWSN cannot
simulate procSTWSN?!. O

6 | PERFORMANCE ANALYSIS

The ONE simulator [277] is used to compare the three protocols (DTSN, STDP, STWSN). All simulations used the same network
scenario of chain of nodes between the source and destination. Each protocol was tested using the same parameters and run 10
times with different random number generator (RNG) seeds to negate systematic simulation affects. Table [lists the simulation
settings. The scenario assumed a network with 5 nodes in a chain (a source, 3 intermediate nodes and a destination).

TABLE 1 Simulation parameters

Parameter Description Value

World size 4500X3400

Node count 5

Simulation Update Interval | 0.1 seconds

Network packet rate 10M per second
Simulation time 400,000 seconds
Transmit range 1500 meters

Buffer sizes tested 5MB

Message size 100KB

Protocols tested DTSN, STDP, STWSN

The message time-to-live (TTL) was explicitly set to be greater than the total simulation time so that TTL did not affect the
message delivery rate. Messages were only dropped due to queue overflow or protocol-based metrics. Finally, for the first three
cases (Figures [1-8) we assumed a benign environment, without attacker, and only evaluated the overhead in normal operations.

Figure [1 compares of the three protocols in terms of the total data size (in bytes) for a whole session, as a function of the
number of messages (data and control messages as well as header overhead) in that session. As expected, the message overhead
of STWSN was the largest due to the hash-chain and the Merkle-tree and the size of the ACK/NACK messages were larger than
for STDP. However, by increasing the number of messages, the total overhead for the session did not increase dramatically.

In Figure B, we assumed a session with 1000 messages to examine the influence of the PRR (7.5%-12%). The figure indicates
that in all cases the number of bytes we need to send increases with increasing PRR. Note that DTSN changed very slightly
compared to SDTP and STWSN, because the volume of DTSN was much much smaller than the other two. Further, control
messages in DTSN required small additional bytes since the ACK/NACK messages did not contain cryptographic add-ins. The
ratio between STWSN and DTSN started 11 (PRR=7.5%) and increased to 13 (PRR=12%) while the ratio between SDTP and
DTSN started at 6 (PRR=7.5%) and increased to 7 (PRR=12%). The ratio between STWSN and SDTP started at 1.9 (PRR=7.5%)
and increased to 2 (PRR=12%). Thus, although STWSN requires more bytes for the session, the difference is not exponential.
Furthermore, with more powerful sensors in the future, this overhead would still be within an acceptable level.

Amit Dvir ET AL 17

-106
750]
= —— PTSN
]
>
A,
5]
N
>
= 4 n
g STWSN
6
wn
]
s}
=
0.2kt k/\/a\ | ____KTDP
100 500 1,000
Number Of Messages In The Session

FIGURE 7 Comparison of the total data size (in bytes). We assumed a benign environment, without an attacker.

-107

1 ||—— DTSN

e s b | e L

Total Data Size[Bytes]

: w . STWS
7.5 10 12

Packet Error Rate [%]

FIGURE 8 The number of bytes required to send 1000 messages as a function of PRR, in a benign environment.

Figure B focuses on the aggregation methods of STWSN that aim to mitigate the effect of forging an N ACK packet. Here,
instead of forwarding individually the received ACK or N ACK messages, intermediate nodes wait for a short time, then
aggregate the ACK or N ACK messages they receive within this period (Section B-4). The figure shows that the influence on
the average size of ACK messages was slight but was significant on the N ACK messages.

Next we simulated EAR attacks in a hostile environment. We assumed a network consisting of a chain of a source, 3 inter-
mediate nodes, an attacker node and a destination node respectively in this order. Further, we assumed that there was no PRR
rate (PRR=0), and set the number of messages in the session to 1000. The sender windows size was set to 15 messages (i.e. the
sender sends a EAR message after each 15 messages).

We simulated three kinds of EAR attacks, namely:

o Attacker 1: Setting EAR bits. For each message, the attacker decides to set the originally unset EAR bits (piggybacked
between the source and the destination) with probability P.

o Attacker 2: Unsetting EAR bits/Dropping EAR messages. For each message with EAR bit originally set or each EAR
message, the attacker unsets the EAR bit or drops the EAR message with probability P.

e Attacker 3: Combined set and unset/drop attack. The attacker can perform any combination of the two attacks above.

We assumed that the attacker could performs each attack with a probability P (P=25%-75%).

18 Amit Dvir ET AL

—— [VACK average overhead with aggregation

160 — T T

/ ACK average overhead with aggregation

130 -

100 |- y
—— IVACK average overhead without aggregation

45

I I I
500 1.000 1.500 | — ACK average overhead without ageregation

Number of Messages in a Session

Average Overhead of a Control Message [Bytes]

FIGURE 9 The average number of bytes required for an intermediate node to send a control message with and without
aggregation methods. We assumed a benign environment, without an attacker and no PRR.

10*
I
§0 12| 1 —— DTSN
]
=
ERl i
£
O 0.8 —— STDP
[[o
5 0.
g | 7
E 06| .
Z | | | | | RTWS
0 02 04 06 08

The probability for the attacker to set the EAR bit in a data message

FIGURE 10 Comparison of the number of control messages, first attacker

Figures [- T2 depict the results of the three attacks, respectively. Figure [presents the influence of the first attacker, as the
probability increased, our algorithm (STWSN) managed to have the lowest number of control messages (ACK, NACK) as a
result of the control message aggregation method.

Figure [T, which addresses the second attacker, shows that as the attack probability increased the STWSN alone could continue
functioning and deliver the messages, while the other two protocols closed the session because the unset EAR bits or dropped
EAR messages prevented the destination from sending control messages.

In Figure [, we simulated the second attacker again. The session time in this scenario was set to the previous session time
of STWSN. In this setting, we examined how many control messages DTSN and STDP could still be send until they closed the
session. The figure shows that the session closed after only a small number of control messages under DTSN or STDP whereas
STWSN mitigated the attack and continued sending messages.

Finally, we simulated the third attacker that can unset or set (with coin tossing probability) EAR bits and/or drop EAR
messages. Figure [3 depicts the result for the combined attack, and shows that our algorithm had fewer control messages as

Amit Dvir ET AL

19

7,000
Ef
%0 —— DTSN
8 6,500 .
=
I
£ 6,000 | \ A
@) ——KSTDP
(35
©)
_eg 5,500 |- 8
=
=]
Z
5,000 | | | | | QTWS
0 0.2 04 0.6 0.8
The probability of unsetting the EAR bit or dropping an EAR message

FIGURE 11 Comparison of the number of control messages, second attacker

I
6
& 6,000 |-] —— DTSN
8
=
£ 4,000 .
5
@) —— STDP
G
o
5 2,000 |- .
o
=
=]
Z
L L L I | STWS
0 0.2 0.4 0.6 0.8
The probability to unset the EAR bit or drop an EAR message

FIGURE 12 Comparison of the number of control messages, second attacker

the attack probability increased. Clearly, after P= 25% STWSN became the best algorithm; in addition the difference between
P= 5% and P= 75% in this case was only 650 control messages, compared to SDTP and DTSN where the difference exceeded
1500 messages. It is also worth noting that our algorithm had the lowest simulation time, in other words, it was the fastest of the

three in this setting.

20 Amit Dvir ET AL

—— PTSKN
8,000 - -

7.000 |- | |——STDP

Number Of Control Messages

6,000 | STWS

| | | |
0 0.2 04 0.6 0.8
The probability of a combined attack.

FIGURE 13 Comparison of the number of control messages, third attacker

7 | CONCLUSION

In this paper, we proposed STWSN, a new secure transport protocol for wireless sensor networks, which provides new security
extensions to DTSN. The security mechanism of the new protocol is based on an efficient application of hash chains and Merkle-
trees. We showed that given the proposed security mechanisms, STWSN resists reliability and energy efficiency requirement
attacks, including SDTP attacks. We confirm the accuracy of our security analysis results by a formal method. Our planned
future work addresses the implementation and validation of the proposed scheme in a WSN testbed environment.

ACKNOWLEDGMENTS
Amit Dvir was supported by a Marie Curie Mobility Grant, OTKA-HUMAN-MBO08-B 81654. The work reported in the paper
was developed in the framework of the project "Talent Care and Cultivation in the Scientific Workshops of BME" project.
References

[1] L. Buttyan and L. Csik. Security analysis of reliable transport layer protocols for wireless sensor networks. In Proceedings

of the IEEE Workshop on Sensor Networks and Systems for Pervasive Computing (PerSeNS), pages 1-6, Mannheim,
Germany, March 2010.

[2] L. Buttyan and A. M. Grilo. A Secure Distributed Transport Protocol for Wireless Sensor Networks. In IEEE International
Conference on Communications, pages 1-6, Kyoto, Japan, June 2011.

[3] B. Marchi, A. Grilo, and M. Nunes. DTSN - distributed transport for sensor networks. In Proceedings of the IEEE
Symposium on Computers and Communications, pages 165-172, Aveiro, Portugal, July 2007.

[4] F. Rocha, A. Grilo, P. Rogrio Pereira, M. Serafim Nunes, and A. Casaca. Performance evaluation of DTSN in wireless
sensor networks. In EuroNGI - Network of Excellence Workshop, pages 1-9, Barcelona, Spain, Jan. 2008.

[5] D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal. In Fourth Conference on Financial
Cryptography, pages 102-119, Southampton, Bermuda, March 2002.

[6] R.C.Merkle. Protocols for Public Key Cryptosystems. In Symposium on Security and Privacy, pages 122134, California,
USA, April 1980.

[7]1 A.Dvir, L. Buttyan, and TV Thong. SDTP+:Securing a Distributed Transport Protocol for WSNs using Merkle Trees and
Hash Chains. In IEEE International Conference on Communications, pages 1-6, Budapest, Hungary, June 2013.

Amit Dvir ET AL | =

[8] TV Thong and A. Dvir. On formal and automatic security verification of wsn transport protocols. Cryptology ePrint
Archive, Report 2013/014, 2013.

[9] R. Ye, A. Boukerche, H. Wang, X. Zhou, and B. Yan. Resident: a reliable residue number system-based data transmission
mechanism for wireless sensor networks. Wireless Networks, Aug 2016.

[10] M. Kordlar, G. Ekbatanifard, A. Jahangiry, and R. Ahmadi. A transmission method to guarantee qos parameters in wire-
less sensor network. In Leonard Barolli, Tomoya Enokido, and Makoto Takizawa, editors, Advances in Network-Based
Information Systems, pages 801-811, 2018.

[11] M. Adeel Mahmood, W. K.G. Seah, and I. Welch. Reliability in wireless sensor networks: A survey and challenges ahead.
Computer Networks, 79:166 — 187, 2015.

[12] A. Ghaffari. Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer
Applications, 52:101 — 115, 2015.

[13] Y. C. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing protocol for ad hoc networks. Wireless
Networks, 11(1-2):21-38, Jan. 2005.

[14] A. Perrig, R. Canetti, D. Song, and D. Tygar. The TESLA broadcast authentication protocol. RSA Cryptobytes, 5(2):2-13,
2002.

[15] Y. C. Hu, D. B. Johnson, and A. Perrig. Secure efficient distance vector routing in mobile wireless ad hoc networks. Ad
Hoc Networks, 1(1):175-192, July 2003.

[16] L. Lamport. Password authentication with insecure communication. Journal of the ACM, 24(11):770-772, Nov. 1981.

[17] N. Haller. The S/KEY one-time password system. RFC 1760, Internet Engineering Task Force, February 1995.

[18] Y. Matias and E. Porat. Efficient pebbling for list traversal synopses. In Thirtieth International Colloquium on Automata,
Languages and Programming, pages 918-928, Eindhoven, Netherlands, July 2003.

[19] A.M. Ben-Amram and H. Petersen. Backing up in singly linked lists. In STOC, pages 780-786, Georgia, USA, May 1999.

[20] R. Merkle. Secrecy, authentication and public key systems / a certified digital signature. Ph.D. dissertation, Dept. of
Electrical Engineering, Stanford University, 1979.

[21] L. Kissner and B. Laurie. Google wave protocol - general verifiable federation. Google white paper, May 2009.

[22] A. Herzberg and H. Shulman. Stealth DoS Attacks on Secure Channels. In Network and Distributed System Security
Symposium, pages 1-19, California, USA, Feb 2010.

[23] S. Turner and L. Chen. Updated Security Considerations for the MD5 Message-Digest and the HMAC-MDS5 Algorithms.
RFC 6151, , Internet Engineering Task Force, March 2011.

[24] L. Buttyan and JP Hubaux. Security and Cooperation in Wireless Networks: Thwarting Malicious and Selfish Behavior in
the Age of Ubiquitous Computing. Cambridge University Press, New York, NY, USA, 2007.

[25] R.Roman, C. Alcaraz, andJ. Lopez. A Survey of Cryptographic Primitives and Implementations for Hardware-Constrained
Sensor Network Nodes. Mobile Networks and Applications, 12(4):231-244, Oct. 2007.

[26] A. Menezes, P. C. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.

[27] Ari Kerdnen, Jorg Ott, and Teemu Kirkkdinen. The ONE Simulator for DTN Protocol Evaluation. In STT, March 2009.

[28] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Sichitiu. Analyzing and modeling encryption
overhead for sensor network nodes. In Proceedings of the 2nd ACM international conference on Wireless sensor networks
and applications, pages 151-159, CA, USA, Sep. 2003.

[29] K. Piotrowski, P. Langendoerfer, and S. Peter. How public key cryptography influences wireless sensor node lifetime. In
Proceedings of the fourth ACM workshop on Security of ad hoc and sensor networks, pages 169-176, VA, USA, Nov.
2006.

2 | Amit Dvir ET AL

8 | APPENDIX A - DTSN

In DTSN [&], within a session, each data packet is given a sequence number n. DTSN provides reliable packet delivery by using
the three control packets: (1) (EARs) packet - Explicit Acknowledgment Requests, (2) (ACKs) packet - Acknowledgments ,
(3) (N ACKs) packet - Negative Acknowledgments. The E AR packets are sent by the source node, whereas ACK and NACK
messages are sent by the destination node. Each E AR packet can be sent in the following cases (by the source node either as an
independent packet or in the form of a piggybacked data packet): (i) when the source has already transmitted a predefine number
(window) of data packets; (ii) the buffer of the source becomes full; (iii) the source does not receive any data transmission
requests from the upper layer application after a timeout period which predefined; or (iv) upon expiration of the EAR timer
(EAR_timer) [8]. Note that, we assume that E AR is always in the form of a piggybacked bit flag, to decrease traffic overhead [4].
Moreover, intermediate nodes cache data packets with some probability p, and they also can retransmit both data packets and
control messages.

The destination, sends control packets (ACKs or N AC Ks) according to the received data packets. Using those control pack-
ets, the destination inform that intermediate nodes and the source node that packets arrived, e.g. by sending an ACK packet
with sequence number # indicates that packets with sequence numbers smaller than or equal to » have been received by the
destination node. The N ACK packet has two parts; the first is a sequence number and the second is a bitmap of set/unset bits
where the sequence number » indicates the acknowledged information as in the case of ACK, and each set bit in the bitmap
corresponds to a data packet that did not reach the destination, and needs to be retransmitted.

As explained above, for retransmission purposes, intermediate nodes store data packets with some probability p. Upon receiv-
ing an ACK packet with sequence number #, an intermediate node will delete all the stored data packets with sequence numbers
less than n, and then will forward the ACK packet towards the source. Upon receiving a N ACK packet, an intermediate node
handles the included sequence number in the same way as for the ACK packet, and in addition, it retransmits each data packet
based on the corresponding set bit in the bitmap. For each retransmitted data packet, the intermediate node unsets the corre-
sponding bit in the bitmap, and then forwards the updated N AC K message towards the source. In the case where all the bits in
the bitmap are unset the N ACK becomes an ACK [@].

Amit Dvir ET AL

23

9

9.1

| APPENDIX B - STWSN NODES’ MECHANISMS

| Source Node Mechanism

Algorithm [depicts the source node algorithm.

Algorithm 1 Source Mechanism

AN A >

: Open Session Counter= 0
: Max Open Tries = N
: session open = false

MaxSN =0

: function SOURCE

if Open Session () then
while The entire data acknowledged by the receiver do
Send () or Received ()
end while
end if

. end function
: function OPEN SESSION

while !(session open) do
Compute session master secret K, KACK, KNACK
Generate hash chain
Compute ACK authentication values: K (i) ,ox = MK + 1) 40¢)
Generate Merkle-tree

> N can be 10

> Send and Received are triggered by the open session

> ACK authentication values

> NACK authentication values

Compute NACK authentication values: K(n)y ,cx = PRF(KN ACK, perpacketN ACK secrete, n)

Sign the OpenSession-Packet
Send OpenSession-Packet
OpenSession-Counter++
if OpenSession-Counter == Max Open Limit then return false
else
Launch OpenSession-Timer and Wait
if Ack Received for the OpenSession-Packet then
if ACK verification OK then return true
end if
end if
end if
end while

: end function
: function SEND

while Sending Window is not full do
Send Packet (packet index, data)
SendingWindow-Counter++)
end while

: end function
: function RECEIVED

if ACK; message then
Hash = hash the ACK authentication value i times

comp
if Hash, _==root then

com,
Acknowledge the packets with seq numbers <= i
MaxSN =i
else
Drop ACK message
end if

else if NACK message then

Hash,,,, = hash the ACK authentication value i times
if Hash,,,,,==root then
Acknowledge the packets with seq numbers <= i
MaxSN =i
else
Drop NACK message
end if

for each set bit in bitmap do

if NACK authentication values verification using the Merkle-tree then

Retransmits the required/corresponding packets
end if
end for
end if

: end function

> see Fig

> Compute hash for ACK,

> Check the ACK part from the NACK msg, see Fig

24

| Amit Dvir ET AL

9.

2 | Destination Node Mechanism

Algorithm D depicts the destination node algorithm.

Algorithm 2 Destination Mechanism

: function RECVOPENSESSIONPACKET > Upon receiving a OpenSession-Packet
if signature OK then
Generate session parameters > the ACK master secret, the NACK master secret, the session master secret, the Merkle-tree, and
the hash chain
Sends an ACK
end if
end function
: function RECVDATAPACKET(Data;) > Upon Receiving a Data Packet Data,
if Authentication OK then
Deliver the packet to the upper layer
if EAR then
if destination EAR timer not finished then
if X < MaxControlMessages then

if All messages in the window received then
Send ACK > extended with the ACK authentication value
X++
else
Send Nack > extended with the ACK authentication value and for every missing message j-th bit is set in the
bitmap and siblings added
X++
end if
end if
end if
end if
end if
: end function
: function EARTIMEREXP > Upon EAR,,,,, Expired
Set X =0
: end function
: function STATUSTIMEREXP > Upon Status,,,,, Expired
if All messages in the window received then
Send ACK > extended with the ACK authentication value
else

Send Nack > extended with the ACK authentication value and for every missing message j-th bit is set the bitmap and siblings
added
end if
: end function

Amit Dvir ET AL 25

NACK: n,...bi,...Kack(n),...Knack(n+1),..., siblings

l State: MaxSN, D=0
No for all O<i<=|b|, such that n+i <= MaxSN:
n > MaxSN? . i
D-T A ’Clear bi and delete Knack(n+i) from NACK
£ Trigger aggregate Pass NACK on
Yes i
i = MaxSN-n+1 timer
Data packets No ¢ TNO
with SN <=n > - 7 Yes All bi is cleared
Is in the cache? i>1b| 7 andD=17?
Yes No Yes
A Drop Nack and use the n value from the message
Does the ACK — No ~. in order to create an ACK(n) message
Auth value is No biis set ? i=i+1
hash chain D='1
element? ‘L Yes
+ Yes Data packet
MaxSN = n with No
P e
Delete all data packets —) .SN =n+
with SN <= MaxSN is in cache?
from cache T Clear bi
and delete
Does the NACK NACK secret value
secret value N and the corresponding
and the ° p. sibling from NACK
corresponding siblings A
generate one of
the root trees?

¢ Yes

Retransmission (n+i) ++
if(retransmission (n+i)<L No

&& EE—

Re_Timer (n+i) <0)

Yes
Trigger Re_timer

Schedule data packet ——m—o———Pp

with SN = n+i for retransmission

FIGURE 14 The intermediate algorithm, focusing on the ACK/N ACK processing.

9.3 | Intermediate Node Mechanism

For detailed processing of the intermediate node algorithm see Fig. [4.

10 | APPENDIX C - OVERHEAD ANALYSIS

The evaluation of the overhead of our new security scheme based on the building blocks, one Merkle tree compared to many,
as well as retransmissions.

10.1 | Building Block Overhead

We evaluate the overhead of our new security scheme in terms of the building blocks alone. Our evaluation assumes MICAz
motes and is based on a thorough evaluation of works and benchmarks on the overhead of cryptographic operations applied in
MICAz motes [25,28]. Finally, we calculate the time overhead of the security scheme for each node based solely the building
blocks (without the overhead of the timers).

For simplicity, we present the overhead computation of the hash chain and Merkle-tree separately which are the building
blocks of our security scheme. To publish the root in a secure way we can use a digital signature; e.g., RSA [29] or Elliptic

26 Amit Dvir ET AL

TABLE 2 Estimated Time Equations for the Security Scheme (building blocks only).

Source Intermediate
Hash ECCy + (m + 1) - | ECC, + ZHD™
SHA SHA
Merkle-tree ECC+(2P-14+m)- | d . m
SHA loss_propability
SHA

Curve DSA [Z35], and to authenticate the packet we can use HMAC [23]. Therefore, one HMAC operation [3] is equivalent, in
the worst case, to 4 hash operations(two main hash operations where each has to hash two blocks).

The source node and destination node need to generate a hash chain with length of m + 1 [28]. However, only the source node
has to sign the first packet by using Elliptic Curve DSA [25]. As explain above, each intermediate node and destination have
to verify the signature once and each intermediate node has to verify the hash element per each ACK packet. Thereofre, one
signing operation ECCg and (m+ 1) - S H A time is required at the source node (ECCg + (m+1) - S H A), and one verification
operation ECCy, and (m + 1) hashing operations at the destination node; i.e., (m + 1) - SH A time. At intermediate nodes,
one verification operation ECC), and in the worst case, where the probability of storing a data packet is 1 and the size of AW
windows at the source is setto 1, W hashing operations are required. Thus, the worst case time overhead at the intermediate
node is ECCy, + "2 . SHA.

The source node generates a binary Merkle-tree of height D (for simplicity, we assume the case where ¢t = 1). Furthermore,
to create the leaves, the source node and destination node require m - S H A time [’¥], whereas in order to send the tree roots in a
secure manner requires two signing operations ECC; and ECC),. To generate the binary Merkle-tree, the source node hashes
at each level of the binary tree, which takes 22 — 1 hash operations that take (22 — 1 4+ m) - S H A time. For each bit in the bitmap
of a NACK control packet, the intermediate node that stored the data packet needs to verify the N ACK authentication value,
which requires d hash operations. With a given loss probability, the intermediate nodes on the path between the source node
and the destination node have to retransmit d - m - loss_probability times, which requires d - m - loss_probability - S H A time
(in the worst case where an intermediate node stores every packet, the storage probability is equal to 1). Table @ summarizes the
time overhead estimation of our new scheme.

Regarding packet overhead, for the ACKs, it is the hash value size (for each ACK packet we need to add one hash value
(64/128 /256 bits)). Therefore, in the worst case the packet overhead is m - hs, where As is the size of the hash value (number
of bits of the hash field); for the N ACKs, it is the number of set bits in the bitmap times the authentication value size (which is
d times the hash value size). Hence, an intermediate node needs to handle d - loss_probability - S H A packet overhead.

10.2 | Several Merkle-trees versus one Merkle-tree

One of the issues regarding Merkle-trees is the communication overhead (number of siblings that need to be sent to reveal a key).
In the following, we show that using several smaller Merkle-trees with an optimized height is more effective than using only
one large Merkle-tree. The reason why we use several, 7, smaller Merkle-trees of height d instead of one large Merkle-tree of
height D for authentication is that in most cases the latter imposes a larger overhead. Note that the number of leaves in the large
Merkle-tree and the ¢ smaller trees is m, m = t - 2¢ = 2P, As Fig. [d illustrates, in the case of using one Merkle-tree of height
D, the number of leaves (m) is 2P, whereas in the case of small Merkle-trees of height d (D > d), each small tree has 2¢ leaves.
Hence, it is easy to see that the number of small trees is t = 2P~¢. Figure [[8 shows the influence of the number of Merkle-trees
over the communication overhead in a scenario of a chain network with 800 messages from the source to the destination with a
packet error rate of 5%. The figure indicates that the N ACK overhead decreases when the number of trees increases.

Let us assume that a communication between source and destination needs to be authenticated via Merkle-trees. The total
communication overhead during the authentication procedure is the number of small trees (2°~%) multiplied by the number of
sibling nodes (d) per leaf and the probability for a data packet to be lost in the path between the source and the destination(ﬁ).
Therefore, the total communication overhead is C, - a - d - 2¢ - 2P=¢_ where C, is the communication unit cost (i.e., the cost of
each communication). In addition, the storage overhead due to the fact that at the beginning the intermediate nodes need to store

Amit Dvir ET AL 27

< »

m packets (m NACK keys) = 2D

FIGURE 15 The difference between using one large Merkle-tree of height D and several smaller Merkle-trees of height d.

10°
% 3.1 I I I I
=
>
&
=}
S
g 2851 2
E
=
£
£
o
O 265 2
~
S
; 25 | | | |
12 4 6

Number of Merkle-trees

FIGURE 16 An example of the influence of small Merkle-trees compared to one large tree, for a chain network with 800
messages from the source to the destination with a packet error rate of 5%

the root hash value of each Merkle-tree is C, - 2°~?, where C, is the storage unit cost. Hence, the total overhead using several
Merkle-trees (F(d)gp,aiirees) €an be defined as a function of d:

F(d) lia

We denote the total overhead as a function of d for the purpose of computing the optimal value of d.

When using one large Merkle-tree, we have minimal storage overhead because we only need to store the root hash value. The
communication overhead is imposed by revealing the authentication value (secret values and their siblings). In particular, the
total overhead (F(d) g;,7/e.) Using one Merkle-tree is presented in Eq. B.

1
F@pigrree = 7—7 - Cc- D-2° +Cy. 3)

=C,- -d-24.2P74 4 c . 2P,)

smalltrees

2 | Amit Dvir ET AL

From these, we can calculate that the overhead of several trees is less than the case of a large tree when:

C, - ! d-2¢.2P 4 2P <
-
1

chD2D+CS=>

1 p__1 D
C,- d-2P — -C,-D-2P < 4
C l-a l—-a ¢ ®

C,—C, 2P =>

C,-2P(D-d)

a<l——SF—

C (2P — 1)

Intuitively, when the loss probability is less than the derived threshold, it is better to use several smaller trees. In addition, the
threshold may be small in realistic cases; hence, it is always better to use several smaller trees. Now that we have clarified why
we apply small Merkle-trees instead of one large Merkle-tree, we can present the computation of the optimal value of d. The
optimal d has to fulfill the equation F' S’ alireesd) = 0, where F ! (d) is the derivation of Fy,,;;;,..(d). More precisely, from

m smalltrees

Fsmalltrees(d) = Cc . IL -d-m+ Cs . 2_d -m
—a
we have
1 —d
Fs/malltrees(d) = Cc : 1—a cm— Cs -In2-27% - m
Then the optimal d is
C,-In2- —
4o = logz(T_"’)’d < D.)

c

Note that Eq. B cannot be independent, since otherwise it would be a case where the optimal d is larger than D. Finally, note
that the values of C, and C; depend on the specific implementation, and the value of a can be set by the source based on the
network quality it detects during a session. Therefore, based on parameters (C,, C,, «) and Eq. B, the source can decide to build
one or several Merkle-trees.

10.3 | Futile Retransmission Overhead

Thus, we only need to reason about the overhead of futile retransmissions in the worst case. Let us define p, as the probability
an attacker will capture a data packet, p, as the probability an intermediate node will store a data packet, N, as the average
number of nodes in the path between a source and a destination, L as the maximum number of retransmissions per packet, and
m as the average number of packets in a session. These definitions can be found in Table B. In order to calculate the overhead,
we need to take the average number of intermediate nodes that will be stored any given packet into account:

P Npun- (6)
The worst case of transmitted packets:
Py L-m. 7
Therefore, the overhead upper bound is:
Pa P Npgp - L-m. ®)

Essentially, the network does not have any information on the attacker. Hence, the network has no control over parameters p,
and N, aths but only over parameters p, L, and m. Thus, the tradeoff between these three parameters should be considered.

[

Amit Dvir ET AL

P, The probability an attacker will cap-
ture a data packet

p The probability an intermediate
node will store a data packet

N ,un | The average number of nodes in the

path between a source and a desti-

nation

L The maximum number of retrans-
missions per packet

m The average number of packets in a
session

TABLE 3 List of abbreviation for retransmission overhead in the case of a N ACK replay attack

	STWSN: A Novel Secure Distributed Transport Protocol for Wireless Sensor Networks
	Abstract
	Introduction
	Our Contribution

	Related Works
	Attacker model and Security issues
	Attacker Model
	Security issues in the SDTP protocol

	The STWSN Protocol
	Preliminary
	The ACK Authentication Values
	The NACK Authentication Values

	STWSN – Source Mechanism
	STWSN – Destination Mechanism
	STWSN – Intermediate Node Mechanism

	Security Analysis
	The cryptprobtime calculus
	Security proof technique based on the PTTS
	Formal security analysis of STWSN
	Analyzing the resistance to reliability attacks
	Formal analysis of the resistance to energy depleting attacks

	Performance Analysis
	Conclusion
	Acknowledgments
	References
	Appendix A - DTSN
	Appendix B - STWSN Nodes' Mechanisms
	Source Node Mechanism
	Destination Node Mechanism
	Intermediate Node Mechanism

	Appendix C - Overhead Analysis
	Building Block Overhead
	Several Merkle-trees versus one Merkle-tree
	Futile Retransmission Overhead

