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Introduction

It is well documented that regular endurance training
induces an increase in skeletal muscle mitochondrial

Abstract

We assessed the effects of post-exercise cold-water immersion (CWI) in modu-
lating PGC-1oo mRNA expression in response to exercise commenced with low
muscle glycogen availability. In a randomized repeated-measures design, nine
recreationally active males completed an acute two-legged high-intensity
cycling protocol (8 x 5 min at 82.5% peak power output) followed by 10 min
of two-legged post-exercise CWI (8°C) or control conditions (CON). During
each trial, one limb commenced exercise with low (LOW: <300 mmol-kg "
dw) or very low (VLOW: <150 mmol-kg ' dw) pre-exercise glycogen concen-
tration, achieved via completion of a one-legged glycogen depletion protocol
undertaken the evening prior. Exercise increased (P < 0.05) PGC-1o0 mRNA at
3 h post-exercise. Very low muscle glycogen attenuated the increase in PGC-1a
mRNA expression compared with the LOW limbs in both the control (CON
VLOW ~3.6-fold vs. CON LOW ~5.6-fold: P = 0.023, ES 1.22 Large) and CWI
conditions (CWI VLOW ~2.4-fold vs. CWI LOW ~8.0 fold: P = 0.019, ES 1.43
Large). Furthermore, PGC-1oo mRNA expression in the CWI-LOW trial was
not significantly different to the CON LOW limb (P = 0.281, ES 0.67 Moder-
ate). Data demonstrate that the previously reported effects of post-exercise
CWI on PGC-1ao mRNA expression (as regulated systemically via B-adrenergic
mediated cell signaling) are offset in those conditions in which local stressors
(i.e., high-intensity exercise and low muscle glycogen availability) have already
sufficiently activated the AMPK-PGC-1a signaling axis. Additionally, data sug-
gest that commencing exercise with very low muscle glycogen availability atten-
uates PGC-1a signaling.

transcripts encoding mitochondrial proteins in response
to each acute training session (Perry et al. 2010). Upon
the onset of contraction, homeostatic perturbations
within skeletal muscle (e.g., increased AMP/ATP ratio,

density (Holloszy 1967). At a molecular level, the mito-
chondrial adaptations induced by endurance training
are largely regulated via transient increases in mRNA

© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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Ca®*, reactive oxygen species (ROS), lactate, reduced
glycogen availability, etc.) result in the activation of regu-
latory protein kinases that, in turn, activate downstream
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targets such as transcription factors or transcriptional
coactivators (Ljubicic and Hood 2009). As a transcrip-
tional coactivator, the peroxisome proliferator-activated
receptor coactivator (PGC-1a), has been the focus of
intense investigation during the last two decades and is
repeatedly cited as the “master regulator of mitochondrial
biogenesis” (Bartlett et al. 2012; Puigserver and Spiegel-
man 2003). The importance of PGC-lo in regulating
mitochondrial content and function is evident from
demonstrating that overexpression
increases oxidative enzyme activity (Lin et al. 2002),

rodent  studies
improves insulin sensitivity (Benton et al. 2008), protects
against sarcopenia (Wenz et al. 2009) and also improves
exercise capacity (Calvo et al. 2008).

In relation to human skeletal muscle, multiple laborato-
ries have examined the potential to augment the adaptive
response to a given exercise stimulus through interven-
tions that modulate and enhance the exercise-induced
activation of the PGC-1la signaling axis. Consistent with
the initial discovery that PGC-lo was cold-inducible in
rodent skeletal muscle (Puigserver et al. 1998), we (Allan
et al. 2017; Joo et al. 2016) and others (Thsan et al. 2014,
2015) have demonstrated that both passive and post-exer-
cise cold-water immersion (CWI) enhances the acute
expression of PGC-1lao mRNA (Joo et al. 2016), an effect
that is likely regulated systemically (via P-adrenergic acti-
vation of local cell signaling pathways), as opposed to local
cooling effects per se (Allan et al. 2017). In accordance
with the acute effects of CWI, chronic application of the
CWI stimulus in response to consecutive training sessions
up-regulates chronic markers of training adaptations such
as lipid enzyme activity and oxidative enzyme protein con-
tent (Thsan et al. 2015).

In addition to CWI, we (Bartlett et al. 2013; Impey
et al. 2016) and others (Hulston et al. 2010; Psilander
et al. 2013; Van Proeyen et al. 2011; Yeo et al. 2010)
have also demonstrated a potent role of reduced muscle
glycogen availability in enhancing the chronic adaptations
to endurance training, an effect that is also associated
with the augmented activation of the AMPK-PGC-1a sig-
naling axis in response to an acute training session that
is completed with reduced CHO availability before, dur-
ing, and/or after exercise (Impey et al. 2018). This body
of work is often communicated as the train-low (smart):
compete high paradigm surmising that carefully selected
training sessions could be completed with reduced CHO
availability so as to augment training adaptation, yet
competition should always be commenced with high
CHO availability so as to promote optimal performance.
When taken together, such data raise the possibility that
application of post-exercise CWI and
reduced CHO availability may augment the cell signaling
responses associated with the regulation of mitochondrial

simultaneous
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biogenesis, when compared with the application of either
stimulus in isolation. However, given recent data high-
lighting the role of local muscle metabolic stress in mod-
ulating acute exercise-induced cell signaling pathways
(Fiorenza et al. 2018), it is suggested that the application
of CWI (i.e., a systemic mediated stress) induces negligi-
ble regulatory effects on a muscle that has already been
subjected to the extreme local metabolic challenge of
both high-intensity exercise and low muscle glycogen
availability.

Accordingly, the aim of the present study was to assess
the effects of post-exercise CWI in modulating the regula-
tion of PGC-1oo mRNA expression in muscles that have
already completed the challenge of high-intensity exercise
and low muscle glycogen availability. Using a prior glyco-
gen manipulation protocol, we adopted an experimental
design where subjects completed an acute two-legged
high-intensity cycling protocol with and without two-
legged post-exercise CWI but where each limb com-
menced exercise with low (<300 mmol-kg~' dw) or very
low (<150 mmol-kg™' dw) pre-exercise glycogen concen-
tration. In this way, we were able to obtain muscle biop-
sies from four limbs subjected to the same exercise
stimulus but with differing local (i.e., pre-exercise glyco-
gen availability) and systemic stressors (i.e., CWI vs. non-
cooling conditions).

Materials and Methods

Participants

Nine recreationally active healthy males (age 22 + 3 years;
body mass 74.18 + 7.88 kg; height 180.50 + 6.60 cm;
peak power output (PPO) 272 £ 256 W; mean + SD)
participated in this study. Participants were instructed to
refrain from exercise, alcohol, and caffeine 48 h prior
to the first depletion protocol, and not to stray from the
prescribed meal plan or exercise within the 48 h preceding
the experimental day. All procedures performed in
the study were approved by the Ethics Committee of
Liverpool John Moores University and in accordance
with the 1964 Helsinki
amendments.

declaration and its later

Preliminary testing

Prior to commencing the experimental trials the partici-
pants completed an incremental exercise test to fatigue
for the determination of VO, peak and PPO (as described
in detail in Hawley and Noakes 1992). Results from this
test were used to determine the Watts necessary for
cycling at a proportion of PPO on subsequent test days.
PPO was calculated using the equation below (Pedersen

© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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et al. 2008); where CB is the wattage of the last complete
bout, FB is the fraction of the final bout completed, and
25 is the increment of 25W between each successive bout:
PPO = CB + (FB x 25). Further preliminary
encompassed familiarization to the glycogen depletion

visits
protocols to be completed prior to the experimental day.

Experimental design

In a repeated-measure, randomized crossover design, with
at least 14 days between trials, participants reported to the
laboratory a total of nine times, where the first three were
familiarization sessions. In order to establish a research
design that allowed the investigation of four separate condi-
tions from two visits participants underwent a single-leg
depletion protocol and bi-lateral muscle biopsies with and
without post-exercise CWI to give the following conditions:
Low glycogen control (CON LOW), Very Low glycogen
control (CON VLOW), Low glycogen CWI (CWI LOW)
and Very Low glycogen CWI (CWI VLOW) (See Fig. 1).

Two-legged glycogen depletion, Visit 1

Participants arrived at the laboratory 40 h prior to the
experimental trial at 1600 h and undertook a 5-min
warm-up at 100 W. From here, participants performed

Day 1

Evening
(PM)

Low SKM Glycogen Availability Offsets CWI Augmented PGC-1a

an intermittent cycling protocol aimed to deplete both
limbs of muscle glycogen. A two-legged glycogen deplet-
ing cycling protocol consisting of 2 min at 90% PPO, fol-
lowed immediately by a 2-min recovery period at 50%
PPO. Participants repeated this work to rest ratio until 2-
min cycling at 90% PPO could not be maintained, deter-
mined as an inability to maintain a cadence of 70 rev
min~'. At this point, exercise intensity was lowered to
80% PPO, with the same work to rest ratio. When partic-
ipants could no longer maintain this intensity, it was low-
ered to 70% and then finally to 60% PPO with the same
work to rest ratio. When the participants were unable to
cycle for 2 min at 60% PPO, the exercise protocol was
terminated. This intermittent pattern of exercise has pre-
viously been shown to evoke glycogen depletion in both
type I and type II fibres (Kuipers et al. 1987). After the
completion of the two-legged glycogen depletion protocol,
participants were provided with a high CHO diet for the
next ~22 h (CHO 8 gkg™' body mass, protein (PRO)
1.4 g-kg” ' body mass, Fat 0.5 gkg™' body mass). Feeding
began immediately after the cessation of exercise for 4x
hourly intervals that evening. Participants were also pro-
vided with breakfast for the following morning and
returned to the laboratory post-breakfast to collect food
for the rest of the day (~8 g CHO-kg™ ' body mass). The
purpose of this initial glycogen depletion protocol with

Day 2

Evening
(Pm)

T 66100 g 3% 10

Similar

Unknown 2- legged High CHO feeding ) 1- legged Overnight fast
glycogen; no depletion (CHO 8 g/kg* body mass, glycogen; depletion
caffeine, protocol PRO 1.4 g/kg' body mass, assumed. protocol
exercise or FAT 0.5 g/kg* body mass); low-medium
alcohol 48h overnight and following
previous day
Day 3 2-legged; ‘
10 min @ ~8°C
tamyine L) cwilow
[/ cwiviow
¢
{ o 4
i /& 4 % /& ¢ ’ o ’ 4 > ﬁ
WAL
AN :re ‘ Post: OR +1h +2h +3h
xercise i \
Exercise . /, \
NS 2/ CON LOW
Arrive with HIT cycling \ |/ conviow
contralateral 8 x 5min @ ) N,
LOW and 82.5% PPO Seated rest N3
VLOW limb

(Rgeated measures; ~14 d a@/

b 4
Bilateral Blood

Muscle Sample
biopsy

&

Figure 1. Overview of the experimental protocol used in each trial. HIIT, High-intensity intermittent exercise; CHO, carbohydrate; PRO, protein;
CWI, cold water immersion condition; PPO, peak power output; CON, control condition; LOW, low CHO limb; VLOW, very low CHO limb.
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high CHO refeed was to ensure participants had a similar
bi-lateral concentration of muscle glycogen prior to com-
mencing the second evening depletion.

Single-leg glycogen depletion, Visit 2

Approximately 15 h prior to the experimental trial, partici-
pants attended the laboratory for a single-leg glycogen
depletion protocol to deplete their dominant leg only.
Glycogen depletion of the dominant leg was undertaken as
to ensure similar muscle recruitment patterns and therefore
glycogen depletion between trials. Single-leg glycogen deple-
tion involved 20 min continuous single-leg cycling at 75%
PPO, followed by intermittent cycling at a work to rest ratio
of 90s:90s. Intermittent cycling began at 90% PPO decreas-
ing in 5% decrements when such a workload could not be
maintained for 5 s consecutively. Exercise ceased when 55%
PPO could not be maintained for 5 s consecutively. Imme-
diately following this, the participants completed an all-out
one-legged cycling bout at 85% PPO before going on to
30 min of 2-arm cycling at 50W in an attempt to decrease
liver glycogen levels and therefore diminish the potential for
muscle glycogen resynthesis (Pilegaard et al. 2002). Partici-
pants then underwent an overnight fast before returning to
the laboratory the next day.

Experimental trial, Visit 3

Upon arrival at the laboratory participants were fitted with
a heart-rate belt (Polar RS400, Kempele, Finland), skin and
rectal temperature probes (MHF-18050-A and MRV-
55044-A, Ellab, Rodovre, Denmark) and legs were marked
for subsequent insertion of muscle temperature needles.
Following 10-minutes in a supine position baseline mea-
sures of HR, temperature and oxygen uptake (VO,; Oxy-
con Pro, Jaeger, Wuerzberg, Germany) were assessed.
Resting venous blood samples were drawn from a superfi-
cial vein in the anti-cubital crease of the forearm using
venepuncture cannulation (BD Nexiva Closed IV Catheter
22G Blue, Becton Dickinson, Oxford, UK). Resting muscle
temperature was assessed using a needle thermistor (13050
Ellab, Rodovre, Denmark) before resting bi-lateral muscle
biopsies were sampled from the vastus lateralis (~30-50 mg
wet wt). Immediately after the resting biopsy participants
completed a high-intensity intermittent cycling protocol,
consisting of 8 x 5 min bouts at 82.5% PPO separated by
1 min rest followed by either two-legged CWI (CWTL
10 min at 7.96 + 1.05°C) or a control condition (CON;
seated rest). From here, participants recovered in a semi-
reclined position under normal laboratory temperatures
until 3-hours post-exercise. Measures of heart rate, skin
temperature (thigh and calf) and rectal temperature were
recorded throughout the exercise and recovery periods.

2019 | Vol. 7 | Iss. 11 | e14082
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Oxygen uptake was measured during the final minute of
each high-intensity bout of exercise, during immersion and
immediately post-immersion to assess for shivering ther-
mogenesis and again at 1, 2, and 3 h post-exercise.

Laboratory temperatures remained stable throughout
(~21°C) and at no point where participants allowed to rub
themselves dry or shower (changing into dry clothes after
immersion was allowed). Muscle temperature was assessed
post-exercise, 1, 2, and 3 h post-exercise, whilst venous
blood samples were also drawn at these times. Further bi-
lateral muscle biopsies occurred immediately after exercise
and 3 h post-exercise in line with previous research (Allan
et al. 2017; Bartlett et al. 2012; Thsan et al. 2014; Impey
et al. 2016; Joo et al. 2016). Biopsies were obtained from
both limbs at all time points to allow for comparison
between low (LOW) and very low (VLOW) glycogen limbs
in both CON and CWI trials. All incisions were individu-
ally anaesthetized, separated distally by 2-3 cm and
included four passes of muscle tissue per biopsy.

Blood analysis

All samples were analyzed in duplicate. Samples were ana-
lyzed for serum glucose, lactate, NEFA, and glycerol con-
centration using commercially available kits (Randox
Laboratories, Antrim, UK). Plasma metanephrine and Nor-
metanephrine concentrations were measured using liquid
chromatography tandem mass spectrometry as previously
described (Peaston et al. 2010). Serum samples were also
analyzed for insulin using a solid phase enzyme-linked
immunosorbent assay (ELISA, KAQI1251, Life Technolo-
gies, UK), according to the manufacturer’s instructions.

Muscle glycogen

Muscle glycogen concentration was determined according to
the method described by Van Loon et al. (2000). Approxi-
mately 2-3 mg of freeze-dried sample was dissected free of
all visible non-muscle tissue and subsequently hydrolyzed by
incubation in 500 pl of 1 mol L™ HCI for 34 h at 100°C.
After cooling to room temperature, samples were neutral-
ized by the addition of 250 pl 0.12 mol L™' KOH saturated
with KCl. Following centrifugation, 150 UL of the super-
natant was analyzed in duplicate for glucose concentration
according to the hexokinase method using a commercially
available kit (GLUC-HLK, Randox Laboratories, Antrim,
UK). Glycogen concentration is expressed as mmol-kg™' dw
and intra assay coefficients of variation was < 5%.

RNA isolation and extraction

Two hundred microliter of chloroform was added per
1 mL TRIzol reagent used during homogenization and

© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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Table 1. Primer sequences used for real-time polymerase chain reaction.

Gene Forward primer Reverse primer Product length (base pairs)
GAPDH AAGACCTTGGGCTGGGACTG TGGCTCGGCTGGCGAC 168
NM_002046.5

PGC-1alpha TGCTAAACGACTCCGAGAA TGCAAAGTTCCCTCTCTGCT 67
NM_013261.3

p53 ACCTATGGAAACTACTTCCTGAAA CTGGCATTCTGGGAGCTTCA 141
NM_000546.5

SIRT1 CGGAAACAATACCTCCACCT CACATGAAACAGACACCCCA 186
NM_012238.4

COXIV CGAGCAATTTCCACCTCTGT GGTCACGCCGATCCATATAA 94
NM_001861.4

Ccs CCTGCCTAATGACCCCATGTT CATAATACTGGAGCAGCACCCC 137
NM_004077.2

TFAM TGGCAAGTTGTCCAAAGAAACCTGT GTTCCCTCCAACGCTGGGCA 135
NM_003201.2

NRF2 AAATTGAGATTGATGGAACAGAGAA TATGGCCTGGCTTACACATTCA 95
NM_002040.3

ERRa TGCCAATTCAGACTCTGTGC CCAGCTTCACCCCATAGAAA 212
NM_004451.4

GLUT4 TCTCCAACTGGACGAGCAAC CAGCAGGAGGACCGCAAATA 101
NM_001042.2

Glyceraldehyde 3-phosphate dehydrogenase —~GAPDH; Peroxisome Proliferator-activated receptor gamma coactivator 1-alpha — PGC-1a;
Tumour suppressor protein 53- p53; Sirtuin 1 — SIRT1; Cytochrome C oxidase subunit 4 — COXIV; Citrate synthase — CS; Mitochondrial tran-
scription factor A — TFAM; Nuclear respiratory factor 2 — NRF2; Estrogen-related receptor alpha — ERRo; Glucose transporter type 4 — GLUT4.

shaken vigorously by hand for 15 s before being incu-
bated at room temperature for 3 min. Samples were
then centrifuged at 12,000 g for 15 min at 4°C. After
centrifugation, the samples were separated into their red
phenol, middle interphase, and upper aqueous phase.
The upper aqueous phase was carefully removed into a
clean, labeled RNA/DNA free Eppendorf, ensuring the
middle interphase was not disturbed, and mixed with
500 pL isopropanol (per 1 mL TRIzol). After vortexing
for 15 s, the sample was incubated at room temperature
for 10 min before further centrifugation (12,000 g for
10 min at 4°C). The resulting supernatant was removed
and the remaining RNA pellet washed in 1 mL ice-
cooled 75% ethanol (per 1 mL TRIzol), vortexed briefly
before centrifugation at 7500 g for 8 min at 4°C. The
ethanol was subsequently removed and the RNA pellet al-
lowed to air dry before re-suspension in 30 uL RNA
storage solution (Invitrogen, UK). Samples were incu-
bated in a block heater at 50°C for 10 min to assist with
re-suspension before proceeding to measurement. RNA
concentration and purity were assessed by UV spec-
troscopy at optical densities of 260 and 280 nm with the
use of a Nanodrop 2000 (Thermo Fisher Scientific, UK).
A target of A260/A280 ratio was set at 2.0. 70 ng RNA
was used for each polymerase chain reaction (PCR)
reaction.

© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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Primer design

Primer sequences (Table 1) were identified using Gene
(NCBI, http://www.ncbi.nlm.nih.gov.gene) and designed
using Primer-BLAST (NCBI, http://www.ncbi.nlm.nih.
gov/tools/primer-blast). Sequence homology searches
ensured specificity. The primers were ideally designed to
yield products spanning exon—exon boundaries to prevent
any amplification of gDNA. Three or more GC bases in
the last five bases at the 3’ end of the primer was avoided.
Secondary structure interactions (hairpins, self-dimer, and
cross dimer) within the primer were avoided. All primers
were between 16 and 25 bp, and amplified a product of
between 67 and 212 bp. Primers were purchased from
Sigma (Suffolk, UK).

Gene expression analysis by real time-
quantitative reverse transcriptase
polymerase chain reaction rt-qRT-PCR

rt-qRT-PCR  amplifications were performed using
QuantiFast™SYBR® Green RT-PCR one-step kit on a
Rotor-gene 3000Q (Qiagen, Crawley, UK) supported by
rotor-gene software (Hercules, CA). rt-qRT-PCR was per-
formed as follows: hold 50°C for 10 min (reverse transcrip-
tion/cDNA synthesis), 95°C for 5 min (transcriptase

2019 | Vol. 7 | Iss. 11 | 14082
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inactivation and initial denaturation step) and PCR steps of
40 cycles; 95°C for 10 s (denaturation) and 60°C for 30 s
(annealing and extension). Upon completion, dissociation/
melting curve analysis were performed to reveal and
exclude non-specific amplification or primer—dimer issues
(all melt analysis in this study presented single reproducible
peaks for each target gene suggesting amplification of a sin-
gle product). Following initial screening of suitable refer-
ence/housekeeping genes, Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) showed the most stable Ct values
across all RT-PCR runs, participants and regardless of
experimental condition (27.02 £ 1.96 CT; 7% Co-efficient
of variation) and was selected as the reference gene in all
RT-PCR assays. The relative gene expression levels were
calculated using the comparative Ct (**“") equation (Sch-
mittgen and Livak 2008) where the relative expression was
calculated as 27**“" and where Ct represents the threshold
cycle. mRNA expression for all target genes was calculated
relative to the reference gene (GAPDH; participants own
reference, not pooled) within same subject and condition
and to a calibrator of pre-exercise. The average PCR effi-
ciency was 91.25% and variation for all genes (including
the reference gene) was <6.3%.

Statistical analysis

All data are presented as mean + SD. Baseline data, dis-
tance cycled, exercise HR and RPE were compared
between conditions using a Paired Samples T-test. A two-
way (4 conditions x time) within participant’s general
linear model for condition (CON LOW, CON VLOW,
CWI LOW, CWI VLOW) and time was used to evaluate
muscle glycogen, thigh skin temperature, muscle tempera-
ture, and gene expression. A two-way (2 conditions X
time) within-participants general linear model was used
to evaluate all blood measures (glucose, lactate, NEFA,
glycerol, insulin, normetanephrine, metanephrine), rectal
temperature, subjective and physiological responses (HR,
RPE, shivering, VO,). The main effects for condition and
time were followed up using planned LSD multiple com-
parisons. The ES magnitude was classified as trivial
(<0.2), small (>0.2-0.6), moderate (>0.6-1.2), large
(>1.2-2.0), and very large (>2.0-4.0) (Hopkins et al.
2009). The o level for evaluation of statistical significance
was set at P < 0.05.

Results
Day 1 and 2: Glycogen depletion exercise
protocols

In the two-legged glycogen depletion protocol undertaken
on the evening of Day 1, no difference was observed
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between conditions for distance cycled (CON
67.1 £ 18.1 km, CWI 67.3 £ 6.1 km, P = 0.394, ES 0.01
Trivial), time to depletion (CON 134 + 30 min, CWI
130 & 12 min, P = 0.669, ES 0.19 trivial) or number of
intervals completed (8 £ 2 per stage for both CON and
CWI, P = 0.669, ES 0.20 Small). In the single-leg glycogen
depletion protocol undertaken on the evening of Day 2,
no significant difference was present between conditions
for distance cycled in the 20-minute steady-state period
(CON 9.5 £ 1.2 km, CWI 8.5 £ 0.9 km, P = 0.194, ES
1.09 Moderate), number of subsequent high intensity
bouts completed (CON 6.8 £ 2.0 per stage, CWI
6.4 &+ 2.0 per stage, P = 0.235, 0.18 Trivial) and the dis-
tance cycled during the intervals (CON 47.5 £ 8.8 km,
CWI 47.9 £+ 7.3 km, P = 0.587, ES 0.06 Trivial). More-
over, no differences were observed between conditions for
time (CON 40.7 £+ 9.0 s, CWI 37.5 + 8.4 s) and distance
(CON 0.6 = 0.2 km, CWI 0.4 + 0.1 km) completed in
the all-out exhaustive one-leg cycle (P = 0.197 ES 0.38
Small and 0.094 ES 0.94 Moderate, respectively).

Day 3: Main experimental trial

Physiological responses to exercise

Distance cycled during the two-legged high-intensity inter-
mittent cycling protocol (CON 26.8 &+ 2.8 km, CWI
26.7 & 3.4 km; P =0.946, ES 0.01 Trivial), heart rate
(P=0.992, ES 0.004 Trivial), VO, (mLkg 'min~"
P =0.602, ES 0.24 Small), and RPE (P = 0.849, ES 0.07
Trivial) were similar between CON and CWTI trials (data not
shown). Mean HR during the final minute of exercise was
179 + 7 beats-min~' in CON and 177 + 9 beats-min~' in
CWI (P > 0.05), equating to ~80% HR max. The RPE in
the final exercise bout was 20 AU and 19 AU in the CON
and CWTI trials, respectively. Such data highlight that the
distance cycled and both whole body physiological/
perceptual responses were comparable between the control
and CWTI trials.

Muscle glycogen concentration

Muscle glycogen concentrations were lower in the VLOW
limbs compared to the LOW limbs in both the control
(CON LOW vs. CON VLOW: P = 0.017, ES 1.04 Moder-
ate) and CWI trials (CWI LOW vs. CWI VLOW:
P =0.001, ES 1.18 Moderate; Fig. 2). In contrast, the
concentration of muscle glycogen was similar between the
respective LOW (CON LOW vs. CWI LOW: P = 0.819,
ES 0.07 Trivial) and VLOW conditions (CON VLOW vs.
CWI VLOW: P = 0.751, ES 0.14 Trivial; Fig. 2). Muscle
glycogen decreased immediately following exercise
(P =0.001, ES 1.11 Moderate) and at 3 h post-exercise

© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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Thermoregulatory responses to CWI versus
control conditions

Rectal temperature (Trec) was similar between conditions
(P = 0.887, ES 0.02 Trivial) during exercise and post-exer-
cise recovery (see Fig. 3A). During the immersion and
recovery period, Trec decreased from the fifth minute of
immersion until 3 h post-exercise (P < 0.001). Thigh skin
temperature (Tthigh) was lower during immersion and the
post-immersion period in CWI vs. CON conditions
(P <0.001, ES 2.48 Very Large). The change in Tthigh
over time was also different between conditions, with
Tthigh continually decreasing during cooling in CWI con-
ditions, remaining lower than pre-immersion values at 3 h
post exercise (P = 0.001, see Fig. 3B). Muscle temperature
(Tmus) was lower following immersion (P < 0.001) in the
CWI limbs (P < 0.001, ES 0.90 Moderate). The change in
Tmus over time was also different between conditions.
Muscle temperature declined to a large extent immediately
after immersion in the CWI limb, followed by a further
gradual reduction during the remaining 3 h post-exercise
period (P < 0.001, ES 1.0 Moderate, see Fig. 3C).

Circulating plasma metabolites and
catecholamines

There was no significant difference in plasma glucose, lac-
tate, NEFA, insulin, and glycerol concentrations between
conditions (P > 0.05) (Table 3). The change in these
parameters over time was also similar between conditions
(P > 0.05). Exercise-induced significant increases in glu-
cose, lactate, glycerol, and NEFA (P < 0.05). Metanephrine
concentrations were similar between conditions (P = 0.955,
ES 0.02 Trivial, Table 3). The change in metanephrine over
time was also similar between conditions (P = 0.438).
Metanephrine concentration was increased post-exercise
(P < 0.001, ES 2.10 Very Large) and remained above base-
line at 1 h post-exercise (P = 0.02, ES 0.59 Small). Norme-
tanephrine concentrations were similar between conditions
(P = 0.130, ES 0.14 Trivial, Table 3). The change in norme-
tanephrine over time was different between conditions, with
normetanephrine concentrations decreasing to a greater
extent in CON during the 3 h post-exercise period
(P = 0.026, ES 1.60 Large). Normetanephrine concentration
increased post-exercise (P = 0.002, ES 1.50 Large) and
remained above baseline in CWI conditions until 2 h post-
exercise (P < 0.05; P = 0.058).

Skeletal muscle mRNA responses

Exercise increased PGC-1oo mRNA at 3 h post-exercise in
all conditions (P < 0.001; ES 1.99 Large) (Fig. 4). At 3 h
post-exercise, PGC-1oo mRNA expression was attenuated

2019 | Vol. 7 | Iss. 11 | e14082
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in the VLOW limbs compared with the LOW limbs in
both the CON (CON VLOW vs. CON LOW: P = 0.023,
ES 1.22 Large) and CWI conditions (CWI VLOW vs.
CWI LOW: P = 0.019, ES 1.43 Large; P = 0.039). This
reflected the greater change in expression in the LOW
limbs in both CON and CWI conditions between post-
exercise and 3 h post-exercise time points (P = 0.034).
There was no significant difference in PGC-loo mRNA
expression between the CWI LOW limb and CON LOW
limb at 3 h post-exercise (P = 0.281, ES 0.67 Moderate)
(Fig. 4). In contrast to PGC-lao, the expression of
COXIV, CS, TFam, SIRT1, NRF2, and GLUT4 mRNA
(Fig. 5) did not change in response to exercise or CWI
(P> 0.05).

Discussion

The rationale for the present study was based on previous
observations that both post-exercise CWI (Allan et al.
2017; Thsan et al. 2014, 2015; Joo et al. 2016) and
reduced muscle glycogen availability (Bartlett et al. 2013;
Impey et al. 2016) independently augment the exercise-
induced mRNA expression of the master regulator of
mitochondrial biogenesis, PGC-la. Accordingly, it is
tempting to speculate that the application of both stres-
sors simultaneously amplifies the adaptive responses of
skeletal muscle to exercise, when compared with either
intervention alone. In contrast, given recent data high-
lighting the role of local metabolic stress in modulating
acute exercise-induced cell signaling pathways (Fiorenza
et al. 2018), we hypothesized that the application of CWI
(i.e., a systemic mediated stress) induces negligible regula-
tory effects on muscles that have already been subjected
to the extreme local metabolic challenge of both high-
intensity exercise and low muscle glycogen availability.
Confirming our hypothesis, we demonstrate that the
application of post-exercise CWI does not enhance the
exercise-induced expression of PGC-1oo mRNA in muscles
that completed an acute high-intensity cycling protocol
with low (i.e., <300 mmol-kgf1 dw) or very low (ie.,
<150 mmol-kg ™' dw) pre-exercise muscle glycogen con-
centrations. From a practical perspective, our data suggest
that the application of post-exercise CWI as a strategic
training aid for greater PGC-1o gene expression is more
likely to have beneficial effects when utilized after those
high-intensity training sessions that have not induced
near maximal glycogen depletion.

In our previous study (Allan et al. 2017), we utilized
the same exercise protocol as that studied here (i.e., 8 x
5 min at 82.5% PPO) and demonstrated that post-exer-
cise CWI (10 min of single limb immersion at 8°C) aug-
ments PGC-1a mRNA expression (9-12-fold) in both the
immersed and non-immersed limbs when compared with

© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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Table 3. Plasma-derived metabolic and hormonal markers measured Pre-Exercise, Post-Exercise, +1 h, +2 h, +3 h following the cessation of
exercise (n = 9 mean + SD).

Pre-exercise Post-exercise +1 h +2 h +3 h

Glucose (mmol-L™")  CON 5.50 + 0.50 6.15 £ 0.37* 5.28 + 0.32* 5.20 + 0.52* 5.29 + 0.36*

CWI 5.77 £ 0.57 6.06 £+ 0.89* 5.30 + 0.85* 5,25 3= 0.&57 5.32 + 0.76%*
Lactate (mmol-L~") CON 1.41 + 0.40 8.23 + 3.97* 1.86 + 0.94 1.32 £ 0.44 1.36 + 0.47

CWI 1.68 + 0.69 7.47 + 3.42* 2.78 + 1.55 1.75 + 0.65 1.44 + 0.38
NEFA (mmol-L~") CON 0.60 £+ 0.24 0.83 + 0.26 1.39 + 0.23* 1.44 £+ 0.35* 1.49 £+ 0.43*

CWI 0.65 + 0.24 0.87 + 0.38 1.64 + 0.29* 1.39 + 0.33* 1.50 £+ 0.29*
Glycerol (pmoI»L’1) CON 4494 4+ 23.70 290.22 + 99.92* 120.78 £ 51.52* 114.63 £ 50.00%* 102.36 + 45.79*

CWI 41.11 £ 22.02 273.81 £ 52.52* 155.36 + 38.32* 116.00 £+ 52.46* 97.21 £+ 30.75*
Insulin (U-mL~") CON 12.88 + 6.86 11.55 + 3.06 13.50 + 4.08 12.55 + 4.68 12.79 + 6.47

CWI 14.04 £+ 5.02 10.32 £+ 4.02 11.61 £+ 5.67 11.57 £+ 3.61 6.53 £+ 1.17
Normetanephrine CON*  699.81 + 197.68 1728.39 + 481.09* 914.39 + 275.69* 738.82 £ 247.92* 634.93 + 204.63
(pmol-L~")

cwit 553.09 + 237.16 1883.33 + 655.17* 1128.64 + 531.83* 1033.08 + 461.74*  919.57 + 371.43
Metanephrine CON 263.94 + 133.08 535.48 + 145.29* 305.63 £ 98.15* 272.43 £ 49.25 232.32 £ 72.05

(pmol-L~")
CWI 245.67 + 80.04

506.73 4+ 149.39*

321.30 + 88.33* 258.46 + 75.54 268.76 + 70.56

“Significantly different from Pre-exercise (P < 0.05).
#Main interaction effect present (P = 0.026).
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Figure 4. PGC-1ae mRNA 27247 fold change in expression with
the calibrator as preexercise and the reference gene as GAPDH (see
methods for details). Values are mean + SD. A time x condition
interaction effect was observed (P = 0.034). * significantly greater
than Pre- and Post-Exercise (P < 0.001). “significantly less than CON
LOW (P < 0.05), bsigniﬁcantly greater than CON VLOW (P = 0.05),
Ssignificantly less than CWI LOW (P = 0.019).

biopsies obtained from an exercise only trial after which no
post-exercise CWI occurred (fivefold). In using that speci-
fic design, these data suggested that the effects of post-exer-
cise CWI previously observed by our laboratory (Joo et al.
2016) and others (Ihsan et al. 2014, 2015) is regulated sys-
temically via B-adrenergic activation of AMPK (Allan et al.
2017) and/or cAMP-CREB-PGC-1la signaling (Akimoto
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et al. 2008), as opposed to local cooling effects per se. In
the present study, we recruited a similar subject population
to complete the same two-legged exercise protocol studied
previously but in conditions where each limb commenced
exercise with low (<300 mmol-kg™' dw) or very low
(<150 mmolkg™" dw) muscle glycogen availability. Addi-
tionally, we also adopted a two-legged post-exercise CWI
protocol as opposed to the single limb immersion protocol
studied previously (Allan et al. 2017). Indeed, given that
the magnitude of sympathetic discharge to skeletal muscle
is influenced by both the size of the tissue area exposed to
cooling (Seals 1990) as well as the magnitude of the cooling
stimulus (Kregel et al. 1992), it is noteworthy that the two-
legged immersion protocol studied here elicited almost
double the stress response as to that observed previously in
response to single limb immersion (i.e., Normetanephrine
~919 vs. ~517 pmol-L ™" at 3 h post-exercise). Nonetheless,
despite the enhanced cooling stimulus and adrenergic
response observed here, we observed no augmented effects
of post-exercise CWI on PGC-loo mRNA expression in
either the LOW or VLOW limbs. When taken together, it
could be suggested that the systemic effects of post-exercise
CWI (i.e., B-adrenergic activation of AMPK and/or cAMP-
CREB-PGC-1a) induces negligible effects on the regulation
of PGC-1oo mRNA expression when the relevant upstream
signaling cascade(s) has already been activated by the com-
bination of high-intensity exercise and low muscle glyco-
gen availability (i.e., glycogen mediated AMPK-PGC-1a
signaling).

© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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details). Values are mean =+ SD.

Surprisingly, one of the most novel aspects of the pre-
sent study was the finding that the magnitude of the exer-
cise-induced changes in PGC-lo. was reduced in the
VLOW limbs compared with the LOW limbs, a finding
that was evident in both the CWI and control trials. It is
difficult to offer a definitive explanation for this finding
but we suggest two related reasons. Firstly, given that
Ca®" release from the sarcoplasmic reticulum (SR) is sig-
nificantly impaired in glycogen depleted fibres (i.e.,
<150 mmolkg ' dw) (@rtenblad et al. 2011), it is possi-
ble that force production was lower in the VLOW limbs
when compared with the LOW limbs. As such, subjects
may have exhibited greater muscle fiber recruitment in
the LOW limbs when compared with the VLOW limbs in
order to induce a compensatory effect to maintain gross
cadence and power output. In this way, a lower PGC-1a
response (as detected in whole muscle homogenates) in
the VLOW limbs may simply be explained by lower abso-
lute muscle fiber recruitment. Alternatively, the potential

© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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reduction in SR Ca®" release within specific muscle fibers
(Ortenblad et al. 2011) may actually reduce Ca®>* medi-
ated regulation of the cyclic AMP response element of the
PGC-lo promoter owing to reduced upstream signaling
through p38 MAPK, CaMKII, and CREB (Wright et al.
2007). Unfortunately, we cannot currently offer definitive
support for this hypothesis given that we did not quantify
muscle fiber recruitment of the vastus lateralis muscles of
both the LOW or VLOW limbs, nor did we measure the
activation status of the aforementioned signaling proteins
in either whole muscle homogenate or specific muscle
fibers. Nonetheless, the suggestion that extremely low
muscle glycogen availability may impair exercise-induced
cell signaling (as opposed to enhance signaling) lends
support for the recently proposed muscle glycogen thresh-
old hypothesis (Hearris et al. 2018) surmising that cell
signaling processes are particularly responsive within a
given range of absolute pre- to post-exercise muscle
glycogen concentrations (e.g., 300 to 100 mmol-kg~" dw).
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Importantly, the VLOW glycogen limbs underwent
depleting exercise the night before the experimental day,
while the LOW limbs did not. This may therefore have led
to higher absolute pre-exercise mRNA values in the VLOW
versus LOW glycogen limbs, ultimately lowering the poten-
tial fold changes seen at 3 h post-exercise when compared
with pre-values. It is important to highlight that gene
expression in the present study was calibrated to the limbs
own PRE value. As such, it is sensible to suggest that the
lower values noted for PGC-1oo mRNA expression in the
VLOW versus LOW limbs might be a factor of this calibra-
tion and higher basal levels in the VLOW limbs. Indeed,
exploring further and calibrating all PGC-1oo mRNA data
to CON LOW Pre-Exercise the difference between LOW
and VLOW conditions is no longer statistically significant
(P > 0.05). However, despite this, it still remains that post-
exercise CWI was unable to augment PGC-1ae mRNA above
the exercise response, in the expected manner for LOW and
VLOW conditions. This supports the earlier point that the
muscle may have already been exposed to sufficient levels
of metabolic stress via extremely low glycogen availability
and therefore any additional stress from the cold is unable
to augment PGC-loo mRNA further. This further explo-
ration is not surprising given the low availability of glyco-
gen in both LOW and VLOW conditions.

In summary, we provide novel data demonstrating that
the previously documented effects of post-exercise CWI
in modulating PGC-lo mRNA expression in human
skeletal muscle are not apparent when exercise is com-
menced with very low muscle glycogen availability. Such
data suggest that any potential effect of systemically medi-
ated regulation of PGC-1oo mRNA expression is negligible
when muscles have already been exposed to sufficient
local signaling events that arise during exercise. Addition-
ally, the presence of extremely low muscle glycogen avail-
ability may actually impair exercise-induced cell signaling
processes. From a practical perspective, our data suggest
that athletes are more likely to obtain beneficial PGC-1a
gene expression from post-exercise CWI protocols when
utilized after those high-intensity interval-training sessions
that have not induced near maximal glycogen depletion.
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