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Abstract

Background

Chronic kidney disease (CKD) is common and important due to poor outcomes. An ability to
stratify CKD care based on outcome risk should improve care for all. Our objective was to
develop and validate 5 year outcome prediction tools in a large population based CKD cohort.
Model performance was compared to the recently reported ‘Kidney Failure Risk Equation’
(KFRE) models.

Methods

Those with CKD in the GLOMMS-I (3396) and —I1 (18687) cohorts were used to develop and
validate a renal replacement therapy prediction tool. The discrimination, calibration and overall
performance was assessed. The net reclassification index compared performance of the
developed model and the 3- and 4-variable KFRE model to predict RRT in the validation
cohort.

Results

The developed model (with measures of age, sex, excretory renal function and proteinuria)
performed well with a C-statistic of 0.938 (0.918-0.957) and Hosmer-Lemeshow (HL) %2
statistic 4.6. In the validation cohort (18687), the developed model falsely identified fewer as
high risk (414 versus 3278 individuals) compared to the KFRE 3-variable model (measures of
age, sex and excretory renal function), but had more false negatives (58 versus 21 individuals).
The KFRE 4-variable model could only be applied to 2,274 individuals because of a lack of
baseline urinary ACR data, thus limiting its use in routine clinical practice.

Conclusions

CKD outcome prediction tools have been developed by ourselves and others. These tools could
be used to stratify care, but identify both false-positives and -negatives. Further refinement
should optimise the balance between identifying those at increased risk with clinical utility for
stratifying care.

Keywords
Chronic kidney disease, outcome, risk prediction,

Summary

An ability to appropriately stratify care for those with CKD should improve care for all. We
demonstrate the development of an outcome prediction tool and compared performance in a
very large cohort to the 3- and 4-variable Kidney Failure Risk Equation (KFRE) outcome
prediction equations. All current models require refinements to identify those at risk without
labelling all individuals as high-risk.



Introduction

In the UK, over 3.6 million adults are estimated to have chronic kidney disease (CKD)\Y; 23
million in the United States®®. While many remain undiagnosed, recognition is improving
rapidly and more are coming to medical attention®. People with CKD are at increased risk of
mortality, cardiovascular disease and progressive kidney function decline (leading to renal
replacement therapy (RRT))® ©). Progression to poor outcomes is highly variable and only a
small proportion will require RRT®. Important opportunities therefore exist for improving
care, maintaining function, reducing progression and minimising and managing complications.
People with CKD often present to primary care, are often elderly and frequently have multiple
morbidities. An ability to identify which patients would benefit most from interventions
including referral to specialist services is key. Stratification of patients by predicted risk of

future outcomes would potentially enable care pathways to be optimised(.

The literature regarding prognosis prediction in CKD has been recently reviewed® 9 and the
processes involved summarised®®. Of the studies identified in the reviews, ten predicted
progression of CKD or renal failure, three cardiovascular events and five all-cause mortality.
All but two of the progression prediction models? 12 were developed in patients referred to
nephrology services. Thus model utility in other contexts, particularly the community, is not
clear® 1. Some models used variables not routinely available in clinical practice e.g. cystatin
C. Very few models have been externally validated. None have been applied in clinical
practice. Although Tangri et al.®® developed models using a population referred to nephrology
services, these models contain commonly available variables (including measures of age, sex
and excretory renal function), were externally validated by the authors in another referred
population; and model performance has since been reported in 595 referred individuals®4.

Unlike many prediction model studies, model performance metrics including discrimination,



calibration and reclassification @9 were reported. Thus these ‘kidney failure risk equation’

(KFRE) models have the best evidence for their use to predict risk in CKD®),

We aimed to report the development and validation of models to predict first outcome
(mortality or RRT initiation) by five years in a large community based CKD cohort. We
compared the performance of our RRT prediction model with the KFRE models®®, using real-

life data to explore applicability to current clinical care.

Materials and methods

This work was approved by the University of Aberdeen Ethics Review Board in keeping with
the principles of the declaration of Helsinki. Data-linkage of pseudoanonymised routine
healthcare data provided measures of renal function, demographics, baseline comorbidity and
outcome data. Data was available from the Scottish Renal Registry, Information Services
Division Scotland (hospital episode data) and NHS Grampian (single Clinical Biochemistry

Service, Renal management system and Health Intelligence).

Development cohort

As outlined elsewhere 1618 the GLOMMS-I cohort (n~3,400) consists of all residents of
Grampian in 2003 aged over 15 years, with a creatinine measurement between January and
June 2003 of >150pmol/L and >130umol/L for males and females respectively, who had
impaired renal function (e€GFR<60mI/min/1.73m?) for at least three months. All but 1.5% of

GLOMMS-I have follow-up until death or within a year of 30 June 2009.

Validation cohort
The GLOMMS-II cohort (70,780 individuals) consists of all residents of Grampian with at

least one eGFR <60ml/min/1.73m? in 2003 (both impaired eGFR (10,857) and CKD (18,687)),

4



a sample (~20,000) of those with only normal eGFR values in 2003 and a sample (~20,000) of
those with no measurement of eGFR in 2003 but sampling in the years pre and post 2003. Only
the 18687 with sustained (for at least three months) stage 3a-5 CKD were used for validation

since the aim was to predict prognosis in those with true CKD.

Model development

Models were developed in the GLOMMS-I cohort. Only those with stage 3b CKD or worse
were used for this analysis since there were only 18 with an eGFR of >45 ml/min/1.73m?.
Those who died on the creatinine index date were also excluded, leaving 3,396 individuals.
Age, gender, stage of CKD and presence of proteinuria were pre-specified as probable
predictors of outcome. The additive value of vascular comorbidity or diabetes was also
explored (with forward selection) since these have been associated with outcome amongst
those with CKD® 20, The 4-variable IDMS-aligned MDRD equation (as used in local clinical
practice) and baseline creatinine were used to calculate eGFR. The last urinary albumin (ACR)
or protein creatinine ratio (PCR) measured prior to index was used, missing values were not
imputed since these were considered likely to be “missing not at random” and only measured
where there is clinical indication . Individuals were categorised based on whether they had
either ACR, PCR or neither measured prior to baseline, to allow analysis both for all cases and
for only those with a proteinuria measurement. Definitions and categorisation of the exposures
available for the cohort are shown under Table 1. Outcomes included initiation of RRT and

death by five years.

The utility of several model types was explored including Cox proportional hazards, logistic
and multinomial regression, measures of performance as below were compared. The
multinomial regression model had similar performance to the logistic regression models for

both RRT and mortality, for clarity the logistic regression models are reported here. Cox
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models failed to follow proportional hazards and showed worse five year predictive
performance. Hence only logistic regression models for the binary outcomes RRT initiation at
five years or not and being dead at five years or not, are presented further here. For each model,
the performance of predictors were judged using a summary measure of fit and complexity —
the Bayesian information criterion (BIC), smaller BIC values equate to better performance®.
The models judged to offer the most parsimonious fit were then used to derive coefficients.
Model ‘discrimination’ was assessed using C-statistics and receiver-operator-characteristics
(ROC) curves®?, Calibration plots of the predicted outcome against the actual outcome were
plotted®? and Hosmer-Lemeshow (HL) statistics calculated based on deciles of risk®?. The
‘calibration’ was also assessed using the performance of the predicted outcomes compared to

the actual outcomes — false positive, false negative, true predictions and overall performance.

Model validation
The chosen models were then used to predict outcome in those with CKD in the GLOMMS-11

cohort. Calibration plots for model performance were plotted and the HL statistic calculated.

Comparison of model performance with ‘kidney failure risk equation’

The risk of RRT initiation using the KFRE 3- and 4-variable equations (KFRE-3v and KFRE-
4v) was also calculated for the GLOMMS-I1 cohort™). Net reclassification improvement
(NRI@29 for RRT initiation by five years using the model developed here, compared with the
KFRE-3v and KFRE-4v equations®® were described using a threshold for high-risk of
initiating RRT by five years at 5%, as used by Tangri in individuals with stage 3 CKD®®, For
both the “event” and non-event” NRIs, positive values suggest the comparator model is better
than the referent model at identifying “events” and “non-events” and negative values the

opposite.



Results

Development

Of 3,396 individuals with stage 3b to 5 CKD, 44.0% were male, 66.8% had stage 3b CKD,
70.6% had no measure of proteinuria prior to index and the average age was 78.6 years. The
outcomes at five years by baseline characteristics are shown in Table 1 and in Figure 1.
Individuals who initiated RRT (4.2%, some subsequently dying) were younger, had lower
eGFR, were more likely to be male and have macroalbuminuria compared to those who did not

start RRT.

The best logistic regression models for the prediction of RRT initiation are shown in Table 2.
Model 7 performed best (BIC 695, discrimination C-statistic 0.938 (0.918-0.957)). All models
of RRT initiation had good calibration, HL ¥ statistic 4.6 for model 7 (HL 2 statistic <20 is
considered evidence of adequate calibration® and a non-significant probability observed
outcome differs from predicted). Models with information on the presence of diabetes and
vascular comorbidity did not improve discrimination (C-statistic 0.937 (0.918-0.957) and 0.938
(0.920-0.957) respectively), calibration (HL ¥ statistic 6.7 and 5.8 respectively) or goodness of
fit (BIC 695 and 701 respectively). For initiation of RRT, model 7, using a 5% threshold of
high risk had a sensitivity of 0.82, specificity of 0.90, negative predictive value of 0.99, false
negative rate of 0.18, resulting in 90% of individuals being correctly classified. Limiting
analysis to those only with a measure of proteinuria (either 532 ACR or 468 PCR) again
showed that a model based on model 6/7 were the best performing (results not shown here).

However, only 998 individuals could be used.

Logistic regression models to predict death by five years performed poorly with little
improvement with the addition of measures of excretory renal function and proteinuria (C-

statistic 0.753 (0.737-0.769)) over that of age and sex alone (C-statistic 0.749 (0.733-0.765)).
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There was poor calibration with statistically significant differences in the predicted and

observed deaths (HL ¥ statistic all greater than 18). No further results are presented.

Validation

The validation cohort comprised 18,687 individuals with stage 3a-5 CKD. Age distribution was
similar to the development cohort (Table 1 and Figure 1), a lower proportion (1.1%) initiated
RRT and there was a higher proportion of survivors (66.9%).

Model 7 (equation box 1) was applied to those with stage 3a-5 CKD in the GLOMMS-II
validation cohort; using the 5% threshold of predicted risk of initiating RRT by five years as
designating someone “high-risk”. Only 578 individuals were “high-risk”. Of the 222
individuals who initiated RRT, 58 (26.1%) were incorrectly classified as not high-risk (false-
negative) (Table 3). The model had a specificity of 0.98, sensitivity of 0.74 and 94.5% of the
18,687 were correctly classified as high-risk or otherwise, if limited to the 6341 with stage 3b-5

CKOD the equivalent figures were 0.93, 0.81 and 92.9% respectively.

Comparison of models

Our model 7 and the KFRE-3v model were compared for the 18,687 people with CKD in the
GLOMMS-II validation cohort. The KFRE-4v model could only be applied to 2,274
individuals because of a lack of baseline urinary ACR data. Model performance measures are
shown in Table 3. Model calibration are shown in Figure 2a (for all with CKD) and 2b (for all
with CKD and a measure of ACR). Both the KFRE-3v and KFRE-4v models over-predicted
those that would initiate RRT. For all 18,687 with CKD, our model 7 had a (discrimination) C-
statistic of 0.960 (0.947-0.974) compared to 0.936 (0.918-0.954) for the KFRE-3v model. In
the 2,274 where the urinary ACR was also available, the C-statistics were 0.936 (0.906-0.966),
0.881 (0.827-0.935) and 0.948 (0.922-0.974) for our model 7, and the KFRE-3v and KFRE-4v

models respectively.



For the 18,687 people with CKD, using the 5% risk threshold for identifying high or low risk,
our model was more specific, 0.98 overall (vs 0.82 with KFRE-3v model) However, our model
missed more cases (58 vs 21 false-negatives) who went on to initiate RRT and thus generally
had a lower sensitivity. These findings were consistent for those both under and over 75 years
of age. For those with stage 3a CKD the proportion predicted a false-negative by the models
(predicted low risk but went on to initiate RRT) were similar (87.0% and 82.6% respectively
for ours and the KFRE-3v model). For both models’, performance was better in more advanced
disease:- false negatives of 68.3% and 4.9% for stage 3b and 11.2% and 0% for stage 4
respectively. The better identification of high RRT risk with the KFRE-3v than our model for
all CKD is reflected in the “event” NRI (Table 3) which being generally negative implies that
the referent model is better at predicting events. However this better event identification came
at a cost, with 2,053 and 1,246 individuals with stage 3b and 4 CKD being classified as high
risk compared to 102 and 333 for our model. Overall, our model correctly reclassified 2,864
individuals from KFRE-3v ‘high-risk’ to ‘low risk” (Table 3) — “non-event” NRI. The majority
of individuals did not initiate RRT, as shown in Figure 3. Overall the NR1%% was small
suggesting no model was better overall than another, although for stage 4 and 5 CKD the

NRI%%®was positive thus favouring our model.

For the subset of 2,274 individuals with urinary ACR data (second part of Table 3) there was a
different performance profile. The KFRE-3v model identified 512 individuals as high risk,
compared to 276 with the KFRE-4v model and 120 with our model. Overall the sensitivity of
the KFRE-3v model was the same as the KFRE-4v model (0.84) and better than ours (0.56),
reflected in the event NRIs. However the specificity of ours was better 0.96 vs 0.79 KFRE-3v
and 0.89 KFRE-4v) . In particular the KFRE-3v model identified all those with stage 4 CKD as

high risk (specificity 0.00, non-event NRI positive in favour of our model). Overall the NR1%%s
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favoured the KFRE-4v model over the KFRE-3v and our model, except for stage 4 CKD where
our model was favoured over both the KFRE models (missing only one RRT initiator (false-

negative 6.3%) and identifying only 68 individuals as high risk).

Discussion

We have demonstrated that it is possible to develop prediction tools for the initiation of RRT in
a community CKD population, not just those referred to nephrology clinics. Using routinely
available clinical biomarkers we were able to predict the five year risk of RRT using a simple
prediction model. This tool could be used to stratify CKD populations by RRT risk, identifying
clinically relevant sub-groups at high and low risk. The performance of our model using
traditional metrics was good, and comparable to the widely cited KFRE models®®. This is the
first study to apply the KFRE 3- and 4-variable models to a non-referred population and only
the second to apply them outside the Canadian health system*. Both KFRE models performed
well on traditional metrics, but the KFRE-4v model had restricted application because of the
data available from routine care. This similar performance of the KFRE models was despite
differing age and gender (35% vs 56% male; (74.4 (SD 0.8) vs 70(SD 24) years), lower
prevalence of diabetes (8% vs 37%) and vascular disease (24% vs 40%) in our population

compared to the KFRE deriving population.

The major strength of this study lies in the availability of population-based routine clinical data
with complete coverage for a large single health authority region, supporting good translation
into clinical practice. The community cohort extends generalisability to beyond those already
referred to nephrology care. The technical challenges of identifying those with chronic kidney
disease are well-documented and have resulted in widely varying prevalence reporting in the
literature®®. Here we have defined CKD using the internationally adopted definition with an

eGFR of <60 ml/min/1.73m? present for at least three months. We have reported a range of
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model performance metrics to enable assessment of overall performance of the models. There
are however some limitations to this study. The original (deriving) cohort was nested within the
validating cohort and had no individuals with stage 3a disease, thus there is the potential for
model over-fitting. However, this would not impact on the performance (and further external
validation) of the KFRE models, and thus the issue with the over-prediction of risk for these
models is appropriately highlighted. The use of data from one health board does potentially
reduce generalisability, however registry data suggests that the region has similar RRT
initiation rates to the rest of the UK. The majority of the population is Caucasian which limits
reproducibility in more ethnically diverse populations. The use of a model that includes a group
with “proteinuria not measured” is unusual. However, although there may be multiple reasons
why proteinuria is not measured (we assume in the majority because the clinician in charge has
not thought it relevant), the single reason it is not available in this dataset is that it was not
measured. As such these individuals are an important risk group, particularly as demonstrated,
this is the majority of individuals at a population level with CKD. We would expect that the
use of such a model to assess risk should prompt future assessment and thus the measurement

of proteinuria, and in itself is useful to consider “baseline” risk.

There is growing evidence that prediction models in CKD have the potential to stratify future
risk of major health outcomes including RRT. However, reporting of performance is variable
and only three studies™® 2”28 report external validation, the ideal in prediction model
development@®. Clinical applicability has also been limited by the variables included. For
mortality prediction, we and others have found that the addition of renal function measures
(including eGFR and proteinuria), added little to age and sex@".

Our RRT prediction model performed well, with good or excellent discrimination (C-statistic
0.938 in the derivation and 0.960 in the validation cohort) and calibration (HL y? statistic 4.6).

Equivalent figures published for Tangri et al.*® were C-statistics 0.89, 0.91 and 0.92 for the
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KFRE 3, 4 and 8-variable models and (Nam and D’ Agnostino) ¥ statistic 37, 32 and 19

respectively.

This is one of only two studies* that have reported validation of the KFRE-3v and KFRE-4v
models in an external population, both demonstrating excellent discrimination. However, we
found that both KFRE models over-predicted risk compared to actual outcomes (calibration),
likely due to the competing risk of death. This is supported by the original KFRE publication
(15 reporting Nam and D’ Agnostino y? statistics of 37, 32 and 19 for the 3-, 4- and 8-variable
models, again suggesting the observed and predicted events were rather different. Although
both Tangri et al.*> and Peeters et al.* report the NRI comparing the KFRE models relative
performance, neither is so explicit in terms of the numbers of individuals mistakenly identified
as high or low risk. To our knowledge no others have reported the numbers that would be
identified as high-risk using these models in a community CKD population and thus the
implications of using them, e.g. in general practice to guide referral, particularly since all
individuals with stage 4 CKD were high risk according to the KFRE-3v model. We
demonstrated like others®® that overall NRI favours the use of the KFRE-4v over the KFRE-

3v model, however this was only applicable to 2,274 of the 18,687 individuals with CKD.

Head-to-head comparison of our model (more specific, less sensitive) to others allows
assessment of the potential clinical utility of introducing models into routine practice. Although
CKD outcome prediction models have the potential to identify individuals at high- and low-
risk, currently available models have limitations. Using the risk thresholds (P>0.05=high-risk)
in this study, the KFRE-3v model identified all with stage 4 CKD as high-risk and as such adds
little to CKD stage. The KFRE-4v equation was unusable in 16,413 of 18,687 individuals in
this population-level CKD cohort because of no measure of urinary ACR, although ACR

measurement will increase given the most recent KDIGO guidelines (30). Our model
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incorporating categorical information on whether urinary protein was measured (ACR or PCR),
and if so, the level, does add some value to prediction estimates, facilitating use in real-world
data. Although a more viable number of individuals were identified as high-risk by our model,
offering potential to guide referral to nephrology care, the false negative rate limits current
clinical application. This balance of false-positive to false-negative (whatever the clinical
decision as a result — referral to nephrology or access surgery) is important both in terms of
service (clinics, dialysis-access-surgery lists) and human (anxiety, risks of inappropriate
surgery) costs against the missed opportunities to intervene earlier and thus change and
improve prognosis. Other issues that would need to be considered if such models were to be
introduced are the effect of using different thresholds for high-risk.

This study has two major implications for current clinical practice. First it highlights the need
for more timely investigation of those identified with CKD to identify risk factors such as
proteinuria. This need has also been identified in the most recent KDIGO guidelines (30) by
cross-classifying eGFR CKD stage by ACR. Second, with further refinement, prediction
models could form part of a CKD pathway for shared care, potentially as a signal for first or re-

referral.

Model refinements require further research to improve performance. In particular:- exploration
of alternative methods (competing risk of death); and prior course of renal function (in clinical
practice considered very important, but so far no measure of this in outcome prediction
models). In terms of patient information, a model of patient “survival” i.e. being alive and not

requiring RRT, would be appealing.

Conclusion
CKD is common with serious consequences for some patients. Tools that predict the initiation

of RRT have been developed and perform well using traditional metrics. Prediction models
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offer the potential to target and tailor clinical care within a carefully managed care-pathway.
For clinical utility, further refinement is needed to optimise the balance between those labelled

as high-risk and false-negatives, and clinical performance.
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Table 1 - Outcome at 5 years follow-up by baseline characteristics

Outcomes at 5 years Outcomes at 5 years
GLOMMS-I cohort GLOMMS-II cohort with CKD 3a-5
Baseline characteristics RRT RRT Died Survive RRT RRT Died Survive
Alive then died no RRT Alive then died no RRT
All N (%) 3396 (2.4) (1.8) (53.0) (42.8) 18687 (0.7) (0.4) (31.9) (66.9)
Sex Male 1493 (3.2) (2.7) (52.7) (41.4) 6580 (1.3) (0.8) (34.5) (63.5)
Female 1903 (1.7) (1.1) (53.2) (43.9) 12107 (0.4) (0.3) (30.5) (68.8)
Age Median (25-75%) 58 (46-71) 70 (63-76) 82 (76-87) 75 (67-80) 58 (44-70) 70 (59-76) 81 (75-87) 73 (66-79)
years 15-44 77 (24.7) (6.5) (3.9) (64.9) 305 (11.8) (2.3) (5.2) (80.7)
45-54 106 (12.3) (6.6) (11.3) (69.8) 660 (3.2) (1.2) (6.8) (88.8)
55-64 280 (6.8) (2.1) (22.9) (68.2) 2201 (1.5) (0.5) (12.2) (85.7)
65-74 758 (2.2) (3.3) (37.7) (56.7) 5630 (0.6) (0.6) (19.2) (79.6)
75-84 1418 (0.9) (1.3) (58.4) (39.4) 7119 (0.2) (0.3) (38.2) (61.2)
85+ 757 (0.0) (0.0) (80.2) (19.8) 2772 (0.0) (0.0) (65.8) (34.2)
eGFR Median (25-75%) 19 (13-28) 19 (14-28) 33 (27-36) 35 (30-37) 19 (13-32) 22 (15-34) 46 (37-53) 51 (44-56)
Index eGFR  45-59 0 12346 (0.1) (0.1) (26.1) (73.7)
mi/min/1.73m* 30-44 2268 (0.8) (0.7) (50.2) (48.3) 4951 (0.4) (0.4) (40.2) (59.0)
15-29 1036 (3.5) (2.7) (59.7) (34.2) 1246 (4.5) (2.6) (55.1) (37.7)
0-14 92 (29.3) (19.6) (46.7) (4.3) 144 (32.6) (15.3) (36.1) (16.0)
ACR Median (25-75%) 129 (32-215) 135 (6-319) 4 (1-16) 2 (0.9-9) 143 (35-240) 135 (9-319) 3 (0.9-10) 1 (0.9-4)
PCR Median (25-75%) 261 (125-415) 228 (73-441) 39 (17-83) 31 (13-79) 216 (85-414) 228 (73-382) 26 (13-59) 21 (9-53)
mg/mmol Normoalbuminuria | 504 (1.2) (1.4) (45.6) (51.8) 2125 (0.6) (0.3) (29.1) (69.9)
Microalbuminuria | 181 (1.7) (1.7) (54.1) (42.5) 602 (0.5) (0.5) (39.7) (59.3)
Macroalbuminuria | 313 (15.0) (10.2) (42.2) (32.6) 548 (13.1) (7.3) (35.2) (44.3)
Not measured 2398 (1.0) (0.8) (55.9) (42.3) 15412 (0.3) (0.2) (31.8) (67.6)

Microalbuminuria= >2.5mg/mmol albumin creatinine ratio (ACR) for men, >3.5mg/mmol ACR for women; macroalbuminuria = >30mg/mmol ACR, or >50mg/mmol protein
creatinine ratio (PCR); normoalbuminuria = ACR or PCR below thresholds for micro/macroalbuminuria; not measured= no measure of ACR or PCR prior to index. In GLOMMS-
I, the presence of vascular disease was defined by a case-note review record of:- ischaemic heart disease (angina, myocardial infarction, abnormal coronary angiogram, coronary
angioplasty or coronary artery bypass grafting); congestive cardiac failure (record of New York Heart Association criteria symptoms); peripheral vascular disease (claudication,
suggestive angiogram or tissue loss due to vascular disease); cerebrovascular disease (transient ischaemic attack, stroke (with or without full recovery) or an abnormal CT scan in
keeping with cerebrovascular disease), up to the time of “index”. Diabetes was defined as present in GLOMMS-I if case-note review up to the time of index had this recorded. In
GLOMMS-II, the presence of any hospital episode record with ICD-10 (World Health Organisation, international classification of disease) coding in the five years prior to index
consistent with vascular disease (111.0, 113.0, 113.2, 120.x-125.x, 142.0, 142.5-142.9, 143.x, 150.x, 160.x-171.x, 173.1, 173.8, 173.9, 177.1, 179.0, 179.2, G45.x-G46.x, H34.0) or
diabetes (E10.x-E14.x, 024.0-024.1) was taken to indicate these comorbidities were present. Coding performance compared to case-note review has been reported previously®b.
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Table 2 — Variables, odds ratios and performance of logistic regression models for
predicting having initiated RRT by 5 years follow-up

Models

Variable 1 2 3 4 5 6 7
Sex (female vs male) 0.55+ 0.38 1 035+ 0.27 035+ 035t 036
Age/10 (years) 0.47t 0.44t 0.42t 0.46 0.47t 0.47t
(Mean age)’ 1.00+
CKD stage 4vs 3 6.55 t
CKD stage 5vs 3 93.37 t
Index eGFR 083t 083t 0.85t 0.84t 084t
Age.eGFR interaction 1.00t
A = Baseline proteinuria not measured
Normoalbuminuriavs A 0.84
Microalbuminuria vs A 2.08
Macroalbuminuriavs A 5.09 +
B = Baseline proteinuria not measured / Normoalbuminuria
Microalbuminuria vs B 2.16
Macroalbuminuria vs B 531+
C statistic 0.817 0.9022 0.917 0.865 0.918 0.938 0.938
(C statistic 95% confidence interval) (0.784-0.849) (0.876-0.928) (0.893-0.941) (0.827-0.903) (0.894-0.941) (0.918-0.957) (0.918-0.957)
P value* <0.0001 0.0077 <0.0001 0.2164 0.0004 0.8706
versus model 1 2 3 3 3 6
Bayesian information criterion 1011 801 729 830 737 703 695
Hosmer-Lemeshow Chi sq statistic 10.6 6.3 8.9 11.7 10.3 4.6 4.6
Hosmer-Lemeshow Chi sq statistic probability 0.229 0.609 0.353 0.165 0.244 0.801 0.800

*Probability that C-statistic differs significantly from previous model (specified below)

+ = statistically significant odds ratios

Addition of diabetes or vascular comorbidity to model 7 yielded C-statistics of 0.937 and 0.938, BICs of 695 and 701 and HL statistics of 6.7
and 5.8 respectively.

C-statistic higher indicates better discrimination, BIC lower indicates better goodness of fit, HL statistic lower value indicates that observed
and predicted instances of RRT initiation are similar, P value examines the probability that the distribution of observed and predicted instances
are significantly different or otherwise
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Table 3 — Comparison of the performance of the KFRE 3- and 4-variable and our model to predict RRT initiation at 5 years in those with
CKD in the GLOMMS-I1 cohort

number of
patients
atrisk

18687
8796
9891

12346
4951
1246

144

2274
2274
2274

1456
1456
1456

650
650
650

153
153
153

15
15

Comparison
Referent:Comparator Total
|
|
|
|
I
I
I
I
I
|
|
——
All
Stage 3a-5 KFRE-3v Ours
Stage 3a-5 (under 75years) KFRE-3v Ours
Stage 3a-5 (over 75years) KFRE-3v Ours
Stage 3a KFRE-3v Ours
Stage 3b KFRE-3v Ours
Stage 4 KFRE-3v Ours
Stage 5 KFRE-3v Ours
Those with urinary ACR data at baseline
All stage 3a-5 KFRE-4v  KFRE-3v
KFRE-4v Ours
KFRE-3v Ours
Stage 3a KFRE-4v KFRE-3v
KFRE-4v  Ours
KFRE-3v Ours
Stage 3b KFRE-4v  KFRE-3v
KFRE-4v  Ours
KFRE-3v Ours
Stage 4 KFRE-4v  KFRE-3v
KFRE-4v Ours
KFRE-3v Ours
Stage 5 KFRE-4v KFRE-3v
KFRE-4v Ours
KFRE-3v Ours

15

StartRRT |
i

i

i

i

|

!
™ORN
00 2
163 18
8 3
a 19
39 2
89 0
6 o
6 7
6 7
6 7
2 s
2 s
1 6
2 2
2 2
131
6 0
% 0
6 0
6 o
6 0
6 o

Referent

Do notstart | Sens Spec Proportion
RRT | correctly
i classified

|

i

|

i

TN FP :
15187 3278 0.91 0.82 0.823
7281 1334 0.90 0.85 0.846
7906 1944 0.93 0.80 0.803
12291 32 0.17 1.00 0.996
2896 2014 0.95 0.59 0.593
0 1157 1.00 0.00 0.071
0 75 1.00 0.00 0.479
1991 240 0.84 0.89 0.891
1991 240 0.84 0.89 0.891
1755 476 0.84 0.79 0.788
1436 13 0.29 0.99 0.988
1436 13 0.29 0.99 0.988
1443 6 0.14 1.00 0.992
527 109 0.86 0.83 0.829
527 109 0.86 0.83 0.829
312 324 0.93 049 0.500
28 109 1.00 0.20 0.288
28 109 1.00 0.20 0.288
0 137 1.00 0.00 0.105
0 9 1.00 0.00 0.400
0 9 1.00 0.00 0.400
0 9 1.00 0.00 0.400

tAll individuals predicted to initiate RRT by all models therefore NRI probability is inappropriate.
TP=true positive; FN=false negative; TN=true negative; FP=false positive; Sens=sensitivity; Spec=specificity; NR10.05=net reclassification index, p<0.05 is low risk; AFN=difference in false negatives between referent and
comparator model; AFP=difference in false positives between referent and comparator model.
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Comparator

Do not start |Sens Spec Proportion
RRT | correctly
i classified

|

i

|

!

TN FP :
18051 414 0.74 0.98 0.975
8340 275 0.76 0.97 0.964
9711 139 0.66 0.99 0.985
12320 3 0.13 1.00 0.998
4821 89 0.32 0.98 0.976
903 254 0.89 0.78 0.788
7 68 1.00 0.09 0.528
1755 476 0.84 0.79 0.788
2135 96 0.56 0.96 0.949
2135 96 0.56 0.96 0.949
1443 6 0.14 1.00 0.992
1447 2 0.14 1.00 0.995
1447 2 0.14 1.00 0.995
312 324 0.93 0.49 0.500
604 32 0.14 0.95 0.932
604 32 0.14 0.95 0.932
0 137 1.00 0.00 0.105
84 53 0.94 0.61 0.647
84 53 0.94 0.61 0.647
(1] 9 1.00 0.00 0.400
0 9 1.00 0.00 0.400
1] 9 1.00 0.00 0.400

Event NRI*®®
Number :Difference
of events lin
correctly Iproportions
Igiven jof events
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risk 1

|

]

oFN |
-37 -0.167
-26 -0.144
-11 -0.268
-1 -0.043
-26 -0.634
-10 -0.112
0 0.000
0 0.000
-12 -0.279
-12 -0.279
-1 -0.143
-1 -0.143
0 0.000
1 0.071
-10 -0.714
-11 -0.786
0 0.000
-1 -0.063
-1 -0.063
0 0.000
0 0.000
0 0.000

Non-event NRI*®

Number :Difference

of non- lin
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correctly :of non-
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aFp |
2864 0.155
1059 0.123
1805 0.183
29 0.002
1925 0.392
903 0.780
7 0.093
-236 -0.106
144 0.065
380 0.170
7 0.005
11 0.008
4 0.003
-215 -0.338
77 0.121
292 0.459
-28 -0.204
56 0.409
84 0.613
0 0.000
0 0.000
0 0.000

NRI®®  (95%CI)

-0.012
-0.021
-0.085
-0.041
-0.242

0.668

0.093

( -0.061, 0.038)
( -0.072, 0.031)
( -0.221, 0.051)
( -0.124, 0.042)
( -0.390, -0.094)
( 0.598, 0.738)
( 0.027, 0.159)

-0.106
-0.215
-0.109

( -0.172, -0.040)
( -0.349, -0.080)
( -0.244, 0.026)

-0.138
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0.003

( -0.397, 0.121)
( -0.395, 0.124)
( 0.000, 0.005)

-0.267
-0.593
-0.327

( -0.407, -0.126)
( -0.831, -0.355)
( -0.545, -0.108)

-0.204
0.346
0.551

( -0.272, -0.137)
( 0.202, 0.491)
( 0.407, 0.695)

0.000 #*
0.000 *
0.000 #*



Figures and legends

Equation box 1
P (y =1, initiate RRT by 5 years)

Sex = 1 if male, 2 if female

=elP/(1 +eP)
=1/(1+e™)

Lp = 8.090-1.031 x (sex) - 0.761 x (age/10) - 0.175 x (eGFR) if normoalbuminuric / not known
Lp =8.090-1.031 x (sex) - 0.761 x (age/10) - 0.175 x (eGFR) + 0.772 if microalbuminuric
Lp =8.090-1.031 x (sex) - 0.761 x (age/10) - 0.175 x (eGFR) + 1.670 if macroalbuminuric
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Figure 1 — Timeline and outcomes of development and validation cohorts
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Figure 2 — Calibration plots for proportion of individuals in each predicted decile of risk
who actually initiate RRT (a) with CKD in GLOMMS-I11 (b) with CKD in GLOMMS-I11
who had a measure of ACR available at baseline

Size of the shape (circle, square or triangle) represents the number of individuals out of the 18687 or 2274 individuals who had a predicted risk
within the given decile. For example in (a) our model had 18313 with predicted risk between 0.0 and 0.1, 124 with predicted risk between 0.1
and 0.2, 57 between 0.2 and 0.3, 43 between 0.3 and 0.4, 32 between 0.4 and 0.5, 23 between 0.5 and 0.6, 26 between 0.6 and 0.7, 23 between
0.7 and 0.8, 19 between 0.8 and 0.9, 27 between 0.9 and 1.0Similarly in (a) the KFRE 3-variable model had 16814 with predicted risk between
0.0 and 0.1, 1001 with predicted risk between 0.1 and 0.2, 346 between 0.2 and 0.3, 170 between 0.3 and 0.4, 110 between 0.4 and 0.5, 53
between 0.5 and 0.6, 54 between 0.6 and 0.7, 36 between 0.7 and 0.8, 44 between 0.8 and 0.9, 59 between 0.9 and 1.0.
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Figure 3 — Predicted need for RRT at 5 years follow up, among those who did not initiate
RRT: a comparison of models in the GLOMMS 11 validation cohort.
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For each model and CKD stage, those who did not initiate RRT are shown, they are represented in white if correctly predicted not to initiate
and black if incorrectly predicted to initiate RRT.
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