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Abstract

Recent research has demonstrated that there is considerable inter-individual variation in the

response to aerobic training, and that this variation is partially mediated by genetic factors.

As such, we aimed to investigate if a genetic based algorithm successfully predicted the

magnitude of improvements following eight-weeks of aerobic training in youth soccer play-

ers. A genetic test was utilised to examine five single nucleotide polymorphisms (VEGF

rs2010963, ADRB2 rs1042713 and rs1042714, CRP rs1205 & PPARGC1A rs8192678),

whose occurrence is believed to impact aerobic training adaptations. 42 male soccer play-

ers (17.0 ± 1y, 176 ± 6 cm, 69 ± 9 kg) were tested and stratified into three different Total

Genotype Score groups; “low”, “medium”and “high”, based on the possession of favourable

polymorphisms. Subjects underwent two Yo-Yo tests separated by eight-weeks of sports-

specific aerobic training. Overall, there were no significant differences between the geno-

type groups in pre-training Yo-Yo performance, but evident between-group response differ-

entials emerged in post-training Yo-Yo test performance. Subjects in the “high” group saw

much larger improvements (58%) than those in the ‘medium” (35%) and “low” (7%) groups.

There were significant (p<0.05) differences between the groups in the magnitude of

improvement, with athletes in the “high” and medium group having larger improvements

than the “low” group (d = 2.59 “high” vs “low”; d = 1.32 “medium” vs “low”). In conclusion, the

magnitude of improvements in aerobic fitness following a training intervention were associ-

ated with a genetic algorithm comprised of five single nucleotide polymorphisms. This infor-

mation could lead to the development of more individualised aerobic training designs,

targeting optimal fitness adaptations.

Introduction

Aerobic capacity (as determined by maximal oxygen uptake, VO2max) is considered crucial for

sports performance. The greater the aerobic capacity of an athlete, the longer they can exercise

at a given intensity [1]. Additionally, aerobic fitness enhances recovery from high intensity
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intermittent exercise, such as that found in most team sports [2], and also potentially differen-

tiates between performance levels, with elite team-sport athletes scoring higher than their sub-

elite and amateur counterparts on tests of aerobic fitness [3,4]. Furthermore, improvements in

aerobic fitness following training have been associated with improvements in soccer perfor-

mance [5]. As such, aerobic fitness training is a fundamental inclusion in most professional

team-sport physical preparation programmes.

Similarly, within endurance sport training there is on-going debate, in both the academic

and coaching domains, focused on uncovering the “best” combination of running volumes

and intensities necessary to optimally drive positive adaptation, and hence improve perfor-

mance [6]. However, the belief that there is a universal “best” type of training to develop aero-

bic performance is predicated on the implicit assumption that athletes respond to the imposed

training demands in a broadly similar fashion. In recent years, this conventional presumption

has been challenged by empirical evidence showing unexpectedly extensive inter-individual in

aerobic fitness gains experienced by participants undertaking identical training interventions

[7–10]. This inter-individual response diversity is exemplified by the collection of studies con-

stituting the HERITAGE (HEalth, RIsk factors, exercise Training And GEnetics) Family

Study; whilst the mean improvement in aerobic fitness following training was 19%, some sub-

jects saw improvements as high as 40%, whilst others experienced no improvements [8]. Fur-

ther analysis of the HERITAGE data revealed that genetic variation between subjects

explained approximately 47% of this variance [8], although such data has recently been criti-

cally evaluated [11]. Such extensive inter-individual variability has been replicated in a number

of other studies examining adaptations to aerobic training [7,9,10].

The demonstrated magnitude of inter-individual adaptive response following aerobic train-

ing poses a potential problem to conventional exercise prescription methodologies. For exam-

ple, professional athletes may fail to elicit expected benefits, and patients prescribed aerobic

exercise–under the premise that such training will improve health parameters–may fail to real-

ise meaningful benefits, despite engaging in the recommended training. Since the completion

of the HERITAGE Family Study, the field of sports genetics has grown exponentially. Cur-

rently, 155 genetic markers are associated with elite athlete status [12], and more still are asso-

ciated with training response [13]. However, the translation and application of this research to

both sports training and general health contexts remains both tentative and controversial [14].

Previously, research has focused on exploring the influence of genetic variations on elite

endurance athlete status, with a general lack of predictive ability of these variations [15,16].

However, with heritable factors potentially accounting for close to half of the variation in exer-

cise response between individuals [8], there is the potential that insight into the genetic profile

of the individual could improve exercise programme design. Research on the impact of genetic

variation on exercise adaptation has identified a series of single nucleotide polymorphisms

(SNPs) which may contribute to observed differences in response to aerobic training. Five of

these SNPs from four different genes (VEGF [17], PPARGC1A [18], CRP [19,20], and two

from ADRB2 [21–23]) have been collated into an algorithm used in a commercially available

test. These SNPs affect different dimensions of cardiovascular function, and are associated

with either VO2max scores, or improvements in this capacity following aerobic training.

Given the observable inter-subject variations in training-induced aerobic adaptations, the

ability to identify individuals who may exhibit smaller fitness gains could enable the evolution

of more personalised training programme designs. Such an innovation would promote greater

overall improvements within populations, enhancing training efficiency and increasing the

chances of positive adaptation in a greater number of individuals. Therefore, the purpose of

this study was to determine whether a genetic algorithm was associated with the magnitude of

improvements in aerobic fitness in a group of youth soccer players following an eight-week

Total genotype score and Yo-Yo improvement
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training block. It is believed that players with a greater number of positive alleles for genes

associated with higher aerobic fitness would see larger improvements following aerobic train-

ing than those with fewer positive alleles. A secondary aim is to attempt to bridge the gap

between genetics research and sports science practice. The ability to utilize genotype assess-

ment panels to inform training programme design holds the potential to revolutionise exercise

prescription in medical, health and sporting domains. Yet genetic research, whilst potentially

impactful, can often appear confusing to field-based practitioners and athletes, who require

real-world data to inform their decision-making processes [24]. As such, this work is framed

as a training observation study, as opposed to a genetic association study. The outcomes may

provide meaningful, actionable training insights promoting the strategic incorporation of

genetic information into training programme designs.

Methods

Subjects

Following University of Central Lancashire Ethics Committee approval according to the Dec-

laration of Helsinki, a convenience sample of 42 male soccer players aged between 16–19 years

of age (height 176 ± 6 cm, body mass 69 ± 9 kg) from a college soccer academy volunteered to

participate in this study. Such a sample was chosen to best represent the size of a typical soccer

squad. Each player had an average of 11 years’ football training experience, and was actively

competing in the English College Football Association Leagues. All players aged 18 or over

signed an informed consent form, with players aged under-18 co-signing the informed con-

sent form along with their legal guardians.

Methodology

Subjects were in a phase of training aimed at increasing aerobic capacity via sport specific con-

ditioning, in this case small sided games. Sessions took place twice a week for the eight-week

training block. Within each session, the subjects participated in small-sided games on pitches

of differing sizes and with a different number of players, ranging from 3 v 3 to 5 v 5. The work

periods were uniform in all sessions, consisting of four sets of four-minutes exercise and three-

minutes of active recovery. All sessions were supervised by a UEFA A Licensed coach, who set

and monitored the intensity of each training session, through the use of Rating of Perceived

Exertion (RPE). The subjects also played in a minimum of one competitive match per week

during this time, as the training intervention took place during the competitive season, specifi-

cally January to March. No additional physical training was prescribed during the intervention

period. Subjects did take part in their normal technical and tactical training, which had a target

RPE score of below 6. There was no control group, as requesting a group of competitive foot-

ballers to refrain from exercise is potentially in violation of the Declaration of Helsinki, and is

almost certainly unethical [25].

Before and after the training block, subjects’ aerobic fitness was assessed by the Yo-Yo

Intermittent Recovery Test, level 1 (Yo-Yo IR1), a reliable and valid measure of aerobic fitness

[26]. Briefly, the test is comprised of repeated 2 x 20 m runs back-and-forth performed to an

audible beep, separated by an active rest period of 10 seconds. The time allowed for each 20 m

section decreases as the test progresses, resulting in a faster required running speed; this begins

at 10 km�h-1, and is increased by 2 and then 1 km�h-1 for the respective next two speed levels.

After this, the speed increases by 0.5 km�h-1 for each additional level. The test is halted when a

subject fails to cover the distance in the required time on two consecutive occasions, indicating

that exhaustion has occurred. All subjects were provided with verbal encouragement during

the test. Subjects refrained from caffeine for at least 12 hours, and training for at least 24 hours,

Total genotype score and Yo-Yo improvement
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prior to testing, which took place outdoors on a soccer pitch, at the same time of day on both

occasions. Individual results were expressed as distance covered in metres. Subjects had car-

ried out Yo-Yo tests previously, and were fully accustomed to the assessment protocol.

Genetic testing

Alongside the training programme, subjects underwent genetic testing using a commercially

available self-testing kit from DNAFit Ltd. Subjects provided a saliva sample, collected using a

sterile buccal swab. The samples were sent to IDna Genetics Laboratory (Norwich, UK), where

DNA was extracted and purified using the Isohelix Buccalyse DNA extraction kit BEK-50

(Kent, UK), and amplified through PCR on an ABI7900 real-time thermocycler (Applied Bio-

system, Waltham, USA). Through this process, genetic information regarding SNPs deter-

mined to affect aerobic trainability (VEGF rs2010963, ADRB2 rs1042713 and rs1042714, CRP
rs1205 & PPARGC1A rs8192678) [17–23] was determined. Each allele was given a score of

between 0 and 4 points depending on the expected magnitude of its impact on improvements

in aerobic fitness with training. The strength of the rating was based on the evidence from

cumulative literature results averaged over time. The sum of these points was combined to give

an overall score. This method is identical to Jones et al. [27], and similar to the methods used

in other studies utilising genetic algorithms [28,29]. The subjects were stratified into three

groups; “low”, “medium” and “high” depending on their weighted total genotype score (TGS),

with a higher score indicating possession of a greater amount of alleles expected to improve

adaptation to aerobic training. Those with an overall score of 40% or less were classed as

“low”. Scores of 41–70% were classed as “medium”. A score of>70% was classed as “high”.

These divisions were used in the absence of previous work, and represents a gross sub-division

into categories based on the expectation that approximately 60% of subjects have a score of

between 40–70% [30]. The athletes were blinded to their genetic results until completion of the

final testing.

Statistical analysis

Means, standard deviations and 90% confidence intervals (CI) were calculated for whole

group and sub-groups for both pre- and post-training test scores. 90% CI were used as per the

recommendations of Sterne and Smith [31] and Hopkins et al. [32]. These were examined by a

3 X 2 (Group X Time) mixed methods ANOVA, with repeated measures on the second factor.

The dependent variable was the Yo-Yo scores (pre- and post-) obtained by each participant.

Tukey’s HSD was also run. To further discover the differences between groups, pre- and post-

training test scores were compared within groups using a paired sample t-test, and between

groups using unpaired t-test. Statistical significance was set as P�0.05, which after adjustment

using Bonferroni correction led to a significance level of 0.008 for the six t-tests. Cohen’s d was

calculated for within- and between-group effect size. The thresholds used were<0.2 (trivial),

0.21–0.5 (small), 0.51–0.8 (moderate), 0.81–1.2 (large), 1.21–2 (very large), >2 (huge) [33,34].

Data were analysed using Microsoft Excel 15.29 (Microsoft Corporation, Redmond, WA,

USA) and IBM SPSS Statistics 23 (IBM Corporation, Armonk, NY, USA).

Results

There were no significant differences between the three different genotype groups at baseline

in terms of age (low 17.2 ± 0.8y; medium 17.2 ± 1.0y; high 16.8 ± 1.1y), height (low 173.8 ± 3.9

cm; medium 177.4 ± 7.4 cm; high 174.9 ± 4.1 cm) or body mass (low 63.8 ± 9.3 kg; medium

70.0 ± 8.9 kg; high 71.2 ± 9.4 kg).

Total genotype score and Yo-Yo improvement
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Table 1 illustrates the genotype-group data. After examination with a 3 X 2 (Group X Time)

mixed methods ANOVA, there was a significant main effect of time (F (1, 39) = 67.8, P<0.001)

and a significant interaction (F (2, 39) = 10.9, P<0.001). The main effect of Group (F (1,39) =

5.11) was not significant.

The significant main effects of Time supports the impact of the aerobic training interven-

tion, as all groups showed an improvement in fitness. In contrast, follow up on the between

group main effect using Tukey’s HSD showed no significant differences (all pairwise compari-

sons non-significant). As such, groups were taken as being equivalently fit at baseline.

The interaction effects were of most interest, in that these addressed the main purpose of

the study. Building on the significant overall differences demonstrated by the significant inter-

action, follow up was conducted by use of three paired t-tests on the before and after data of

the three groups. These results are shown in Table 1.

We then analysed the data for between-group interactions, which is summarised in Fig 1.

The key finding is that there was a significant difference (P < 0.05) between all groups, which

remained after Bonferroni correction for differences between “low” and “high”, and “low” and

“medium” comparisons. The effect sizes were very large (1.32 for the difference between “low”

and “medium” groups, large (0.82 for differences between “medium” and “high”, and huge

(2.59 for differences between “low” and “high” groups.

In all groups, the mean improvement was 382 ± 270 m (90% CI 312 to 452 m), which repre-

sents an improvement of 37.5%. Within the “low” group, the mean improvement was 67 ± 33

m (90% CI 40 to 94 m), representing a mean improvement of 7.5%. No subject in the “low”

group had an improvement greater than 120 m. In the “medium” group, the mean improve-

ment was 364 ± 248 m (90% CI 274 to 452 m), representing a mean improvement of 43.8%.

Within this group, two subjects exhibited a negative improvement (i.e. got worse), whilst all

other subjects (21/23; 91%) showed improvements greater than 120 m. Five subjects (22%)

from the “medium” group showed an improvement of greater than 500 m. In the “high”

group, the mean improvement was 560 ± 225 m (90% CI 449 to 671 m), representing a mean

percentage improvement of 72.6%. In the “high” group, 9/13 (69%) of subjects had an

improvement of greater than 500 m, with all subjects (100%) showing an improvement of 120

m or greater. There was considerable inter-individual variation in magnitude of aerobic

improvements between subjects, as illustrated in Fig 2.

Discussion

The results of this study indicate that, following an eight-week training period, the magnitude

of improvements in Yo-Yo test scores show significant inter-subject variation. This finding is

in agreement with previous research examining variability in aerobic fitness improvements

following training [8,35]. Crucially, the magnitude of training improvements was associated

with a five SNP TGS determined by genetic profiling before training began.

The use of this genetic algorithm did not predict absolute performance in the Yo-Yo test.

This observation adds to previous work suggesting that genetic testing should not be used as a

Table 1. Pre- and post-training Yo-Yo test scores, stratified for individual genotype groups.

Group Pre-training Yo-Yo Score (m) [mean (SD;

90% CI)]

Post-training Yo-Yo Score (m) [mean (SD;

90% CI)]

P-Value (paired t-

test)

Effect Size (Cohen’s d) (90%

CI)

Low (n = 6) 1006 (292; 766 to 1247) 1073 (281; 842 to 1304) 0.0041 0.23 “Small”

Medium

(n = 23)

1045 (472; 876 to 1213) 1409 (453; 1246 to 1571) <0.0001 0.79 “Moderate”

High (n = 13) 969 (493; 725 to 1212) 1529 (508; 1278 to 1780) <0.0001 1.12 “Large”

https://doi.org/10.1371/journal.pone.0207597.t001

Total genotype score and Yo-Yo improvement
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talent identification tool [14]. However, the results of the algorithm were associated with the

magnitude of improvements in Yo-Yo score following training. To illustrate how this algo-

rithm does not predict aerobic “talent”, the lowest pre-training (440 m) and post-training (640

m) score occurred within a subject from the “high” genotype group. If genetic tests were to

have utility in the prediction of talent, it would be expected that the lowest aerobic test scores

would occur in the “low” group. However, this same subject’s test improvement (200 m) was

greater than every subject in the “low” group. This supports the assertion that the genetic-

based algorithm has utility in predicting training response, not talent. Similarly, when the two

subjects who exhibited a reduction in Yo-Yo score in the post-training test are removed, every

subject from the “medium” and “high” group showed improvements equal to (n = 1) or greater

than (n = 25) those in the “low” group. Of the two subjects exhibiting lower post-training

Fig 1. Between group interactions for post-training improvements in Yo-Yo score.

https://doi.org/10.1371/journal.pone.0207597.g001

Fig 2. Individual percentage improvement scores across “low”, “medium” and “high” groups.

https://doi.org/10.1371/journal.pone.0207597.g002

Total genotype score and Yo-Yo improvement
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scores, one had a score reduction of 40m (from 2440 m to 2400 m), a 1.64% reduction, which

is within the range of test-retest variation previously reported [26]. The second subject had a

performance decrement of 240 m; which, whilst substantial, remains unexplained.

The potential to predict response to aerobic training may be useful to ensure that appropri-

ately individualised training methods are utilised to maximise training adaptations. For exam-

ple, if an individual is classed as having a low aerobic trainability, it might be prudent for them

to follow a different training programme to an individual classed as having a high aerobic

trainability. There are many ways to increase performance in aerobic endurance activities,

including improvements in VO2max, running economy, lactate threshold, and VO2 kinetics

[36]. In individuals with a low aerobic trainability, diverting training resources towards opti-

mising improvements outside of VO2max might be appropriate; there are various methods of

achieving this, including resistance and plyometric training [37]. Knowledge of predicted

training responsiveness can also lead to more personalised manipulation of common training

factors such as volume, intensity, frequency and duration to improve exercise adaptation. As

an example, it has been previously found that the number of low responders to an aerobic

training intervention could be significantly reduced, and even eliminated, with an increase in

exercise intensity [9]. Similarly, a recent paper found that an increase in exercise frequency

and volume, with the same intensity, completely reduced the occurrence of non-response to

aerobic training [38]. The demonstrated predictive validity of this genetic algorithm poten-

tially adds useful information to coaches, aiding in the interpretation of fitness assessments,

and ensuring information is available for the planning of more effective training programmes.

The SNPs utilised in this study occur within genes shown to affect either aerobic capacity,

or the magnitude of improvements in aerobic fitness following exercise. Most of these SNPs

occur in genes that affect the cardiopulmonary system or mitochondrial biogenesis. VEGF
encodes for vascular endothelial growth factor, which impacts the growth of new blood vessels

in and around skeletal muscle. The C allele of this common polymorphism (rs2010963)

increases expression of this gene, likely leading to increased blood vessel growth and hence

greater oxygen availability during exercise [17]. ADRB2, which has two common polymor-

phisms (rs1042713 and rs1042714) included in this algorithm, encodes for the β2-adrenergic

receptor. This receptor is the site to which catecholamines can bind, increasing cardiovascular

parameters such as stroke volume and cardiac output. These two common polymorphisms are

associated with increases in receptor density, leading to increased stroke volume, cardiac out-

put, vasodilation, and bronchodilation, all of which increase oxygen delivery. These polymor-

phisms may also increase exercise-based lipolysis, improving performance at lower exercise

intensities [23], and have previous been associated with elite athlete status [22], and maximal

oxygen consumption [21]. The CRP rs1205 polymorphism can lead to an increase in C-reac-

tive protein release at both rest and during exercise, potentially negatively impacting VO2max

[19]. PPARGC1A encodes for PGC-1α, the master regulator of mitochondrial biogenesis. G

allele carriers at rs8192678 typically have higher VO2max values following exercise [18]. The

SNPs used in this algorithm are not exhaustive, but represent those that have been well repli-

cated. As other SNPs which impact improvements in aerobic fitness are discovered and repli-

cated in multiple cohorts, their addition to this genetic algorithm would improve its

association with aerobic fitness improvements.

Previous research exploring the genetic underpinning of soccer performance has explored

the prevalence and impact of ACTN3 and ACE within cohorts of Brazilian soccer players [39–

41]. Whilst this was primarily explored with regard to soccer athlete status, subjects with the

XX genotype of ACTN3 were found to perform significantly better in an aerobic test compared

to those with the RR genotype [39]. This finding, however, was not replicated by a later study

Total genotype score and Yo-Yo improvement
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[40], thereby demonstrating the importance of replication within exercise genomics studies,

especially given the often small effect sizes of each individual SNP.

Regarding the practical application of these findings, astute coaches have long been aware

that improvements in aerobic fitness following training vary extensively between athletes. This

is true even when those athletes have similar training histories, dietary habits and lifestyles. In

addition, prediction of adaptation to aerobic training is currently not possible using conven-

tional physiological assessment tools [35]. This study suggests that a simple, non-invasive

genetic test is associated with the magnitude of improvements in aerobic fitness following a

training programme, and so may potentially help in the programming of training. The identifi-

cation of athletes who are more likely to see smaller improvements allows for such athletes to

follow a different training intervention, potentially with greater intensity (and therefore

shorter exercise durations) [9], frequency [38] or perhaps with an increased emphasis on

repeated sprint or resistance training. This contrasts with the current best practice, which is

the application of training to an athlete, and the measuring of that response. If the response is

less than expected, then either the athlete is considered to have reached their potential, or a dif-

ferent training method is utilised. This trial and error approach is costly in terms of time.

Given that a high-level sporting career can last around 10 years, a training cycle spent doing

ineffective training can seriously harm the athlete’s performance. The ability to more accu-

rately predict the magnitude of exercise response could potentially:

1. Improve training prescription accuracy, and therefore training efficiency

2. Enhance the personalisation of athlete-specific training programmes

3. Reduce the costly trial and error process of executing unnecessary and/or inefficient train-

ing modalities.

These results potentially represent an early step on the journey to a higher level of persona-

lisation within the training process. A possible limitation of this initial study is the modest

sample size (n = 42). Nevertheless, whilst modest, this sample size compares well to similar

research in this field [42–44]. This sample size is also representative of the size of a typical soc-

cer squad (first and reserve teams), giving it real-world validity. The subjects were all male, so

it is not clear if the results would be applicable for females. In addition, the number of subjects

in the “low” group was small (n = 6); pre-test power calculations were not possible because the

genetic results of the athletes were not available until completion of the study. With informa-

tion regarding frequency of athletes expected to be in the “low” group now available, this infor-

mation can be used to ensure adequate sample sizes in future. Further research should build

on these initial findings in a larger cohort, other sports, and females, as well as studying inter-

ventions aimed at enhancing aerobic training response. The Yo-Yo IR1 test used in this study

is a maximal test, and so scores are potentially influenced by subject motivation. Whilst none

of the SNPs used in this study have been found to impact motivation, there is a small possibil-

ity that variation in these genes could influence exercise tolerance, and hence test performance

[45]. Additionally, improvements in Yo-Yo test performance may occur outside of adaptations

in aerobic capacity, such as improvements in technical performance and anaerobic capacity.

Future studies may wish to use laboratory based tests to directly explore aerobic fitness

improvements; however, in the present case, we wished to utilise a field-based test to ensure

real-world validity. Additionally, as no comparator arm was present, there is the potential that

random-within subject variation contributed to the observed inter-individual variation [46].

Furthermore, developmental factors, such as age (both chronological and developmental) may

also have confounded these results. However, we found no significant different between the

groups at baseline in terms of age, height, and body mass, suggesting that the groups were
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fairly matched in this regard. Finally, whilst the results of this study indicate that the current

five-SNP algorithm has utility, the addition of more polymorphisms will enable it to become

even more precise. Indeed, it is envisioned that the current algorithm is not a definitive end-

point, but instead an initial attempt to predict training response that will become more refined

and precise as more information is available. Nevertheless, the fact remains that very little

research has been done in utilising genetic information in sporting practice, despite there

being an undoubted genetic influence on the magnitude of adaptation following aerobic train-

ing. The novel findings of this study, even at this early stage in the evolution of such technol-

ogy, should contribute to the further development of this area.

Conclusions

The results of this study indicate there is considerable inter-subject variability in response to

aerobic training in a group of well-trained male soccer players. In addition, we have also

shown that a genetic test comprised of five SNPs is associated with the magnitude of these

improvements. This previously unavailable information has the potential to provide insight to

coaches, medical practitioners, personal trainers and athletes, enabling more informed deci-

sion making and evidence-led customisation of training programmes aimed at improving aer-

obic fitness. This potentially aids athletes, and their support staff, in selecting the optimal

training modality, allowing for a more personalised training approach, and, in future, the max-

imisation of training adaptations for all athletes.

Supporting information

S1 File. Individual player data.

(XLSX)

Author Contributions

Conceptualization: C. Pickering, J. Kiely.

Formal analysis: C. Pickering, D. Collins.

Investigation: B. Suraci.

Methodology: B. Suraci.

Visualization: C. Pickering.

Writing – original draft: C. Pickering.

Writing – review & editing: J. Kiely, B. Suraci, D. Collins.

References
1. Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med.

2000; 29(6):373–386. https://doi.org/10.2165/00007256-200029060-00001 PMID: 10870864

2. Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity inter-

mittent exercise. Sports Med. 2001; 31(1):1–11. https://doi.org/10.2165/00007256-200131010-00001

PMID: 11219498

3. Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of

physical performance in intermittent sports. Sports Med. 2008; 38(1):37–51. https://doi.org/10.2165/

00007256-200838010-00004 PMID: 18081366

4. Tønnessen E, Hem E, Leirstein S, Haugen T, Seiler S. Maximal aerobic power characteristics of male

professional soccer players, 1989–2012. Int J Sports Physiol Perform. 2013; 8(3):323–329 PMID:

23118070

Total genotype score and Yo-Yo improvement

PLOS ONE | https://doi.org/10.1371/journal.pone.0207597 November 28, 2018 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207597.s001
https://doi.org/10.2165/00007256-200029060-00001
http://www.ncbi.nlm.nih.gov/pubmed/10870864
https://doi.org/10.2165/00007256-200131010-00001
http://www.ncbi.nlm.nih.gov/pubmed/11219498
https://doi.org/10.2165/00007256-200838010-00004
https://doi.org/10.2165/00007256-200838010-00004
http://www.ncbi.nlm.nih.gov/pubmed/18081366
http://www.ncbi.nlm.nih.gov/pubmed/23118070
https://doi.org/10.1371/journal.pone.0207597


5. Helgerud J, Engen LC, Wisloff U, Hoff J. Aerobic endurance training improves soccer performance.

Med Sci Sports Exerc. 2001; 33(11):1925–1931. PMID: 11689745

6. Seiler S, Jøranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects

of exercise intensity and total work duration. Scand J Med Sci Sports. 2013; 23(1):74–83. https://doi.

org/10.1111/j.1600-0838.2011.01351.x PMID: 21812820

7. Bonafiglia JT, Rotundo MP, Whittall JP, Scribbans TD, Graham RB, Gurd BJ. Inter-Individual Variability

in the Adaptive Responses to Endurance and Sprint Interval Training: A Randomized Crossover Study.

PloS One. 2016; 11(12):e0167790 https://doi.org/10.1371/journal.pone.0167790 PMID: 27936084

8. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of VO2max

response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999; 87

(3):1003–1008 https://doi.org/10.1152/jappl.1999.87.3.1003 PMID: 10484570

9. Ross R, de Lannoy L, Stolz PJ. Separate effects of intensity and amount of exercise on interindividual

cardiorespiratory fitness response. Mayo Clin Proc. 2015; 90(11):1506–1514. https://doi.org/10.1016/j.

mayocp.2015.07.024 PMID: 26455890

10. Scharhag-Rosenberger F, Walitzek S, Kindermann W, Meyer T. Differences in adaptations to 1 year of

aerobic endurance training: individual patterns of nonresponse. Scand J Med Sci Sports. 2012; 22

(1):113–118. https://doi.org/10.1111/j.1600-0838.2010.01139.x PMID: 20561283

11. Williamson PJ, Atkinson G, Batterham AM. Inter-individual responses of maximal oxygen uptake to

exercise training: a critical review. Sports Med. 2017; 47(8):1501–13. https://doi.org/10.1007/s40279-

017-0680-8 PMID: 28097487

12. Ahmetov II, Egorova ES, Gabdrakhmanova LJ, Fedotovskaya ON. Genes and athletic performance: an

update. Med Sport Sci. 2016; 61:41–54. https://doi.org/10.1159/000445240 PMID: 27287076

13. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene

map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports

Exerc. 2009; 41(1), 34–72.

14. Webborn N, Williams A, McNamee M, Bouchard C, Pitsiladis Y, Ahmetov I, et al. Direct-to-consumer

genetic testing for predicting sports performance and talent identification: Consensus statement. Br J

Sports Med. 2015; 49(23):1486–91. https://doi.org/10.1136/bjsports-2015-095343 PMID: 26582191

15. Yvert T, Miyamoto-Mikami E, Murakami H, Miyachi M, Kawahara T, Fuku N. Lack of replication of asso-

ciations between multiple genetic polymorphisms and endurance athlete status in Japanese population.

Physiol Rep. 2016; 4(20).

16. Rankinen T, Fuku N, Wolfarth B, Wang G, Sarzynski MA, Alexeev DG, et al. No evidence of a common

DNA variant profile specific to world class endurance athletes. PLoS One. 2016; 11(1):e0147330.

https://doi.org/10.1371/journal.pone.0147330 PMID: 26824906

17. Ahmetov II, Khakimullina AM, Popv DV, Missina SS, Vinogradova OL, Rogozkin VL. Polymorphisms of

the vascular endothelial growth factor gene (VEGF) and aerobic performance in athletes. Hum Physiol.

2008; 34(4):477–48.

18. Ring-Dimitriou S, Kedenko L, Kedenko I, Feichtinger R, Steinbacher P, Stoiber W, et al. Does genetic

variation in PPARGC1A affect exercise-induced changes in ventilator thresholds and metabolic syn-

drome? J Exerc Physiol. 2004; 17(2):1–18.

19. Kuo HK, Yen CJ, Chen JH, Yu YH, Bean JF. Association of cardiorespiratory fitness and levels of C-

reactive protein: Data from the National Health and Nutrition Examination Survey 1999–2002. Int J Car-

diol. 2007; 114(1):28–33. https://doi.org/10.1016/j.ijcard.2005.11.110 PMID: 16678922

20. Obisesan TO, Leeuwenburgh C, Phillips T, Ferrell RE, Phares DA, Prior SJ, Hagberg JM. C-reactive

protein genotypes affect baseline, but not exercise training-induced changes, in C-reactive protein lev-

els. Arterioscler Thromb Vasc Biol. 2004; 24(10):1874–1879. https://doi.org/10.1161/01.ATV.

0000140060.13203.22 PMID: 15271790

21. Moore GE, Shuldiner AR, Zmuda JM, Ferrell RE, McCole SD, Hagberg JM. Obesity gene variant and

elite endurance performance. Metabolism. 2001; 50(12):1391–2. https://doi.org/10.1053/meta.2001.

28140 PMID: 11735081
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