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Summary

Killer immunoglobulin-like receptors (KIRs) interact with human leucocyte

antigen (HLA) class I ligands and play a key role in the regulation and

activation of NK cells. The functional importance of KIR–HLA interactions

has been demonstrated for a number of chronic viral infections, but to date

only a few studies have been performed in the context of acute self-limited

viral infections. During our investigation of CD81 T cell responses to a

conserved HLA-B57-restricted epitope derived from dengue virus (DENV)

non-structural protein-1 (NS1), we observed substantial binding of the

tetrameric complex to non-T/non-B lymphocytes in peripheral blood

mononuclear cells (PBMC) from a long-standing clinical cohort in

Thailand. We confirmed binding of the NS1 tetramer to CD56dim NK cells,

which are known to express KIRs. Using depletion studies and KIR-

transfected cell lines, we demonstrated further that the NS1 tetramer bound

the inhibitory receptor KIR3DL1. Phenotypical analysis of PBMC from

HLA-B571 subjects with acute DENV infection revealed marked activation

of NS1 tetramer-binding natural killer (NK) cells around the time of

defervescence in subjects with severe dengue disease. Collectively, our

findings indicate that subsets of NK cells are activated relatively late in the

course of acute DENV illness and reveal a possible role for specific KIR–

HLA interactions in the modulation of disease outcomes.

Keywords: dengue, HLA, KIR, NK, pathogenesis

VC 2015 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons on behalf of British Society of Immunology,

Clinical and Experimental Immunology, 183: 419–430.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited.

Clinical and Experimental Immunology ORIGINAL ARTICLE doi:10.1111/cei.12722



Introduction

Killer immunoglobulin-like receptors (KIRs) are expressed

predominantly on natural killer (NK) cells and interact

with specific human leucocyte antigen (HLA) class I

ligands to transduce inhibitory or activating signals [1].

One of the best-characterized and highly polymorphic

members of the KIR family is the inhibitory receptor

KIR3DL1, which is present in >90% of the human popula-

tion and has at least 62 allotypes [2]. Interactions between

KIR3DL1 and the HLA-Bw4 motif act to maintain natural

killer (NK) cell inhibition. However, the down-regulation

of major histocompatibility complex (MHC) class I mole-

cules that often follows viral infection or cellular transfor-

mation alleviates NK cell inhibition via KIR3DL1, leading

to proinflammatory cytokine release and cytolytic activity.

A role for KIR3DL1 in the control of chronic viral infec-

tions has been proposed on the basis of associations with

disease outcome in HIV-infected individuals [3–8]. These

studies suggest that both MHC class I and KIR genotypes

may contribute to protection in the context of HLA-B57.

Moreover, KIRs that interact with HLA-C have been linked

epidemiologically to the development of liver disease in

hepatitis C virus (HCV)-infected patients and protection

from HCV infection in a cohort of intravenous drug users

[9]. In contrast, the role of KIR-HLA interactions in acute

self-limited viral infections remains largely unexplored.

Dengue virus (DENV) is a member of the flavivirus fam-

ily comprising at least four distinct serotypes. Transmitted

by the mosquito Aedes aegypti, DENV is endemic in the

tropics/subtropics and causes an acute febrile illness known

as dengue fever (DF). However, a small percentage of indi-

viduals experience a more severe syndrome known as den-

gue haemorrhagic fever (DHF). The key features of DHF

are plasma leakage and a bleeding tendency, which develop

as the fever subsides with clearance of viraemia [10,11].

Although both viral and host-specific factors probably

influence clinical outcome, prospective cohort studies have

identified secondary infection with a heterologous DENV

serotype as a major risk factor for DHF [12]. At the mecha-

nistic level, pre-existing antibodies [13], memory T cell

responses [12,14] and certain HLA genotypes [15–18] have

all been linked with more severe dengue illness.

A number of reports describe associations between HLA

class I genotypes and dengue disease severity [15–18]. In

one earlier study, extended HLA region haplotypes includ-

ing tumour necrosis factor (TNF), lymphotoxin alpha

(LTA) and lymphotoxin beta (LTB), together with specific

combinations of class I and class II alleles, were associated

strongly with DHF during secondary DENV infection. Var-

ious aspects of disease outcome after DENV exposure have

also been linked to functionally defined HLA class I super-

types [19], as well as the MHC class I-related chains A/B

(MICA/B) [20–22]. These latter proteins are up-regulated

in stressed cells and interact with NKG2D, an activating

receptor on NK cells. More recently, two small genetic stud-

ies evaluated associations between KIR–ligand pairs and

susceptibility to dengue in Gabon and Southern Brazil

[23,24]. Petitdemange et al. found no evidence of a role for

KIR genotypes in patients infected with DENV-2. In con-

trast, Beltrame et al. detected an association between cer-

tain KIR genes and their cognate HLA ligands in the

context of infection with DENV-3. Differences in popula-

tion origin and the infecting DENV serotype may explain

these disparate results. Other studies have noted NK cell

activation during acute DENV infection. In particular,

Azeredo et al. linked early activation of NK cells with mild

DENV disease [25], whereas Green et al. found increased

frequencies of NK cells expressing CD69 in children who

developed DHF compared to those with attenuated disease

[26]. The mechanisms by which NK cells contribute to

immune protection and immunopathogenesis in DENV

infection therefore require further elucidation [27,28].

We recently characterized antigen-specific CD81 T cells

directed against a highly conserved HLA-B57-restricted epi-

tope derived from DENV non-structural protein-1 (NS1)

[29]. In the present study, we examined binding of the cor-

responding B57-NS126–34 tetramer (NS1 TET) to enriched

NK cell populations from samples obtained prior to, during

and up to 1 year after the critical phase of illness (around

the time of defervescence) in HLA-B571 subjects from a

clinical cohort in Thailand. Using KIR3DL11 healthy donor

peripheral blood mononuclear cells (PBMC), we confirmed

that the NS1 TET bound mainly to CD56dim NK cells,

which are known to express KIRs [30]. We then demon-

strated that the NS1 TET bound KIR3DL1. To determine

whether there was an association between NK cell activation

and dengue disease severity, we analysed PBMC from our

HLA-B571 cohort and found marked activation of NS1

TET1 NK-enriched cells at the critical phase of illness in

patients who developed DHF. Our results define a specific

interaction between the inhibitory receptor KIR3DL1 and a

DENV-derived CD81 T cell epitope with potential relevance

to the immunopathogenesis of dengue disease.

Materials and methods

Study subjects and blood samples

The study design for patient recruitment and collection of

blood samples has been reported in detail elsewhere

[11,43–45]. Briefly, the enrolled subjects were Thai children

aged 6 months to 15 years with acute febrile illnesses

(<72 h) diagnosed as DF or DHF according to World

Health Organization (WHO) guidelines [46]. Serology and

virus isolation were used to confirm acute DENV infection,

and primary and secondary infections were distinguished

on the basis of serological responses [11]. For donors under-

going a secondary infection, it was not possible to deter-

mine the previous infecting serotype(s). Blood samples were

E. Townsley et al.
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obtained daily during acute illness, once during early conva-

lescence and at various intervals during late convalescence.

PBMC were isolated by density gradient centrifugation, cry-

opreserved and stored at 2708C. Samples were numbered

relative to the day of defervescence (designated fever day 0).

Serological HLA class I typing was performed as described

previously using peripheral blood from immune Thai

donors at the Department of Transfusion Medicine, Siriraj

Hospital [15,44]. Written informed consent was obtained

from each subject and/or his/her parent/guardian prior to

study participation. The study was approved by the Institu-

tional Review Boards of the Thai Ministry of Public Health,

the Office of the US Army Surgeon General and the Univer-

sity of Massachusetts Medical School (UMMS). For control

purposes, PBMC were obtained with informed consent from

healthy HLA-B571 dengue-na€ıve volunteers aged> 18 years

under approval granted by the UMMS Institutional Review

Board.

Peptide-MHC tetramers

Peptide-MHC tetramers (pMHC TETs) were either

obtained from the NIAID Tetramer Core Facility or gener-

ated in-house as described previously [47]. The following

conjugates were used in this study: A2-E213–221 TET-

allophycocyanin (APC), B57-LF9 TET-phycoerythrin (PE),

B57-NS126–34 TET-PE, B57-NS126–34 TET-APC, B57-TW10n

TET-PE and B57-TW10n TET-APC.

Flow cytometry

As described previously [29], cryopreserved PBMC from

Thai subjects were thawed and washed in RPMI before rest-

ing in RPMI/10% fetal bovine serum (FBS) for 2 h at 378C.

Cells were then washed in phosphate-buffered saline (PBS)

and stained with 1 ml of prediluted (1 : 80) LIVE/DEAD
VR

Green (Molecular Probes, Invitrogen, Waltham, MA, USA).

After washing in fluorescence activated cell sorter (FACS)

buffer (PBS/2% FBS/0�1% sodium azide), cells were incu-

bated with 0�5–2 ml pMHC TET (1 mg/ml with respect to the

monomeric component) for 20 min at 48C. Pretitrated

monoclonal antibodies specific for CD3, CD8, CD14,

CD19, CD28 or CD56, CD38, CD45RA, CD57, CD69,

CD71 and CCR7 were then added for a further 30 min at

48C. Monoclonal antibodies specific for CD3, CD14, CD16,

CD19, CD56, CD69 and KIR3DL1 were used in a separate

panel to identify NK cells. For NS1 TET staining of PBMC

from healthy individuals, 1 3 107 cells from KIR3DL11

subjects were washed in PBS and stained with LIVE/DEAD
VR

Green. After washing in FACS buffer, cells were incubated

with 2 ml pMHC TET or a KIR3DL1-specific monoclonal

antibody for 20 min at 48C. Pretitrated monoclonal anti-

bodies specific for CD3, CD14, CD16, CD19, CD56,

CD161, NKp30, NKp46 and NKG2D were then added for a

further 30 min at 48C. In all experiments, cells were washed

and fixed with BD Stabilizing FixativeTM (BD Biosciences,

San Jose, CA, USA). Data were collected using a FACSAriaTM

flow cytometer (BD Biosciences) and analysed with FlowJo

version 10 (TreeStar Inc., Ashland, OR, USA). Details of all

monoclonal antibodies used in this study are presented in

Supporting information, Table S1.

KIR3DL11 NK cell depletion and NS1 tetramer
staining

PBMC were isolated from KIR3DL11 healthy subjects using

standard density gradient centrifugation and depleted of

KIR3DL11 cells via magnetic bead separation (Miltenyi

Biotec, San Diego, CA, USA). KIR3DL1-depleted PBMC

were washed in FACS buffer and incubated with NS1 TET

for 50 min at 48C. After a further wash in FACS buffer, cells

were fixed with 100 ml of prediluted (1 : 4) BD Cytofix (BD

Biosciences) and kept at 48C until acquisition. Flow cyto-

metric data were collected and analysed as described above.

Binding of pMHC tetramers to KIR3DL1-transfected
cell lines

Detailed analyses of KIR3DL1-transfected lines were

performed as reported elsewhere [33]. Briefly, human

embryonic kidney (HEK) 293 cells were transfected with

FLAG-tagged constructs of KIR3DL1*001, *005 or *015.

An anti-FLAG monoclonal antibody was used to verify

KIR3DL1 expression. Transfected cells were preincubated

with 10 mg/ml of the blocking monoclonal antibody DX9 or

control immunoglobulin (Ig)G, then stained with 0�25 ml

of the NS1 TET or the well-described LF9 TET, representing

a self-derived peptide complexed with HLA-B57 that binds

KIR3DL1 [48].

Statistical analysis

Comparisons between groups were conducted using the

Mann–Whitney rank sum test for non-normally distrib-

uted variables. All statistical analyses were performed using

GraphPad Prism (GraphPad Software, San Diego, CA,

USA).

Results

Binding of the NS1 TET to CD8– cells in PBMC
from dengue patients

In a study of CD81 T cell responses to the HLA-B57-

restricted epitope NS126–34 (HTWTEQYKF) [29], we

observed binding of the corresponding tetrameric antigen

complex (NS1 TET) to CD8– cells. As monocytes and B

cells were eliminated by our gating strategy, we speculated

that the NS1 TET bound a subset of NK cells. Furthermore,

we hypothesized that the NS1 TET bound KIR3DL1 on NK

cells, given the extensive literature describing HLA-B57-

restricted HIV-derived peptide ligands for this inhibitory

Dengue KIR3DL1 interactions
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receptor [5–7,31,32]. Initially, we used the NS1 TET to

stain PBMC obtained at a convalescent time-point from

two HLA-B571 donors in our clinical cohort. The flow

cytometric gating strategy is shown in Supporting informa-

tion, Fig. S1a. In parallel, we used a variant B57-Gag240–249

tetramer (TW10n TET) based on a CD81 T cell escape

sequence (TSNLQEQIGW) of the wild-type HIV-derived

epitope that abrogates HLA-B57 binding to KIR3DL1*001

[6]. We observed substantial binding of CD82 cells to

the NS1 TET with minimal binding to the TW10n TET

(Fig. 1a,b).

Next, we tested PBMC obtained at multiple time-points

during and after acute DENV infection from 11 HLA-B571

children, two with primary and nine with secondary

DENV infection (Table 1). As our staining panel for clinical

samples was developed to phenotype CD81 T cells and did

not include NK cell-specific markers, we first confirmed

that live lymphocytes excluding monocytes, T and B cells

were predominantly NK cells. We used convalescent

samples for this purpose and found that >70% of the

CD3–CD8–CD14–CD19– population comprised CD561

NK cells in the majority of donors (Supporting informa-

tion, Fig. S1b); these cells are referred to hereafter as the

‘NK-enriched’ population. Although a significant propor-

tion of NK cells can express CD8, these were excluded from

our study to ensure the elimination of all T cells. This was

considered important because CD3 down-regulation dur-

ing acute illness complicated the identification of T cells

based solely on this marker. Evaluating the frequency of

NS1 TET1 CD8– cells in PBMC from the HLA-B571 Thai

cohort, we were able to detect NS1 TET1 NK-enriched cells

at all time-points tested in all donors (n 5 10; n 5 5 DF, n

5 5 DHF) (Fig. 1c). The frequencies of these NS1 TET1

NK-enriched cells varied over time (Fig. 1c).

To confirm binding of the NS1 TET to NK cells, we used

a staining panel with NK lineage-specific markers (Fig.

2a,d) to analyse KIR3DL11 PBMC from healthy donors

and convalescent PBMC from Thai cohort subjects (Fig.

2b,c). A fluorescence minus one control excluding the NS1

TET, parallel staining with the TW10n TET and KIR3DL1

antibody labelling were used to aid gate placement for the
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Fig. 1. Binding of the NS1 tetramer (TET) to non-CD8 cells in

peripheral blood mononuclear cells (PBMC) from Thai children

with dengue. (a,b) Using flow cytometry, frequencies of NS1 TET1

(a) and TW10n TET1 (b) CD3–CD8–CD14–CD19– [natural killer

(NK)-enriched] cells in PBMC from donors CHD01-018 and

KPP94-041 at the 1-year time-point. (c) Kinetics of NS1 TET1

frequencies among NK-enriched cells during acute dengue illness

and convalescence. Fever day 0 indicates the day of defervescence.

Symbols distinguish subjects with primary (n 5 2, grey symbols)

versus secondary (n 5 8, black symbols) dengue virus (DENV)

infections and lines distinguish those with dengue fever (DF) (n 5 5,

black line) versus dengue haemorrhagic fever (DHF) (n 5 5,

dashed line).

Table 1. Clinical, virological and immunogenetic profiles of human

leucocyte antigen (HLA)-B571 Thai study subjects.

Donor Serology* Serotype† Diagnosis‡ KIR3DL1§ KIR3DS1

CHD95-039 P DENV-1 DF 01502 1

CHD06-029 P DENV-3 DF 01502,

01502

2

CHD05-023 S DENV-1 DF 01502 1

CHD01-018 S DENV-2 DF 020 1

KPP94-037 S DENV-2 DF 01502,

01502

2

KPP94-041 S DENV-1 DHF-3 00501 2

CHD02-073 S DENV-1 DHF 00501 2

CHD01-058 S DENV-2 DHF-1 01502 1

CHD01-050 S DENV-2 DHF-3 01502 2

CHD00-054 S Unknown DHF-2 00701 1

CHD06-092 S DENV-4 DHF-2 00701,

01502

1

*Primary (P) versus secondary (S) infection as determined by

immunoglobulin (Ig)M/IgG ratios [11]. †Of current infection.

Unknown 5 could not be determined. ‡According to WHO guide-

lines 1997; DF 5 dengue fever; DHF 5 dengue haemorrhagic fever

(grades 1–3). §KIR3DL1 subtyping.
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Fig. 2. Frequencies and phenotype of NS1 tetramer (TET)1 natural killer (NK) cells. (a) Gating strategy to identify CD561 and/or CD161 NK

cells. (b) Frequencies of NS1 TET1 NK cells in peripheral blood mononuclear cells (PBMC) from healthy KIR3DL11 donors. Representative flow

cytometry plots from four of 13 donors are shown on the top row. Fluorescence minus one (FMO), NS1 TET1 and TW10n TET1 NK cell

frequencies in PBMC from healthy donor LD093 are shown on the bottom row. (c) Frequencies of NS1 TET1 NK cells in PBMC obtained from

Thai study subjects 2–3 years after dengue virus (DENV) infection. (d) Overlay of NS1 TET1 NK cells (red dots) on the total NK cell

population (zebra plot) in PBMC from a healthy KIR3DL11 donor. The expression pattern of CD161, NKp30, NKp46 and NKG2D was

compared between NS1 TET1 NK cells and the total NK cell population.
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accurate identification of NS1 TET1 NK cells. We observed

NS1 TET1 NK cell populations in all donors at variable

frequencies and degrees of separation. Moreover, the NS1

TET bound mainly to CD56dim NK cells, which are known

to express KIRs [30]. Given that NK cells are highly hetero-

geneous, we next determined whether NS1 TET1 NK cells

differed phenotypically from the total NK cell population.

We found that NS1 TET1 NK cells resembled typical NK

cells, in that they expressed CD161, NKp30, NKp46 and

NKG2D (Fig. 2d). Thus, the NS1 TET bound archetypal

CD56dim NK cells.

Binding of the NS1 TET to KIR3DL1

We speculated that binding of the NS1 TET to NK cells was

mediated via the inhibitory receptor KIR3DL1. To test this

possibility, we used a magnetic separation protocol to

deplete PBMC of KIR3DL11 cells and compared NS1 TET

binding in parallel experiments with non-depleted PBMC

(Fig. 3a,b). We found that depletion of KIR3DL11 cells

reduced NS1 TET binding by 66%, suggesting a specific

interaction between these proteins on the NK cell surface.

To confirm binding of the NS1 TET to KIR3DL1 directly,

we used distinct KIR3DL1-transfected cell lines individu-

ally expressing the allotypes *001, *005 and *015, which

represent the three major lineages of this inhibitory recep-

tor [2]. We observed significant binding of the NS1 TET to

all three KIR3DL1 allotypes in these experiments. As

expected, HLA-B57 tetramers folded with the self-peptide

LF9 (LSSPVTKSF) also bound all three allotypes of

KIR3DL1 (Fig. 3c–f) [33]. Moreover, pretreatment with a

KIR3DL1-specific monoclonal antibody (DX9) blocked the

binding of both tetramers to KIR3DL1 (Fig. 3c–f). Collec-

tively, these data indicate that the NS1 TET binds KIR3DL1

on the surface of NK cells.

Peak expression of CD38 on NS1 TET1 NK-enriched
cells occurs around fever day 0 and correlates with
disease severity

To determine whether NS1 TET1 and total NK cells were

activated during acute infection in HLA-B571 subjects

(n 5 2 DF 18, n 5 3 DF 28, n 5 5 DHF 28), we assessed the

expression of CD38, CD69 and CD71 on NK-enriched pop-

ulations in PBMC samples collected prior to, during and

after the critical phase of DENV illness. The flow cytometric

gating strategy used to identify NK-enriched populations in

these experiments is shown in Fig. 4a. Representative stain-

ings for CD69 and CD71 expression on PBMC obtained at

an acute and convalescent time-point from a subject with

DHF are shown in Fig. 4b,c. We found that CD69 expres-

sion was mildly elevated early in disease, but remained rela-

tively high at convalescent time-points in patients with DF

and DHF (Fig. 4d). In addition, CD69 expression on NS1

TET1 NK cells in individual donors was similar to the

expression of CD69 on total NK-enriched cells. Peak CD71

expression occurred at fever day 0 on NS1 TET1 and total

NK cells in many donors, but the differences were not statis-

tically significant between patients with DF and DHF. Mean

CD71 expression at acute time-points was significantly

higher in the NS1 TET1 NK cell population compared to

total NK cells (P< 0�01; Fig. 4e).

Next, we examined CD38 expression on NK-enriched

cell populations in this HLA-B571 cohort. We found that

CD38 expression was highly elevated on NK cells in PBMC

during acute illness, but decreased during early convales-

cence and remained present on up to 40% of NK-enriched

cells 1 year after infection (Fig. 5a). More careful
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examination revealed that CD38 expression segregated

clearly into CD38hi and CD38low populations on NK-

enriched cells at acute time-points. Figure 5b shows CD38

expression on NK-enriched cells at fever day 11 and fever

day 1180 in a representative donor. Frequencies of

CD38low cells followed the same pattern as CD69 expres-

sion on NK cells, with elevations early during infection that

remained high even during convalescence (Fig. 5c). How-

ever, a different pattern was observed for CD38hi cells in

both the NS1 TET1 and total NK cell populations, with

low frequencies early during acute infection becoming ele-

vated between fever day 0 and fever day 11, then returning

to baseline at 1 year post-infection (Fig. 5d). The peak fre-

quency of CD38hi cells was observed on fever days 0 and

11 for both the total NK-enriched and NS1 TET1 NK cell

populations. Strikingly, very high frequencies of CD38hi

NS1 TET1 and total NK cells were observed uniquely in

patients with DHF (P 5 0�0571 compared to patients with

DF).

As our original gating strategy excluded CD3–CD81 cells

in the NK-enriched population, we further evaluated the

expression of CD38, CD69 and CD71 using an inclusive

approach (Supporting information, Fig. S2). Activation

levels of NK-enriched populations assessed using these

markers were similar in the presence or absence of

CD3–CD81 cells. In addition, we used a quantitative poly-

merase chain reaction (PCR) to measure viraemia levels

during early clinical illness in nine of the 11 HLA-B571

subjects. As expected, plasma virus loads were high in all

donors prior to defervesence and dropped significantly as

the fever dissipated (Supporting information, Fig. S3).

However, no statistically significant correlations were

detected between viraemia levels and CD38hi NK cell fre-

quencies (data not shown).
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red line for subjects with DF and a
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Expression of KIR3DL1 on NK cells in PBMC from
the HLA-B571 Thai cohort

To extend these findings, we examined KIR3DL1 expres-

sion on NK cells in PBMC from our Thai cohort using the

KIR3DL1-specific antibody DX9. Expression levels of

KIR3DL1 are known to vary between donors [4,30,34], and

differential expression of inhibitory KIRs can impact NK

cell function significantly [35]. We found substantial fre-

quencies of KIR3DL11CD561 NK cells in nine of nine

donors tested (Fig. 6a). The frequency of KIR3DL1 on NK

cells varied from 3�5 to 15%, which is consistent with fre-

quencies reported elsewhere [34]. PBMC were not available

from two subjects, but genotypical studies indicated that

both were KIR3DL11. The intensity of KIR3DL1 expres-

sion varied among donors, with mean fluorescence inten-

sity (MFI) values ranging across an order of magnitude

(881–7094). However, the sample size was too small to

draw any conclusions regarding associations between

KIR3DL1 expression, KIR3DL1 subtyping and dengue dis-

ease severity (Fig. 6a and Table 1).

Finally, we measured CD69 expression to assess NK cell

activation in a limited number of PBMC samples obtained

at fever day 0 (61 day) and fever day 1180. Consistent

with the results presented above, we found high frequencies

of KIR3DL11CD691 NK cells during acute infection (Fig.

6b,c). At the same time, overall KIR3DL11CD561 NK cell

frequencies remained stable (data not shown). Collectively,

these data indicate that NK cells are activated in HLA-

B571 individuals during the critical phase of illness.

Discussion

In this study, we demonstrate binding of the NK cell-

expressed inhibitory receptor KIR3DL1 to an HLA-B57-

restricted DENV NS1-derived peptide that also serves as a

CD81 T cell epitope. Direct ex-vivo staining of primary

human NK cells was observed with the corresponding

pMHC tetramer in peripheral blood samples isolated from

Thai children during and after acute DENV infection.

Moreover, NS1 TET1 and total NK cells were activated to

express CD38 during the critical phase of DENV illness

only in HLA-B571 patients with DHF, suggesting that NK

cell subsets may contribute to the immunopathogenesis of

dengue disease. This phenotypical analysis provides the
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first indication of a role for KIR–HLA interactions in an

acute self-limited viral infection and suggests that innate

immune receptors may determine the outcome of DENV

infection alongside traditional adaptive responses [12,14].

Interactions between MHC class I molecules and NK

cell-expressed KIRs have been associated with both benefi-

cial and detrimental outcomes in various chronic viral

infections [9] and with the development of autoimmune

diseases [36]. Several studies have shown that certain KIR

alleles and HLA-B loci strongly influence the rate of pro-

gression to AIDS in HIV-infected individuals and implicate

NK cells mechanistically as key determinants of viraemic

control [3]. The interaction between HLA-B57 and

KIR3DL1 has been studied extensively in this context. For

example, Fadda et al. showed that naturally occurring sin-

gle amino acid escape mutations in HLA-B57-restricted

HIV-derived CD81 T cell epitopes could abolish KIR3DL1

binding completely [6,33]. Similarly, the interaction

between B57-NS126–34 and KIR3DL1 may represent a novel

strategy by which DENV evades NK cell-mediated immu-

nity. Functional studies are in progress to address this pos-

sibility. Polyfunctional assays with HLA-B571 NK sensitive

targets are critical to determine whether the DENV NS1

peptide can modulate NK cell function and are an active

area of research in the laboratory.

In longitudinal phenotypical analyses, we found that

CD69 expression on NK-enriched cells was elevated early

during acute infection. In contrast, CD711 and CD38hi NK

cells were rare at this time-point and became more prevalent

later, with peak frequencies around fever day 0 in several

donors. The emergence of abundant CD38hi NK cells coin-

cided with peak CD81 T cell activation in this cohort and

the critical period for plasma leakage and thrombocytopenia

in patients with DHF [29]. Moreover, CD38hi expression on

NK-enriched cells differed substantially between patients

with mild (DF) and severe (DHF) dengue disease. These dis-

tinct activation patterns may preclude the identification of

clinically relevant biomarkers in acute DENV infection.

The late activation of NK cells could be a consequence of

the cytokine storm associated with DHF. In this scenario,

NS1 TET1 (and therefore KIR3DL11) NK cells might be

driven to expand preferentially in HLA-B571 hosts due to

more efficient licensing. Alternatively, NS1 TET1 cells may

represent a subset of NK cells that are restrained early in

infection due to interactions between B57-NS126–34 and

KIR3DL1. As flaviviruses are known to up-regulate MHC

class I [37], we propose that the increased expression of

HLA-B57 on target cells early in infection augments NS1

peptide presentation during the acute viraemic phase, thus

enhancing KIR3DL1 interactions and maintaining NK cell

inhibition. As viral titres fall and MHC class I expression

returns to normal during defervescence, B57-NS126–34 lev-

els will also wane and allow ‘retuned’ NK cells to respond

vigorously.
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Despite collection over a 15-year time-period, we were

only able to enrol a total of 15 HLA-B571 donors due to

the low frequency of this allele in Thailand. This limitation

impacted the power of our study and the differences in

CD38hi expression did not quite achieve statistical signifi-

cance (P 5 0�0571). In addition, the relative rarity of HLA-

B*57 may confine the clinical relevance of DENV NS126–34

in the Thai population. The fact that not all HLA-B571

KIR3DL11 individuals develop DHF suggests the involve-

ment of additional regulatory loops [38]. Given the

stochastic expression of KIRs, different individuals will

co-express different combinations of inhibitory and acti-

vating receptors within the KIR3DL11 NK cell subset. This

constellation of receptor/ligand interactions will probably

contribute to differential effects on NK cell function. In

addition, elevated levels of cytokines known to be up-

regulated in patients with dengue will almost certainly

influence the quality of NK cell and T cell responses. It is

notable in this respect that the DENV envelope (E) protein

interacts directly with the NK cell activating receptor

NKp44 [39].

As with most clinical studies of dengue, the delay

between initial viral infection and presentation to the clinic

or hospital prevented a very early assessment of NK cell

activation in this cohort. A rapid NK cell response that

leads to pathogen elimination may reduce the levels of anti-

gen available for presentation, thereby potentially impair-

ing the development of memory T cell populations.

Indeed, NK cells have been implicated in the regulation of

T cell immunity during viral infections, purportedly acting

to prevent pathological responses by attenuating T cell acti-

vation in the presence of high viral loads [40–42]. In this

study, we found delayed activation of NK cells in HLA-

B571 KIR3DL11 donors, which could hamper the develop-

ment of protective memory T cell responses to DENV. This

regulatory activity of NK cells could explain the modest

CD81 T cell responses directed against this highly con-

served NS1 epitope in secondary DENV infections [29].

In conclusion, our findings suggest that NK cell subsets

play a role in the development of adverse immune

responses associated with DHF in the context of HLA-B57.

Further studies are warranted to identify determinative

KIR–HLA interactions in other acute self-limited viral

infections.
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Supporting information

Additional Supporting information may be found in the

online version of this article at the publisher’s web-site:

Fig. S1. Frequencies of natural killer (NK) cells in the

CD3–CD8–CD14–CD19– gate. (a) Gating strategy to iden-

tify CD3–CD8–CD14–CD19– cells. Cells were first selected

within the lymphocyte gate as defined by forward- and

side-scatter profiles. Singlets were then identified and live

CD3–CD14–CD19– cells were selected in a dump (LIVE/

DEAD
VR

Green with aCD14 and aCD19) versus CD3

bivariate plot. CD8– cells were gated within this popula-

tion. (b) Frequencies of CD561 and/or CD161 NK cells

in peripheral blood mononuclear cells (PBMCs) collected

from Thai cohort subjects 2 years after acute dengue virus

(DENV) infection. Plots are gated on live

CD3–CD8–CD14–CD19– cells.

Fig. S2. Activation of NS1 TET1 and total natural killer

(NK) cells over the course of acute dengue illness.

Kinetics of CD69 (a), CD71 (b), total CD38 (c), CD38low

(d) and CD38hi (e) expression on NS1 TET1 and total

NK cells during acute dengue illness and convalescence.

The average frequencies of CD691, CD711, total CD381,

CD38low, and CD38hi total NK-enriched cells are shown

using a solid red line for subjects with dengue fever (DF)

and a dashed red line for subjects with dengue haemor-

rhagic fever (DHF). Symbols distinguish subjects with

primary (n 5 2, grey symbols) versus secondary (n 5 8,

black symbols) dengue virus (DENV) infections and lines

distinguish those with DF (n 5 5, black line) versus DHF

(n 5 5, dashed line).

Fig. S3. Magnitude of dengue virus (DENV) viraemia by

day of illness. Levels of DENV genome equivalent (GE)

cDNA (copies/ml) were determined in serial plasma sam-

ples from human leucocyte antigen (HLA)-B571 patients.

Symbols denote individual subjects and lines distinguish

those with dengue fever (DF) (n 5 4, black line) versus

dengue haemorrhagic fever (DHF) (n 5 5, dashed line).

Table S1. Antibodies used for flow cytometry studies.
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